

Rapid Estimation of Life Cycle Inventory

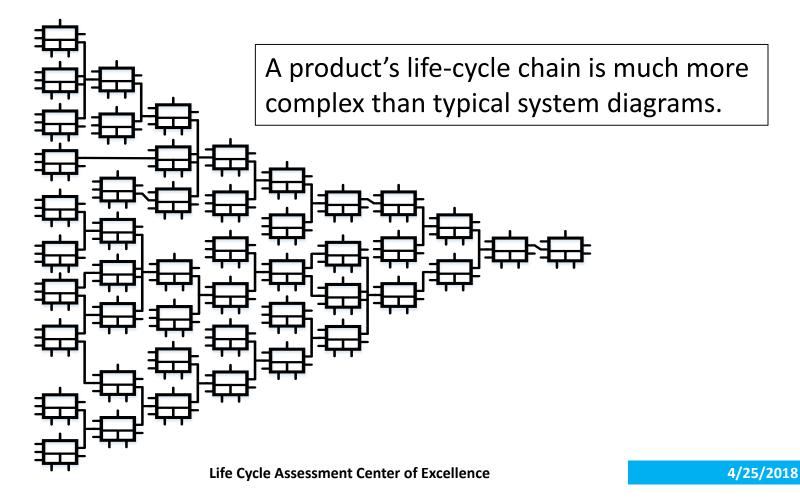
Raymond L. Smith¹, David E. Meyer¹, Gerardo J. Ruiz-Mercado¹, Vinit K. Mittal², Michael A. Gonzalez¹, John P. Abraham¹, William M. Barrett¹, Briana Niblick^{1,*} (*Presenter, ¹EPA NRMRL, ²ORISE)

AGEN

LCM 2017 in Luxembourg City, Luxembourg

Office of Research and Development

National Risk Management Research Laboratory Life Cycle Assessment Center of Excellence

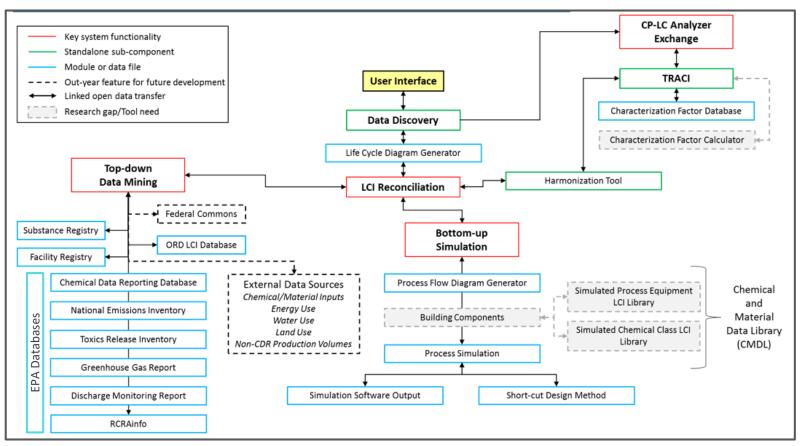

Disclaimer and Acknowledgement

The views expressed in this presentation are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

This project was supported in part by an appointment of Vinit Mittal to the Research Participation Program at the National Risk Management Laboratory, U.S. Environmental Protection Agency, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and EPA.

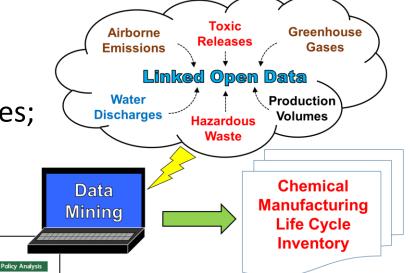
Life-Cycle Chain of Unit Processes

Generating more specific and accurate chemical process inventories


- Missed inputs could lead to missing sections of the inventory.
- Missed outputs could lead to missed impact categories.
- Qualitative and quantitative aspects affect data quality.

4/25/2018

Project Context


Approaches to Generating Inventory Data

- Existing life-cycle databases
 - -Incomplete; proxies
- Top-Down data mining
 - -National accounting; facility-level
- Bottom-Up inventory development
 - Process modeling; simulation; complement with emission models

Top-Down: Data Mining & Linked Open Data

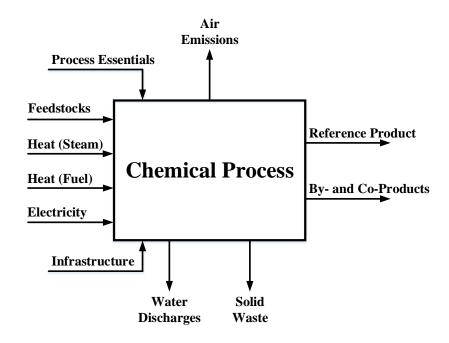
Advantages: primary data reported by industry and states; detailed emissions profiles; automation capabilities

Mining Available Data from the United States Environmental Protection Agency to Support Rapid Life Cycle Inventory Modeling of Chemical Manufacturing

Sarah A. Cashman,[†] David E. Meyer,^{**,‡} Ashley N. Edelen,^{\$,||} Wesley W. Ingwersen,[‡] John P. Abraham,[‡] William M. Barrett,[‡] Michael A. Gonzalez,[‡] Paul M. Randall,[‡] Gerardo Ruiz-Mercado,[‡] and Raymond L. Smith[‡]

[†]Eastern Research Group, 110 Hartwell Avenue, Lexington, Massachusetts 02421, United States

[‡]United States Environmental Protection Agency, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States

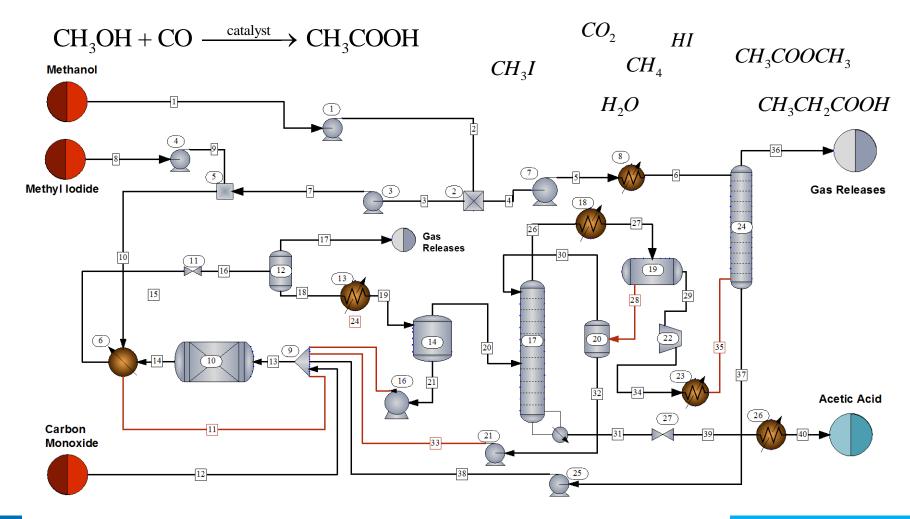

[§]Oak Ridge Institute of Science and Education (ORISE) hosted by U.S. Environmental Protection Agency Office of Research and Development, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States **Challenges:** multi-chemical facility-level allocation; inventory data gaps; currently limited to TSCA CDR chemicals

pubs.acs.org/est

Bottom-Up Simulation

Advantages: potential for improved LCI compared to commercial databases; includes storage and fugitive emissions; process-specific

Coupling Computer-Aided Process Simulation and Estimations of Emissions and Land Use for Rapid Life Cycle Inventory Modeling


Raymond L. Smith,*[©] Gerardo J. Ruiz-Mercado, David E. Meyer, Michael A. Gonzalez,[©] John P. Abraham, William M. Barrett, and Paul M. Randall

National Risk Management Research Laboratory, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States

Challenges: knowledge of engineering design; need for chemical synthesis details; establishing assumptions

Acetic Acid Production

Life Cycle Assessment Center of Excellence

Simulation and Emission Model Outputs

LCI Outputs		Simulatio	n	Simulation and Emission Models						
Acetic Acid Product (kg/kg)	Fugitive	Storage	Vents	Fugitive	Storage	Vents				
Carbon monoxide			2.18E-02	1.77E-05		4.36E-02				
Carbon dioxide			1.72E-03	7.94E-07		3.50E-03				
Methane			6.37E-04	2.90E-07		1.27E-03				
Methanol			1.90E-03	1.52E-05	1.85E-04	1.90E-03				
Acetic acid				3.17E-05	5.07E-05	7.15E-04				
Methyl Iodide			6.92E-03	2.78E-05	2.29E-05	8.13E-03				
Hydrogen iodide			2.02E-03	1.07E-06		2.09E-03				
Methyl acetate			1.33E-03	1.10E-05		2.23E-03				
Water			5.18E-07	2.64E-05		6.93E-06				
Propionic acid				1.83E-08		3.12E-07				

4/25/2018

Comparing Inventory Inputs

LCI Inputs	Units	Simulation	Simulation and Emission Models	Percent Change	
Carbon monoxide	kg/kg	5.088E-01	5.093E-01	0.08%	
Methanol	kg/kg	5.389E-01	5.395E-01	0.12%	
Methyl Iodide	kg/kg	1.225E-02	1.351E-02	10.32%	
Steam	MJ/kg kg/kg	1.751+00 7.785E-01	1.752E+00 7.791E-01	0.08%	
Cooling water	MJ/kg kg/kg	3.058E+00 4.361E+01	3.060E+00 4.365E+01	0.08%	
Electricity	MJ/kg	5.598E-03	5.602E-03	0.08%	
Steel	kg/kg	3.095E-04	3.097E-04	0.08%	
Land Use	m²/kg		1.023E-04	∞	

Acetic Acid: Emissions Availability

		Inventory Source				TRACI Impact Category										
		Simulation														
			and													
			Emission	Data												
	Emission	Simulation	Modeling	Mining ¹	USLCI²	ecoinvent ³	AP	EP	ODP	SFP	GWP	HHR	HHC	HHNC	ETP	
	Acetaldehyde															
	Acetic acid															
	Acrolein															
	Acrylic acid															
	Ammonia															
	Butadiene															
	Butane															
	Butanol															
	Carbon Dioxide															
	Carbon monoxide															
	Chromic Acid															
	Chromium III															
	Chromium VI															
	Cobalt															
E	Ethyl acetate															
Emission	Ethylene glycol															
i.	Formaldehyde															
	Heat, waste															
	Hexane															
	Hydrogen															
	Hydrogen Iodide															
	Maleic Anhydride															
	Manganese															
	Methane															
	Methane, bromo-, Halon 1001															
	Methanol															
	Methyl Acetate															
	Methyl Iodide															
	Propionic Acid															
	TOC, Total Organic Carbon															
	VOC, volatile organic compounds															
	Water AP															
<u>es</u>	EP				1											
gor vs)	ODP			1	1					Emiss	sion or	r impa	ct is i	nclude	ed in	
TRACI Impact Categories (number of flows)	SEP	4	6	1	2	7				column category Emission or impact is not included in column category						
	GWP	2	2	12	1	2										
	HHR	1	2	1	2	1										
<u></u>	ННС	1	1	6	1	2										
ы ACI	HHNC	1	1	10	1	3										
TR	ETP	2	4	9	1	4										
	LIF	2	4	9	1	4										

Smith, R.L. et al. (2017). Coupling computer-aided process simulation and estimations of emissions and land use for rapid life cycle inventory modeling. *Sustainable Chem. Eng.* 5 (5): 3786-3794, SI.

Reconciliation of Methods

- Reconciliation of Top-Down Data Mining and Bottom-Up Simulation methods can produce inventories that are qualitatively and/or quantitatively better than either method alone.
 - -**Top-Down** Data Mining uses EPA databases, but facility data requires allocation.
 - Bottom-Up Simulation provides inputs and alleviates need for allocation, but time and knowledge requirements are intensive.
- **Reconciliation** will combine aspects of both approaches.

Conclusions

- Top-Down data mining uses linked open data from national emissions databases. Facility-level data usually requires allocation.
- Bottom-Up method assumes simulation and emission models represent actual facilities; inventory data is processspecific.
- Chemical process simulation can be used to determine inputs and some releases. Addition of emission models complete the releases.
- Future Work: Further development of reconciliation methods and potential for automation.

Thank you!

- Project Lead: Ray Smith
- <u>smith.raymond@epa.gov</u>
- Presenter: Briana Niblick
- <u>niblick.briana@epa.gov</u>

