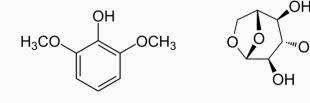
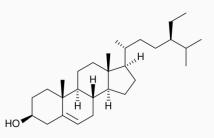
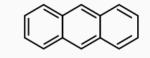


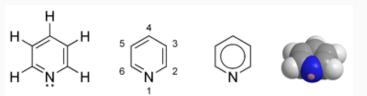
- I. Focus on (organic) aerosol particle composition
- II. A brief history and review of select past studies
- III. A look at newer developments and technology applications
- IV. Possible new directions tied to health-related research directions
- V. Wrap-up

- organic carbon (OC); elemental carbon (EC); black carbon (BC); brown carbon (BrC);
- humic-like substances (HULIS);
- water-soluble organic carbon (WSOC);
- oxygenated organic aerosol (OOA) (Aerosol MS)
- molecular weight and size
- functional group-based chemistry (FT-IR)
- volatility and thermal-chemical fractions
- elemental and ionic (K⁺ with some chloride, nitrate, and sulfate)
- water (hygroscopicity)

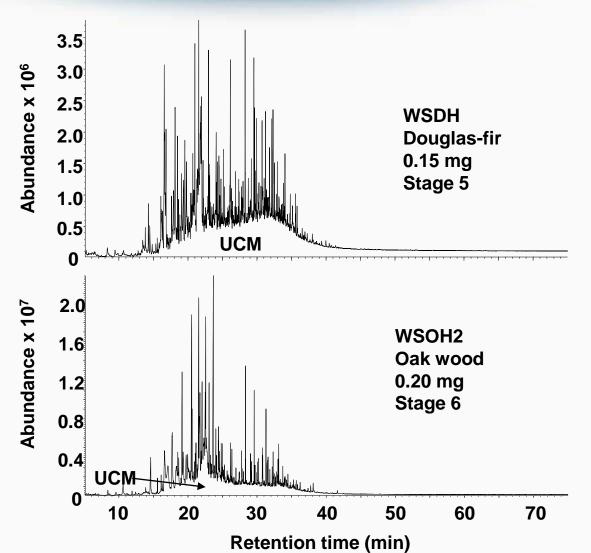



03/20/2015

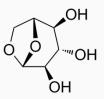

Examples of major organic compound classes



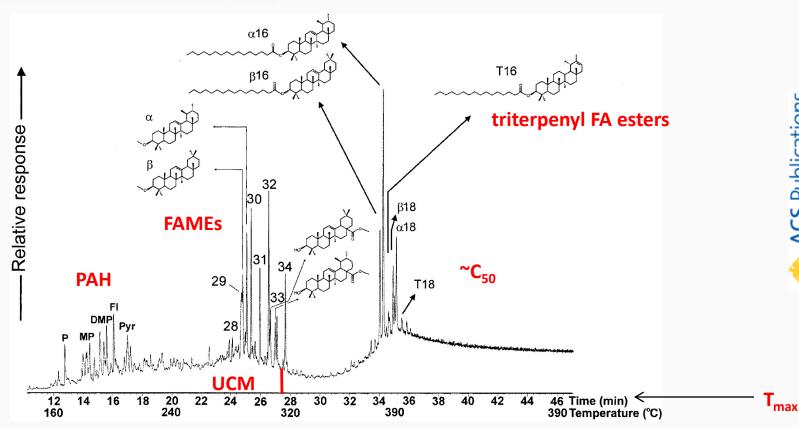
- carbohydrates and derivatives (anhydro-sugars)
- lignin derivatives (methoxyphenols)
- diterpenoids and triterpenoids
- phytosterols
- carboxylic acids
- alkanols, alkanals, and alkanoates
- alkanes and alkenes
- polycyclic aromatic hydrocarbons (PAH)
- dioxins and furans
- organic nitrogen compounds (indoles, nitriles))
- Heterocyclics (thiophenes, organometallics)


- o GC-MS identified compounds
- Relative proportions and class change with atmospheric conditions and combustion source
 Medeiros and Simoneit F

4


Medeiros and Simoneit, ES&T, **2008** (*42*) p. 8310

GC-MS (biomass burning example)



- SVOC chemistry grounded in GC-MS
- GC-MS limited by:
- temperature or volatility (300 °C)
 - thermal degradation
- polarity
 - derivatization
- resolution (column space)

Resolution and temp. limits of GC-MS

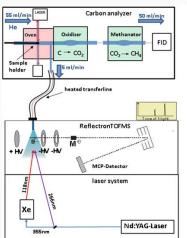
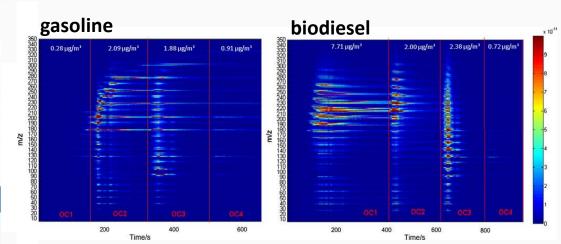
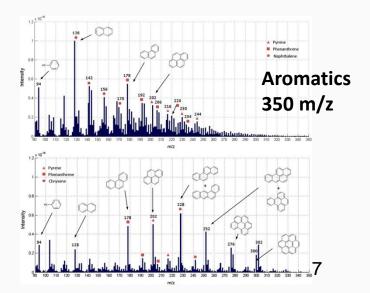


Figure 5. Representative total ion current trace (HTGC–MS) of the ester fraction from the smoke extract from burning of Castanha-do-Pará. Numbers refer to the carbon chain length of free fatty acids (analyzed as the methyl esters): P = phenanthrene; MP = methylphenanthrenes; DMP = dimethylphenanthrenes; FI = fluoranthene, and Pyr = pyrene. α , β , and T are the esterified triterpenols α -amyrin, β -amyrin, and taraxasterol, respectively.

ACS Publications

Carbon analyzer and PI-MS analysis

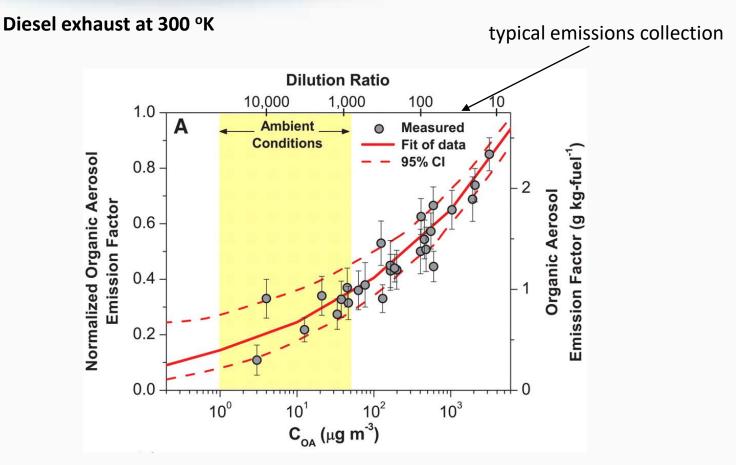

 Pure Helium
 Helium / 2 % O2


 OC1
 120°C
 EC1
 550°C

 OC2
 250°C
 EC2
 700°C

 OC3
 450°C
 EC3
 800°C

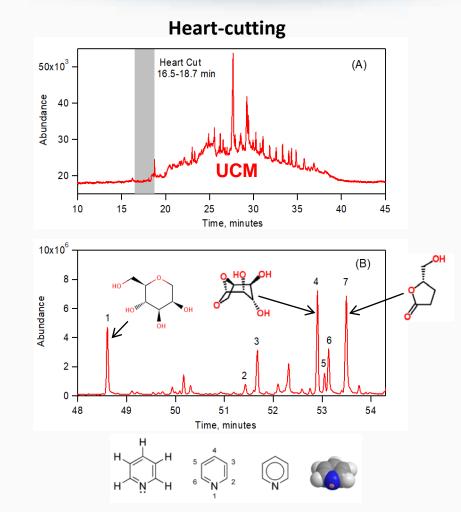
 OC4
 550°C
 EC3
 800°C



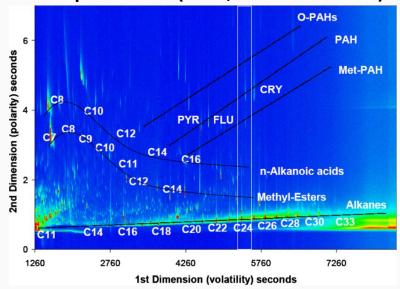
How do we develop a volatility-based toxicology model?

Grabowsky et al., (2011), Anal. Bioanal. Chem., 401, pp. 3153-3164

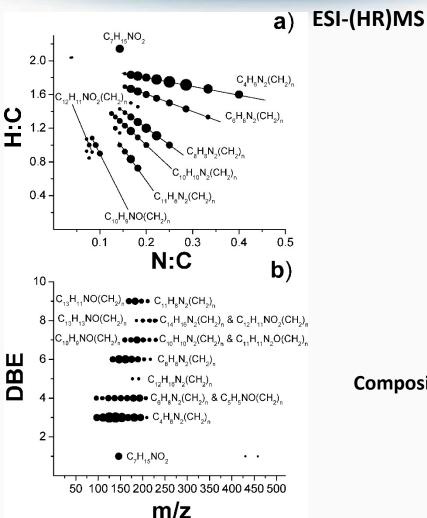
Chemistry changes with volatility:


- produce more realistic chemical exposure scenarios
- there is more anthropogenic SOA than primary OA
 - reactive byproducts will be important

Robinson et al., Science, 315 (5816): 1259-1262


8

2D-GC-MS (GC-GC and GCxGC)


Comprehensive (fixed, fast modulation)

Published in: Schnelle-Kreiss et al; J. Sep. Sci. 2005, 28, 1648.

2D-GC methods can overcome resolution and polarity challenges but not the temperature ones (yet)

LC-MS applications

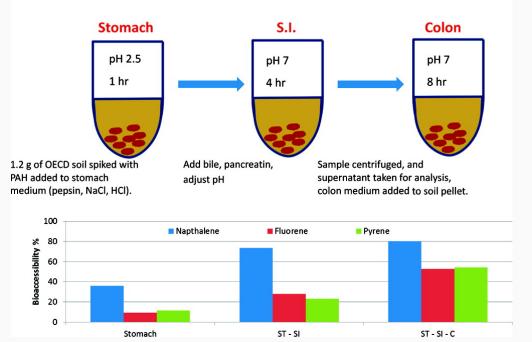
- van Krevelen diagram, PPNS sample
- chemical formulas are resolved with HR-MS
 - advanced fingerprinting
 - no chemical structure
- N proportional to H
- negative slope increases with C no.
- alkaloids were observed
 - new compound detection possible

Compositional knowledge is primarily based on solvent chemistry

The size of the data points is proportional to the logarithm of the peak intensity.

Published in: Laskin et al; Environ. Sci. Technol. 2009, 43, 3764-3771.

- goal is to extract as much and as many organic compounds as possible
- determine a maximum possible exposure
- there can be organic solvent bias (dosimetry)


What about bioavailability?

According to WEB OF SCIENCE[™].

- since 1985, 518 papers have focused on "particulate matter" AND "bioavailability"
- more than half of those focused on "metals"
- minimal focus on organic compounds
- cell response/expression was covered (e.g.; ascorbate oxidation, glutathione depletion)

Physiological-based fluid extractions

• Experiments

- PAH in soil in the gastro-intestinal system
- sequentially or in batch, time
- differences in PAH bioaccessibility observed
- GC-MS

Results

- PBET underestimates [PAH] in soil
- desorption of PAH is controlled by many factors
- biological environment, K_{ow}
- colon media aggressively desorbed PAH.

Precedent for particle extractions with lung fluid

ACS Publications

٩Å٥

Physiological-based fluid extractions

¢.

8

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

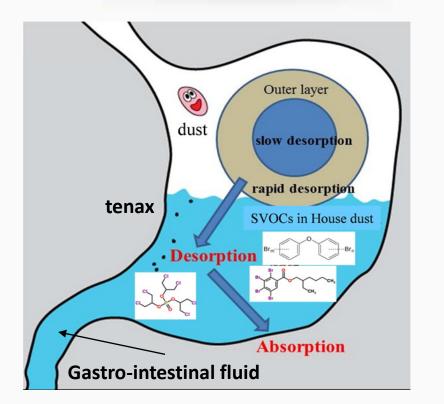
Bioaccessibility

₫₫

Estimated by EPI suite

2

hydrophobic


• Abstracted from Wania et al., 2003

6

Log Kow

Ū-

Ō

Flame retardants-PBDE and organophosphates

Published in: Mingliang Fang; Heather M. Stapleton; *Environ. Sci. Technol.* **2014**, 48, 13323-13330. DOI: 10.1021/es503918m Copyright © 2014 American Chemical Society

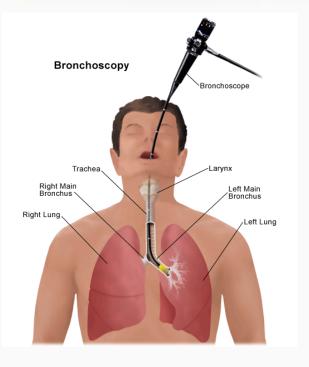
12

14

10

Simulated lung fluids

Table 11. Simulated Lung Fluid (SLF)						
		SLF1	SLF2	SLF3	SLF4	SLF5
- Composition	ALF (g/L)	Gamble's Solution (g/L)	(mg/L)	(g/L)	(g/L)	mMol/L
					MgCl,	
nagnesium chloride	0.050	0.095		0.2033 (hexahydrate)	hexahydrate 0.2033	·
odium chloride	3.21	6.019	6800	6.0193	6.0193	116
otassium chloride	-	0.298	-	0.2982	0.2982	
fisodium hydrogen phos- bhate (Na _s HPO _s)	0.071	0.126	1700 (monohydrate)	-	-	-
odium sulfate	0.039	0.063		0.0710 (anhydrous)	0.0710 (anhydrous)	-
alcium chloride dihydrate	0.128	0.368	290	0.3676	0.3676	0.2
odium acetate		0.574	580	0.9526 (trihydrate)	0.9526 (trihydrate)	-
odium hydrogen carbonate NaHCO ₂)	-	2.604	2300	2.6043	2.6043	27
odium citrate dihydrate	0.077	0.097	-	0.0970	0.0970	0.2
odium hydroxide	6.00	-	-	-		-
tric acid	20.8	-	420 (monohydrate)	-	-	-
lycine	0.059	-	450	-	-	5
odium tartrate dihydrate	0.090	-	-			
odium lactate	0.085	-	-	-		-
odium pyruvate	0.086	-				
mmonium chloride	-	-	5300	-		10
phosphoric Acid		-	1200			
odium carbonate	-	-	630	-		
ootassium acid phthalate	-	-	200			
ulfuric acid	-	-	510			0.5
odium citrate dihydrate	-		590			
odium phosphate monobasic nonohydrate	-	-	-	0.1420	0.1420	1.2
-cystine hydrochloride		-			-	1.0
)PPC ^e	-	-	-		0.02% (w/v)	-
)TPA ^a	-		-	-	-	0.2
ABDCB ²	-		-	-	-	50
Properties						
н	4.5	7.4	7.4	7.4	7.4	


Gamble's solution - deep lung
 ALF – following macrophage phagocytosis

SLF2 – extracellular fluid interaction

- Respiratory mucous contains
 - Glycoproteins, proteins, and lipids.
 - Varies with disease states
- Lung is generally difficult to simulate
 - Due to surfactant and aqueous fluid
- Salts can precipitate
- Stability of organic compounds in fluids is unknown
- work-up is required to perform a chemical analysis

Possible new research directions

- Lavage allows the collection of lung fluid, cells, and other materials inside the air sacs
- This fluid will be collected and used to perform PM extractions, assess bioavailability
- Potential to reduce animal use and save time compared with tissue measurements

- Combustion and ambient aerosol is chemically complex,
 - requires multiple analytical approaches
- Different chemical entities are commonly associated (OC, HULIS, WSOC, etc.)
- links between POA and SOA need to be explored further using thermodynamics
 - generational chemistry
- thermodynamics-based toxicology will emerge and are important for source-to-effect research
- It is time for physiological-based extractions of PM using lung fluids
 - This will improve our understanding of bioavailability of specific PM components