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Disclaimer

The views expressed in this presentation are those of
the author and do not necessarily reflect the views or
policies of the U.S. Environmental Protection Agency.







The Story
of Waste

“One man’s
waste is another
man’s treasure”

Circular
Economy




Waste type Avg. U.S. (%) Tonnes per year
for 100,000 people

Paper and 27.4 19,834
paperboard

Glass 4.6 3,344
Metals 8.9 6,469
Plastics 12.7 9,177
Rubber and leather 3.0 2,176
Textiles 5.7 4142
Wood 6.3 4,573
Food, other 14.5 10,530
Yard trimmings 13.5 9,816
Other materials 1.8 1,329
Misc. inorganic 1.6 1,127
wastes

Total 100.0 72,517

EPA (2014) Municipal Solid Waste Generation, Recycling, and Disposal in the United States: Facts and Figures for 2012. EPA-530-F-14-001.




Margins

Refining margin (crack spread) is the difference
between the value of the products a refinery produces
and the value of the crude oil feedstock on a per barrel
basis.

For corn to ethanol processes, the grind margin is
ethanol and co-product net value minus feedstock and
energy costs on a per gallon basis.

For MSW to X processes, what's the X-MSW margin, or
sometimes an X-RDF (Refuse-Derived Fuel) margin?




Technologies for Portions of MSW

Metals Glass Paperand  Plastics Plastics Organics Other
Paperboard "1"and"2" "3"-"7" Food Fats, Qils Yard Trash
Facility / Technology Type and Waste
Grease

Specific Recycling Process* @ [ ® =
Dirty MRF® 0 E ] ® E £ * ® ® O
Clean MRF® - » [ »
WTE - Anaerobic Digestion® O ] ® @
WTE - Gasification® ® B & &
WTE - Fermentation®
WTE - Incineration’ O @) b i & ® ® # ]

@® = commercialized process
= demonstrated process
(O = technology that can handle feedstock without using it productively

Smith R.L. et al, An Industrial Ecology Approach to Municipal Solid Waste Management: I. Methodology, Resource Conservation Recycling 104, 311-316 (2015)
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Smith R.L. et al, An Industrial Ecology Approach to Municipal Solid Waste Management: I. Methodology, Resource Conservation Recycling 104, 311-316 (2015)



MSW Process

Product(s)

RCHVELS

Use for Residuals

MSW generation

Composting

Recycling center/
transfer station/
MRF

WTE—lignocellulosic
fermentation

WTE—qasification
(with conversion
to ethanol)

WTE—anaerobic
digestion

WTE—incineration

Compostable
and recyclable
materials

Compost

Separated
recyclable
materials

Ethanol

Syngas, then
ethanol

Biogas, then
power

Power

Non-compostable,
non-recyclable
materials

Contaminants
(glass, plastics)

Non-compostable,
non-recyclable
materials

Lignin; CO2

Ash/slag

Digestate slurry

Ash

Heat value, recycling
research opportunity

Glass and plastic
recycling, heat value

Heat value, recycling
research opportunity

Heat value, products;
beverages, algal process
Construction

materials

Composting, fertilizer

Construction materials




Waste to Energy Products and Processes

Recycling Center /

I'ransfer Station /

Matenal Recovery
Facility

Food
YT
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Biogas Cleanup,

Upgrading, and _
PRSI, — Electricity

Electmcity
Production

Y1

- Fermentation = Fthanol

:\ lood Syngas Cleanup,

Conditioning, and
Conversion to
Ethanol

] Gasification —=  Syngas —— — Ethanol

MSW
e Incineration » Electricity (Steam)

Smith R.L. et al, An Industrial Ecology Approach to Municipal Solid Waste Management: |l. Case Studies... Resources Conserv. Recycl. 104, 317-326 (2015)



Sustainable Manufacturing Results

The results of analyses (see publications)
show that gasification, anaerobic digestion,
and fermentation have positive economics.

Anaerobic digestion improves seven
emissions (out of seven explored), while
fermentation, gasification, and incineration
successively improved fewer emissions.




Identifying Chemicals, Reactions, and

Processes in a Life Cycle

Chemical of
Interest

Life Cycle
Assassment
Functional
U nit

Alternatives
Assessment

Lineage

Qualitative Life
Cycle Inventory
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Top-down and Bottom-up Inventory Modeling
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Process Model in the Value Chain
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Potential Life Cycle Processes




Identifying Chemicals, Reactions, and

Processes in a Life Cycle
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identifying Chemicals, Reactions, and
Processes in a Life Cycle

o

Mittal V. et al. Toward Automated Inventory Modeling in Life Cycle
Assessment: The Utility of Semantic Data Modeling to Predict Real-
World Chemical Production, ACS Sust Chem & Eng. (submitted)




Rapid Estimation of Life Cycle Inventory

1. Existing inventory databases

2. Top-down inventory data mining

3. Bottom-up inventory development

Process Emission
Design ( Simulation
Research Models




Bottom-Up Simulation

Advantages: potential for Emissions
. d LCI . ‘ Simulation Energy
improve ; process P N
. ru . . umps eactors Mass

specific; inputs naturally in %
results; storage, vent, and Q :» crission

- . . . Tanks Columns odeling
fugitive emissions included Life Cycle

Unit Operations Inventory

% talnable Challenges: knowledge
Chemistryz Engineering B of engineering deSlgn,
Coupling Computer-Aided Process Simulation and Estimations of need fOF Chem|Ca|

Emissions and Land Use for Rapid Life Cycle Inventory Modeling

Raymond L. Smith,** Gerardo JRmz‘vI cado, David E. Meyer, Michael A. Gonzalez, SyntheSiS details;

John PAbraham“Ham\f[B rett, and Pa l\f[R dall

L] L]
National Risk Management Research Laboratory, United States Environmental Protection Agency, 26 West Martin Luther King n n r I I m I I n
Drive, Cincinnati, Ohio 45268, United States




Bottom-Up Simulation

N

Pressure
vacuum vem

| |
| | |
I ] Drain vaive

Working Losses
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(kg/h/source)

Pumps Light liquid |0.0199

Heavy liquid | 0.00862
Compressors Gas 0.228
Valves Gas 0.00597

Light liquid | 0.00403

Heavy liquid | 0.00023
Connectors (e.g., flanges) All 0.00183
Open-ended lines All 0.0017
Sampling connections All 0.0150
Pressure relief valves Gas 0.104




Top-Down Data Mining

Advantages: primary data
reported by industry and
States; detailed release
profiles; automation
capabilities (linked open
data)

IIIIIﬂIIIIIIIﬂI

EU

Mining Available Data from the United States Environmental
Protection Agency to Support Rapid Life Cycle Inventory Modeling
of Chemical Manufacturing

Sarah A. Cashman,'il David E. Meyer,*":' Ashley N. Edeler1,§‘H Wesley W. Ingwersen,'? John P. Abraham,':'
William M. Barrett,” Michael A. Gonzalez," Paul M. Randall,” Gerardo Ruiz-Mercado,’
and Raymond L. Smith*

"Eastern Research Group, 110 Hartwell Avenue, Lexington, Massachusetts 02421, United States

“United States Environmental Protection Agency, National Risk Management Research Laboratory, 26 West Martin Luther King
Drive, Cincinnati, Qhio 45268, United States

$0ak Ridge Institute of Science and Education (ORISE) hosted by U.S. Environmental Protection Agency Office of Research and
Development, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States
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Challenges: multi-chemical
facility-level allocation;
iInput data gaps; currently

limited to TSCA CDR
chemicals



Data Minin
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Life Cycle Inventory Methods

Analysis of a chemical of interest leads to
identification of the chemical lineage, defining
processes of interest.

Methods for bottom-up and top-down life
cycle inventories have been developed with
capabilities aimed at providing quick and
accurate results.
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SE __  GREENSCOPE Tool

Gauging Reaction Effectiveness for ENvironmental Sustainability
of Chemistries with a multi-Objective Process Evaluator




SEPA  GREENSCOPE Tool

Agency

« Spreadsheet and online software tool, capable of
calculating ~140 different indicators.

 User can choose which indicators to calculate.

e User can redefine indicator limits to fit circumstances.




Sustainability Framework

|dentification and selection of two reference states for each
sustainability indicator:

- Best target: 100% of sustainability
- Worst-case: 0% of sustainability

Two scenarios for normalizing the indicators on a realistic
measurement scale

Dimensionless scale for evaluating a current process or
tracking modifications/designs of a new (part of a) process

(Actual-Worst)
Percent Score = %G, = x100%

(Best-Worst)
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Using GREENSCOPE

Sensitivity analysis
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Efficiency Indicators
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