The Impacts of Nanocomposites Across their Life Cycle

E. Sahle-Demessie

U.S. EPA, Office of Research and Development, NRMRL, 26 W. M. Luther king Dr., Cincinnati, OH 45268

Sahle-demessie.endalkachew@epa.gov

Applications of Nanotechnology

- **Energy** Improved efficiency of energy production and use production, catalysis, storage
- Material New materials, Improved functionality of materials,
 → coatings, composites Lubrication, abrasives, paints, tires, sport ware
- New processes green nanotechnology, e.g., catalysis, adsorbents
- Electronics & Optics chips, screens
- Food additives, package
- **Cosmetics** skin, lotion, sun screen
- Medicine diagnostics, drag delivery
- Environmental Remediation Pollution prevention: Reducing use of chemicals Improved information and communication, absorption, water filtration, disinfection and sensor/detection

OHLIN

Nanomaterials in Consumer Products

Microplatics and nanoparticles in the Environment

Microplastics in the Ocean

Exfoliating microplastics bead for facial rubs

Life Cycle Release of Nanomaterials

Environmental, Safety, and Health (ESH) Impact of Nano-products Across the Life Cycle

Potential Environmental Impacts of Nanomaterials

1) Increase use of Resources

- Increased exploitation and loss of scarce resources
- Higher requirement to materials and chemicals
- Increased energy demand in production lines

2) Waste generation

- Increased waste production in top down production
- One way system: little disassembly, recycling or incineration problems

3) Toxicity

- Toxicological risks to humans and the environment
- Potential released from products or E(

Polypropylene with CNF

Nanomaterial Implication EPA's Research

Distribution in soils, water, air

- Transport, transformation and fate
- Reactivity
- Unique challenges?

Impacts on ecosystems and particular species

- Either direct (toxicity)
- Indirect (changes local conditions or prey)
- Toxics Impacts on human health -
 - Exposure--Inhalation, ingestion, contact
 - Dose-Response
 - Bioaccumulation, biotransformation, bioavailability

Analysis of ENM in different matrices is critical !

Enhanced Materials with Nanoadditives

Polymer Nanocomposites

 Polymerization develops
 3D structure with nanoreinforcement

How does weathering age composites?

Does it reverse the process to separate the nano-reinforcement from polymer ?

Carbon Nanotubes

Composites tested for weathering

Polymer		Additive	Properties/Use		
$ \begin{pmatrix} H & H \\ -C & -C \\ H & H \end{pmatrix}_{n} $	Polyethylene	Nano-clay (2 – 6%)	Excellent chemical resistance, robust and flexible. <u>Usage</u> - packaging, plastic bags, plastic films, geomembranes, bottles.		
$ \underbrace{\begin{pmatrix} \mathrm{CH} - \mathrm{CH}_2 \\ \mathrm{CH}_3 \end{pmatrix}}_n $	Polypropylene	CNF / CNT	high temperature resistance, good chemical resistance, translucent. <u>Usage</u> - trays, funnels, pails bottles, instrument jars		
О Н Н О Н Н ————————————————————————————	Polyurethane	CNT	 hardness, tensile strength, compression and impact resistance. <u>Usage</u>- rigid and flexible foams, insulation, boating 		
H O I II - [N - C - (CH ₂) ₅] -	Nylon 6 (Polyamide)	CNT	high strength, amorphous, heat and flame resistant. <u>Usage</u> - automotive, healthcare, additive manufacturing		
$\left[\begin{array}{c} 0 \\ -N \\ $	Ultem [®] 1000 Polyetherimid	CNT	high-strength amorphous excellent heat and flame resistance, used for additive		

Solar Aging System

- A cycle of weathering: 120 min (Sunshine : 98 min and Rain: 12 min)
- □ The cycle continuously repeats during the aging process
- □ Humidity: 8-20% for Sunshine and over 60% for Rain
- □ Irradiation: 700 W/m² and Wavelength: 300-800 nm
- □ Chamber Temperature: 33-37 °C
- □ Black Substance Temperature: 65 °C
- Gampling time: 756, 1512, 2268, and 3024 h

Studying Photo-initiated Oxidation of Nanocomposite

NanoRelease Weathering Project

Aged wafers

Measuring Weathering of Nano-Composites

Thermal Analysis

• Thermogravimetric analysis(TGA)

• Differential Scanning Calorimetery (DSC)

Nanoclay in polyethylene Improved Thermal stability

Barrier - Quality Bio-Sensor – Safety Gas sensor

 30° C hold for 1min, to 850° C @ 10° C/min, Air flow 20ml/min.

Thermal analysis to measure the Effect of Ozone on composite of Polypropylene with 8% CNF

Initially PP showed some increase in thermal stability initially, before it start to degrade.

DSC analysis for Solar aged P01 samples

Measuring Weathering of Nano-Composites

Physical and Structural Properties

Surface Charge – Streaming potential

- Atomic Force Microscopy (AFM)
 - X-ray Diffraction Analyzer

Changes in surface charge during Ozone aging of Nanocomposite polypropylene and polyurethane

Streaming Potential Analysis of Polymer - CNF composites

Changes in surface charge after 24 h & 48 h

X-ray diffraction analysis of weathered CNF composites

XRD measurement of Polypropylene during Weathering

Loss of Polyurethane crystalline structure during Ozone weathering

Atomic Force Microscopy images of pristine and aged Polyethylene Nanoclay filled PE food packaging films

Measuring Weathering of Nano-Composites

Chemical Properties

- Chemiluminescence Analyzer (CL)
 - Infrared Spectroscopy(FTIR)

Photooxidation of polymers: Chain and Photochain Mechanism

Isothermal chemiluminescence results for pristine and clay composite LDPE before and after aging

Clay composites showed higher chemiluminescence intensity due to the direct oxidation of the polymer additives giving The rate of oxidative attack is then related to the intensity of the signal and the molar mass of radicals formed.

Comparing Carbonyl Index for Ozone exposed pure- and clayenforced polyethylene

 $Carbonyl Index (CI) = \frac{Absorption at 1740 cm^{-1}}{Absorption at 2020 cm^{-1}}$

Optical image

3-D Optical Surface morphology

SEM Image g- 120 h h, i – 220 h

SEM Image k - 300 h I,m – 550, 720 h

Scanning Electron micrograph of UV aged Nylon with 2% CNT

Measuring Release nanoparticles from of Nano-Composites

Composite and Size distribution of Nanoclay released from Polymer Matrix

Transmission Electron Microscopy of nanoclay particles released form washed aged polyethylene composite

Composition of Clay NP released from food packaging

Washed/sonicated samples of Weathered Polyurethane and Polypropylene

Sample from Increased Aging oxidation

Carbon nanofiber released into the wash water of aged polypropylene

Characteristics of Released Particles

F - H as in the release systematics by Harper et al. 2015

CNF in Water Samples from aged TPU/8%CNF

Single particle - ICP-MS Analysis of Washed Water of Aged CNF-Composite

TEM image of Wash Sample of polyamide composite micro-plastic

TEM image of Wash Sample of polyamide composite micro-plastic

Summary of Weathering Tests

Polymer		Additive	Aging	Nanorelease	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Polyurethane	CNT/CNF		Yes	
$ \underbrace{\begin{pmatrix} \mathrm{CH} - \mathrm{CH}_2 \\ \mathrm{I} \\ \mathrm{CH}_3 \end{pmatrix}}_n $	Polypropylene	CNF / CNT	High	Yes	
$ \begin{array}{c} \begin{pmatrix} H & H \\ c & -C \\ -C & -C \\ H & H \end{pmatrix}_n \end{array} $	Polyethylene	Nano-clay (2-6%)	medium	May be	
H O - [N - C - (CH ₂) ₅] -	Nylon 6 (Polyamide)	CNT	Low	Not detected	
$\left[\begin{array}{c} 0 \\ -N \\ $	Ultem [®] 1000 Polyetherimid	CNT	Little	Not detected	
			LIUUC		

Polymer composites of different chemical structure vary remarkably in their resistance of degradation. Polyolefin and polyurethane composites not suitable for outdoor use.

Nanoparticles flow through sand filters

transport of nanoparticles

through a porous media

A. Hassan, Sahle-Demessie, et. al, J. Hazard. Materials, 244–245, 251-25 2013.

Surface charge of MWCNT

Isotherm curves for Carbonaceous Adsorbents COPPER INITIAL CONCENTRATION 10 mg/L -3.2 DAYS EXPERIMENT DI WATER pH 5.1

Rozenzwig, Sahle Demessie Water Air Soil Pollution (**2014**) 225:1913, J. Hazardous Materials, **2014**, <u>Volume 279</u>, 30 August 2014, Pages 410–417. Chemosphere, Volume 90, Issue 2, January **2013**, Pages 395-402.

Properties of selected pollutants

Compound	Mole weight g mole ⁻ 1	Boiling point °C	Water solubility mg l ⁻¹	Log K _{ow}	Toxicity	LC ₅₀ ¹⁾
Naphthalene	128	218	31.7	3.5	Human toxic	3.8
Phenanthrene	178	339	1.29	4.45	PBT	0.6
Anthracene	178	340	0.075	4.46	Ecotoxic	4.46
Flouranthene	202	375	0.26	4.90	carcinogen	0.5
	178	340	0.075	4.46	Ecotoxic	4.46
				6.32		
Aldrin	364		0.003%	6.5		

¹⁾ Neanthes arenaceodentata expressed as LC_{50 96h} I mg l⁻¹ (Cerniglia, 1992; Rossi and Neff, 1978)

NPs Tested for Adsorption study

Simulated NP-Dissolved partition of hydrophobic pollutants

 $Pollu_{Free} + NP \leftrightarrow Pollu_{NP}$(1)

Partition Coefficient of pollutant between NP and dissolved phase

$$K_{NP} = \frac{[POllu]_{NP}}{[POllut]_{Free} [NP]}, \quad (ml/g)....(2)$$

Mass balance of pollutant:

$$[Pollu]_{tot} = [Pollu]_{Free} + [Pollu]_{NP}$$

$$[pollu]_{total}/[Pollu]_{Free} = 1 + K_{Np} [NP] \dots (3)$$

 $[Pollu]_{total} = Retentate \ concentration$

 $[Pollu]_{Free}$ = permeate concentration

Equation (3) similar to Stern–Volmer relationship

NP-Organic Pollutant Equilibration and Sample Prep

TGA-GC-MS for detecting Hydrophobic pollutants adsorbed to Nanoparticle

TGA–GC-MS for analysis of Naphthalene adsorbed on CNT

TGA for Naphthalene Adsorbed on MWCNT

BP of Naphthalene = 137 °C, Released from MWCNT at 380 °C Delayed release of naphthalene shows strong adsorption to CNT

TGA –MS for analysis of Polyaromatic hydrocarbons adsorbed on nano-TiO₂

Increased partitioning of phenanthrene adsorbed on nano-TiO₂ – effect of light illumination

Aquatic organisms and the Interaction of Pollutants and NPs Do they amplify or alleviate toxicity?

= NPs

(B)

Absorption – uptake of pollutants

NP reduce pollutants uptake

= pollutant

Absorption – uptake of NPs

NP amplify pollutants uptake

(eg. nano-TiO₂ increased accumulation of As(V) carp

Effect TiO₂ concentration on Xylene-Water-TiO₂ dispersion in the presence of light

Organics-NP-Aggregated Dispersion

of Xylene Bubbles

Effect pH on Xylene-Water-TiO₂ dispersion in the presence of light

Tomadol at CMC 5*CMC

0.0033g Methylene Blue 5ml m-xylene,0.0077g TiO₂ 120ml pH6.96 DI Water

UV-Vis spectroscopic measure of the Effect of TiO₂ in dispersing Xylene in Water the absence of light

Effect of TiO₂ in dispersing Xylene in Water the absence of light

pH = 7

pH = 10

Confocal microscope images of TiO₂ particles and Xylene bubbles

Procedure for dyeing TiO₂ nanoparticles with <u>a fluorescent green dye</u>

- 1) Disperse 50 mg TiO₂ (P25, Degussa) particles in 3 mL methanol (MeOH)
- 2) Add 20 mg Fluorescein O-methacrylate (Sigma-Aldrich) in the prepared TiO₂ solution
- 3) Place the solution under vigorous stirring for 30 min
- 4) Centrifuge to collect dyed TiO_2 particles
- 5) Wash TiO_2 particles with methanol and centrifuge it.
- 6) Repeat the washing process three times to remove unabsorbed dyes on TiO_2 particles
- 7) Dry TiO₂ particles at 60 °C for 3 hr in a conventional lab oven to remove MeOH
- 8) Record images of TiO_2 particles with a Nikon Eclipse TE2000-S microscope

Summary

- UV light and ozone exposure degrade nanocomposites and nanoparticles could be released to the environment,.
- Degradation of nanocomposite modulated by polymer matrix, environmental conditions, type of nano-reinforcement,
- Fate and transport of nanoparticles influenced by their characteristics and environmental chemistry.
- Nano-particles can influence adsorption and dispersion of hydrophobic/low water soluble contaminants by an order of magnitude.
- Many analytical techniques are available to analyze the fate, transport and transformation of nanoparticles in the environment
- Analytical tools/approaches are needed to better understand the degradation of nanocomposites, release of NPs, and detection in the environmental matrices.

Acknowledgement

- Dr. Zhen Li
- Dr. Ashraf Aly Hassan
- Dr. Haregewine Tadesse
- Dr. Shirley Rosenweig
- Beniyam Mezgebe
- Hengye Jing
- Tom Deinlein
- Albert Foster
- Stephen Harmon
- Hafiz Salih
- Christina Benett-Stamper
- Jun Wang, Bill Han, Chady, PerkinElmer

