

Generation of GHS Scores from TEST and online sources

Todd Martin, US EPA

Sources of scores

>US EPA

- Chemistry Dashboard: http://comptox.ag.epa.gov/dashboard
 - ACToR/ToxRefDB
- T.E.S.T. (Toxicity Estimation Software Tool)
- ➤ ECHA (European Chemicals Agency)
 - REACH dossiers / Hazard statement codes
- ChemHAT
 - Free compilation of data from EU (both R and H scores), New Zealand, Australia, Japan (NITE), Korea, Malaysia, and miscellaneous lists
- ➤ Wehage developed a system to assign scores from Japan's NITE data
- >Future work
 - QSAR/read across models based on compiled experimental values

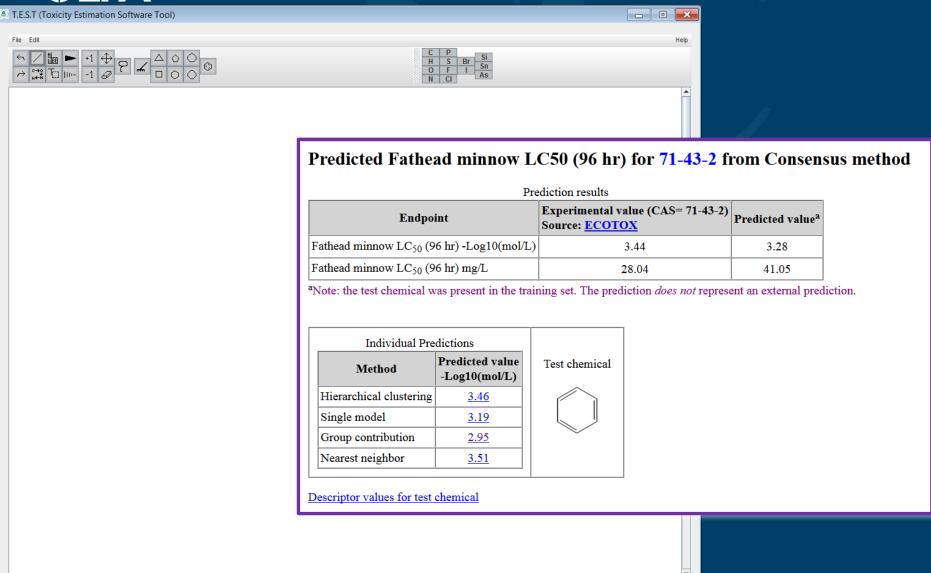
Converting between systems

Acute toxicity scoring

Risk phrase ^a	R	28		R25		R22	
LD50, mg/kg	≤5	5-25	25-50	50-200	200-300	300-2000	2000-5000
GHSb	Cat 1	Cat	egory 2	Category 3		Category 4	Category 5
EU CLP°	H300		00	H301		H302	H303
DfE Score ^d	Very high		nigh	High		Moderate	Low
Score	VH		4	Н		M	L

>Quantitative toxicity scores are preferable due to differing systems

SEPA

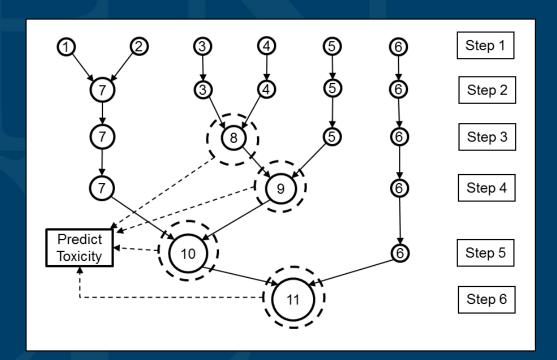

Draw a structure or enter a CAS number (i.e. 71-43-2) in the Molecule ID field and click "Enter structure". A Molecule ID is required for file output

Enter structure

Molecule ID:

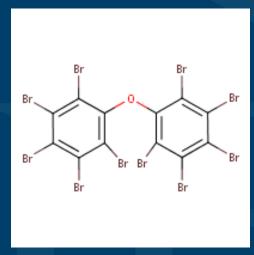
Endpoint: Fathead minnow LC50 (96 hr)

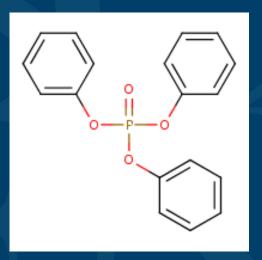
T. E. S. T. Java Application


Consensus

Options.

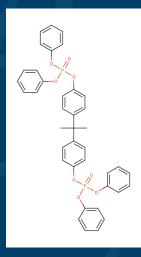
QSAR Methods


- >Hierarchical clustering
- ➤ Single Model
- ➤ Group contribution
- ➤ Nearest neighbor
- Consensus



\$EPA

Case Study: flame retardant


United States Environmental Protectal Protecta

DecaBDE

TPP

RDF

BPADP

Physical properties from T.E.S.T.

Name	MP*, ° C	BP, ° C	FP, ° C	VP, mmHg
DecaBDE	295 ^e	530 ^e	241 ^e	3.01E-12
TPP	51 ^e	381	201 ^e	6.28E-06 ^e
RDP	87	446	307	4.76E-08
BPADP	114	435	378 ^e	4.21E-10

e experimental value

>MP, BP: indicate state of matter

➤ VP: inhalation implications

>FP: flammability

Water based properties from T.E.S.T

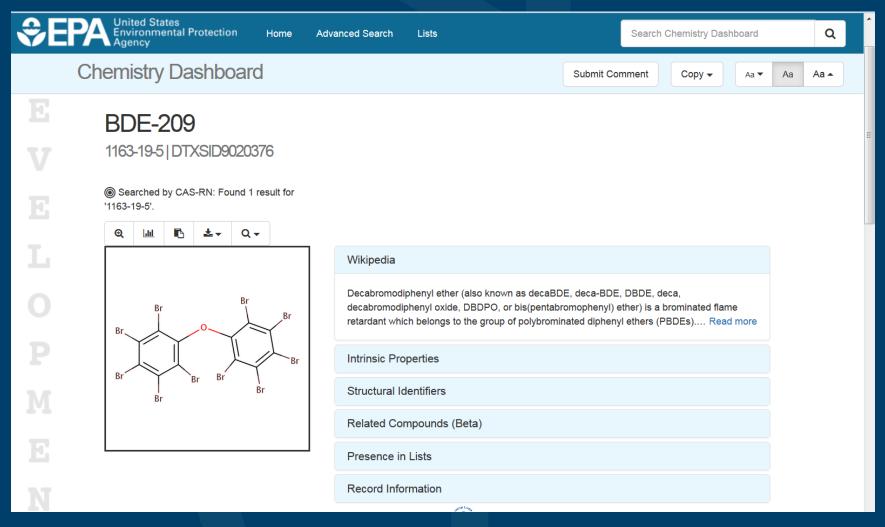
Name	WS, mg/L	log Kow	log BCF	Bioacc. score
DecaBDE	1.00E-04 ^e	12.11	1.20 ^e	L
TPP	1.90E+00 ^e	4.70	2.48 ^e	M
RDP	2.90E-01	7.41	1.82	L
BPADP	9.19E-02	10.02	1.28	L

- e experimental value
- >WS: aquatic toxicity implications
- >LogKow: can be used to estimate partitioning
- >BCF: bioaccumulation in fish

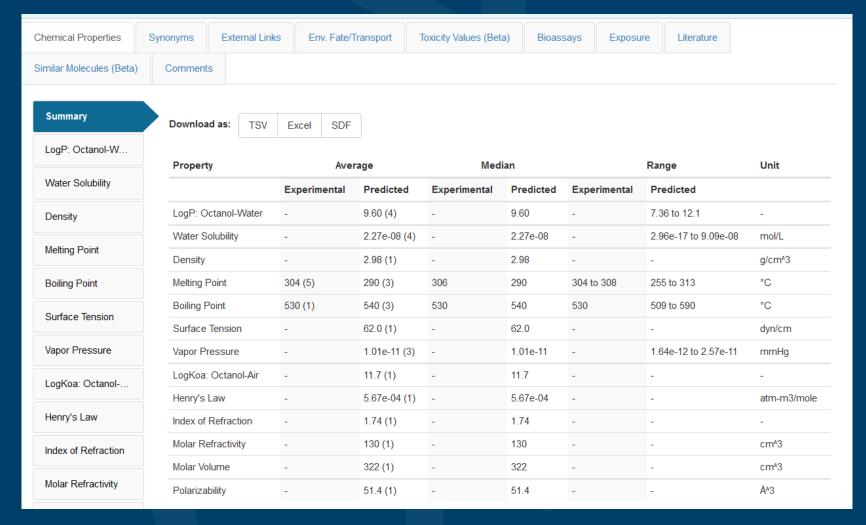
Human health hazards and ecotoxicity values from T.E.S.T

Chemical	Oral rat LD50 mg/kg	Fathead minnow LC50 mg/L		Mutage nicity	Acute Mammalian Tox Score	Acute Aquatic Tox Score	Dev. Tox. Score	Mutageni city Score
DecaBDE	>5000 ^e	6.44E-04	N/A	_e	L	VH*	N/A	L
TPP	3496 ^e	9.30E- 01 ^e	+	_e	L	VH	Н	L
RDP	2216	3.15E-02	N/A	-	L	VH	N/A	L
BPADP	2261	7.30E-01	N/A	_	L	VH*	N/A	L

^{*}Toxicity value exceeds water solubility so score is "L"


T.E.S.T. (Toxicity Estimation Software Tool)

- ➤ Currently T.E.S.T. is available as a downloadable standalone Java application
- ➤In 2017, T.E.S.T. will be converted to a web-services based application which will allow predictions on the CompTox dashboard
 - http://comptox.ag.epa.gov/dashboard/
- ➤ Predictions using T.E.S.T. models for 743,000 chemicals are now being stored within the CompTox dashboard


Chemistry Dashboard

http://comptox.ag.epa.gov/dashboard/

Chemistry Dashboard, cont.

Chemistry Dashboard, cont.

Chemical Properties External Links Env. Fate/Transport Toxicity Values (Beta) Similar Molecules (Beta) Synonyms Bioassavs Exposure Literature General Toxicology **Publications** Analytical Prediction Toxline EPA Substance Registr... RSC Analytical Abstracts ACToR oo Chemicalize NIST Chemistry Webbook 아 DrugPortal Environmental Health P... FOR-IDENT Proton NMR Prediction Household Products D... CCRIS MIEHS MONA: MassBank Nort... Carbon-13 NMR Predic... PubChem ChemView National Toxicology Pro... NEMI: National Environ... 2D NMR HSQC/HMBC ... (Chemspider CTD G Google Books ChemRTP Predictor CPCat eChemPortal G Google Scholar EDSP Dashboard G Google Patents w Wikipedia PubMed Q MSDS Lookup **HSDB** Q BioCaddie DataMed Q ToxPlanet Q Federal Register Q ChemHat: Hazards and... ToxCast Dashboard 2 ChEMBL Q Regulations.gov RSC Publications Q Chemical Vendors International Toxicity Es... Springer Materials Consumer Product Info... ACTOR PDF Report Q Sigma-Aldrich Chemicals (A) IRIS Assessments CORE Literature Search Wikidata Q Bielefeld Academic Se... Q Wolfram Alpha Q WebWISER Q ChemAgora C ECHA Infocard ECHA Brief Profile

Acute Toxicity

Show Data Hide Data

- ▶ ☐ CheLIST combination of files from EU Reseearch lists
- EPA IRIS (Integrated Risk Information System)
- INCHEM Environmental Health Criteria Monographs
- ▶ ☐ INCHEM IARC
- Agents Classified by the IARC Monographs, Volumes 1-102
- Japan's Summary of Initial Risk Assessments
- ▶ □ NLM TOXNET HSDB URL

Chronic Toxicity

Show Data Hide Data

- ▶ 📴 CPDB Report on Carcinogenicity Potency URL (Univ. Cal., Berkeley)
- ▶ □ DSSTox NTP BSI Chronic / Cancer Study Index
- DSSTox NTP BSI URL
- EPA IRIS (Integrated Risk Information System)
- INCHEM Environmental Health Criteria Monographs
- ▶ ☐ INCHEM IARC
- Fig. 1.102 Agents Classified by the IARC Monographs, Volumes 1-102
- Japan's Summary of Initial Risk Assessments
- ▶ 📴 NTP Long Term Toxicology / Carcinogenicity Study Abstracts and Reports
- ▶ 📴 NLM TOXNET HSDB URL

Carcinogenicity

Show Data Hide Data

- ▶ 📴 Project Results for California Teachers Study (CTS)
- ▶ 📴 CheLIST combination of files from EU Reseearch lists
- ▶ 📴 CPDB Report on Carcinogenicity Potency URL (Univ. Cal., Berkeley)
- ▶ ☐ DSSTox Cancer Potency Database Summary
- DSSTox Cancer Potency Database URL
- ▶ ☐ DSSTox NTP BSI Chronic / Cancer Study Index
- ▶ □ DSSTox NTP BSI URL
- DSSTox IRIS Study Summaries
- DSSTox IRIS URLs
- EPA IRIS (Integrated Risk Information System)
- EPA mid-Atlantic Region Human Health Risk-Based Concentrations
- ▶ □ EPA Mid-Atlantic Region Protection of Groundwater (screening levels)
- ▶ 📴 EPA Southwest region Region Human Health Risk-Based Concentrations
- Health Canada Priority Substance Lists (2006) (Carcinogenicity)
- Agents Classified by the IARC Monographs, Volumes 1-111
- ▶ 📴 INCHEM Environmental Health Criteria Monographs
- ▶ □ INCHEM IARC
- Agents Classified by the IARC Monographs, Volumes 1-102
- Japan's Summary of Initial Risk Assessments
- ▶ 📴 NTP Long Term Toxicology / Carcinogenicity Study Abstracts and Reports
- OSHA Chemical Sampling Information
- ▶ ☐ Risk Assessment Information System Carcinogenicity Metadata
- Chemical and Physical properties from Risk Assessment Information System (RAIS)
- INLM TOXNET HSDB URL
- NLM TOXNET HSDB Carcinogenicity
- NLM TOXNET CCRIS URL
- ▶ 📴 NLM TOXNET CCRIS Data CSTU CARCINOGENICITY STUDIES

Genotoxicity

Developmental Toxicity

Reproductive Toxicity

Biomonitoring

Occurrence

1 Acute toxicity (Inhalation: Gases)

Skin corrosion/irritation

4 Respiratory sensitization

Germ cell mutagenicity

4 Skin sensitization

Carcinogenicity

7 Reproductive toxicity

Single exposure

10 Aspiration hazard

Repeated exposure

ENVIRONMENTAL HAZARDS Hazard class

Hazardous to the aquatic

Hazardous to the aquatic

environment (Long-term)

environment (Acute)

Specific target organ toxicity -

Specific target organ toxicity -

3 Serious eye damage/eye irritation

Acute toxicity (Inhalation: Dusts and

	SEPA United States			NIIE	Data	
IEALT	H HAZARDS					t
	Hazard class	Classification	Symbol	Signal word	Hazard statement	T
1 /	Acute toxicity (Oral)	Category 5	-	Warning	May be harmful if swallowed	
1 /	Acute toxicity (Dermal)	Not classified	-	-	-	

Causes eye irritation

Hazard statement

Very toxic to aquatic life

long lasting effects

Very toxic to aquatic life with

Rationale for the classification Rat LD50 value: 3500mg/kg (MOE Risk Assessment vol.4, 2005, EHC 111, 1991), 3800mg/kg (EHC 111, 1999, ACGIH 7th, 2001, DFGOT vol.2, 1991), 10800mg/kg (EHC 111, 1991, DFGOT vol.2, 1991), >5000mg/kg (EHC 111, 1991) and >6400mg/kg (PATTY4th, 1994). Calculated based on the data above. Since the calculated values was 3723.1 mg/kg, it was classified to

Based on rabbit LD50 value: >7900mg/kg (MOE Risk Assessment the 4th volume, 2005, EHC 111, 1991, DFGOT vol.2, 1991), and >10000mg/kg (DFGOT vol.2, 1991), it was set as the

From description that irritation was not admitted in the test applied to the skin of the rat for

4 hours on DFGOT (2 vol. 1991) and ACGIH (7th, 2001), it was carried out the outside of We classified it as Category 2B based on the description that a slight conjunctival reddening

was acknowledged and it disappeared within 7 days in the test applied to the eyes of the

ACGIH (7th, 2001) and HSDB (2006) had description of the case report of allergic contact dermatitis, however, both of which were considered to be the same description of one case

sensitization, and we thought the data was insufficient, therefore we presupposed that we

Since it was classified into A4 in ACGIH (ACGIH 7th, 2001), it was considered as the outside

It was considered as out of Category based on the description that clear reproductive toxicity was not observed at the dose as which general toxicity is observed in parent animals

in the test administered orally before mating till the term pregnancy using rat (MOE Risk

We classified it into Out Of Category based on the description that in the oral study using the

rat, the serious toxic effect was not observed with the dose which exceeds the guidance

value range of Category 2 (MOE Risk Assessment The 4th volume (2005), EHC 111 (1991),

Rationale for the classification It was classified into Category 1 from 96-hour LC50=0.18-0.32mg/L of Crustacea

Classified into Category 1, since acute toxicity is Category 1, and supposedly

bioaccumulative (log Kow=4.59(PHYSPROP Database, 2005)), though rapidly

degrading (BOD: 90% (existing chemical substances safety inspections data)).

Assessment 4th volume (2005), ACGIH (7th, 2001), and EHC 111 (1991)).

and did not have the report of two or more cases which is a judging standard of skin

category 5.

outside of Category.

Solid (GHS definition)

No data available

No data available

No data

rabbits (DFGOT(vol.2,1991)).

could not classify it.

Insufficient data available.

No data available

of Category.

Classification not possible due to lack of data

DFGOT (vol.2, 1991) and ACGIH (7th, 2001)).

(Mysid shrimp) (EHC111, 1991).

N	Τ	E	D	at	4
					_

Warning

Signal word

Warning

Warning

	- 4	
TE	_ \	

N	T	E	Data

\$EPA	
United Codes	

Not applicable

Not classified

Category 2B

Not classified

Not classified

Not classified.

Category 1

Category 1

Classification not possible

Classification

Symbol

Environment

Environment

1 Acute toxicity (Inhalation: Vapours) | Classification not possible

\$EPA	NITE Dat

\$EPA	NITE Data

O EDA	NITE Data
\mathfrak{S}_{EPA}	

	AUTE Bala
⊕ EPA	NITE Data

.⊋.EPΔ	NITE Data

Greenscreen scores from NITE*

```
108-95-2.json ×
     "TD": "108-95-2".
     "cas number": [
         "108-95-2"
     "country": "Japan",
     "date classified": "2006",
     "date imported": "Sun Dec 6 06:49:43 2015",
     "descriptive name": "Phenol",
     "file path": "h18 imcg e.xls",
     "hazards": {
         "acute aquatic toxicity": {
              "classification": "Category 2",
              "hazard id": 11.0,
              "hazard name": "Hazardous to the aquatic environment Acute",
              "hazard statement": "Toxic to aquatic life",
              "rationale": "It was classified into Category 2 from 48 hours
              "signal word": " - ",
              "symbol": " - "
         "acute toxicity dermal": {
              "classification": "Category 3",
              "hazard id": 1.0,
              "hazard name": "Acute toxicity Dermal",
              "hazard statement": "Toxic in contact with skin",
              "rationale": "Based on the testing data of rat LD50 (dermal r
              "signal word": "Danger",
              "symbol": "Skull and crossbones"
```

```
"list type": "Screening A",
"source": "GHS Japan Country List",
"translated data": {
    "AA": 4,
    "AT": 4,
    "B": 0,
    "C": 2,
    "CA": 0,
    "D": 4,
    "E": 0,
    "F": 2,
    "IrE": 5,
    "IrS": 5,
    "M": 4,
    "N r": 4,
    "N s": 4,
    "Rx": 2,
    "ST r": 5,
    "ST s": 5,
    "SnR": 0,
    "SnS": 2
```

*Wehage, K., Chenhansa, P. and Schoenung, J. M. (2017), An open framework for automated chemical hazard assessment based on GreenScreen for Safer Chemicals: A proof of concept. Integr Environ Assess Manag, 13: 167–176

ABOUT CHEMHAT SAFER CHEMICALS FOR WORKERS BREAST CANCER SAFER FAMILIES

Triphenyl phosphate

CAS: 115-86-6

Stronger effect / evidence

Weaker effect / evidence

×

How can this chemical affect my health?

■ Acute (Short Term) Effects Data sources (1)

Toxic to Humans & Animals – Can be fatal on contact, ingestion or inhalation for humans and other mammals

Irritates the Eyes – Can cause irritation or serious damage to the eye.

■ Chronic (Long Term) Effects Data sources (1)

Endocrine Disruption – Can interfere with hormone communication between cells which controls metabolism, development, growth, reproduction and behavior (the endocrine system).

Brain/Nervous System Harm – Can cause damage to the nervous system including the brain.

Data sources:

Direct Hazard » Toxic to Humans & Animals

These sources refer directly to this chemical:

- Acute toxicity (oral) Category 5
 Japan GHS Classifications
 Government of Japan
- 6.1D (oral) Acutely toxic

New Zealand HSNO Chemical Classifications
New Zealand Environmental Protection Authority (NZ EPA)

Inherent Hazards Data sources (1)

Restricted List – This chemical is on a list from an authoritative body recommending that its use be avoided.

Direct Hazard » Irritates the Eyes

These sources refer directly to this chemical:

- Serious eye damage / eye irritation Category 2B
 Japan GHS Classifications Government of Japan
- . 6.4A Irritating to the eye (Cat. 2A)

New Zealand HSNO Chemical Classifications

New Zealand Environmental Protection Authority (NZ
EPA)

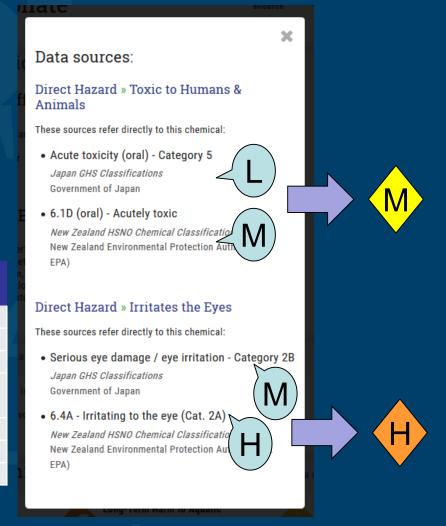
How does this chemical impact the environment

Immediate Harm to Aquatic Ecosystems – A single exposure may result in severe biological harm or death to fish or other aquatic organisms.

Long-Term Harm to Aquatic

Ecosystems – Long term exposure
may result in irreversible harm to fish
or other aquatic organisms.

Bioaccumulative – Accumulates in organisms, concentrating as it moves up the food chain.


Persistent - Does not break down readily from natural processes.

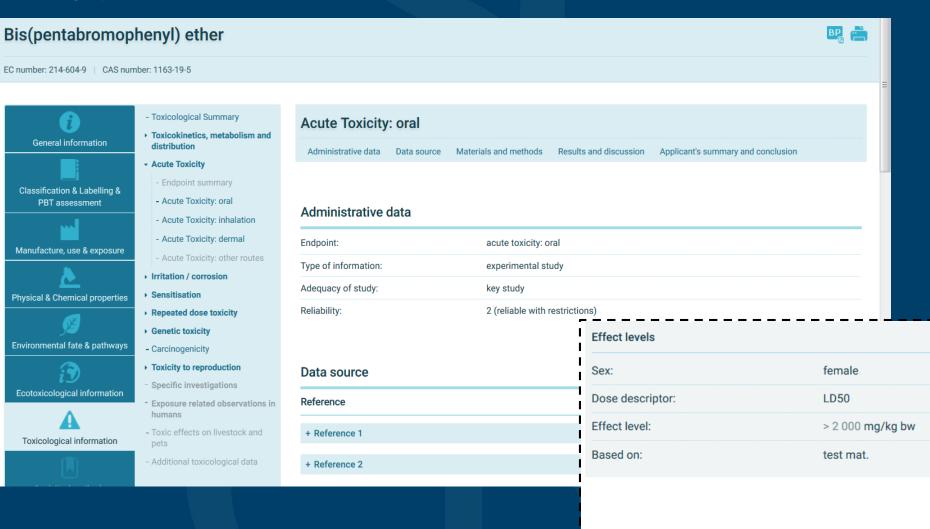
GHS Scores from ChemHAT

		Acute Tox Score							
Priority	Source	VH	Н	M	L				
1	EU_H	H300	H301	H302					
2	EU_R	R28	R25	R22					
3	New Zealand	6.1A, 6.1B	6.1C	6.1D	6.1E				
4	Japan (NITE)	Cat 1, Cat 2	Cat 3	Cat 4	Cat 5				
5	Australia	H300	H301	H302					
6	Korea	H300	H301	H302					
7	Malaysia	H300	H301	H302					
8	WHMIS-SIMDUT	D1A	D1B						

		Eye Irritation Score							
Priority	Source	VH	Н	M	L				
1	EU_H	H318	H319	H320					
2	EU_R	R41	R36						
3	New Zealand	Cat 1	Cat 2A						
			Cat 2,						
4	Japan (NITE)	Cat 1	Cat 2A	Cat 2B					
5	Australia	H318	H319	H320					
6	Korea	H318	H319	H320					
7	Malaysia	H318	H319	H320					

Sources of acute toxicity data in ChemHat

Source	# chemicals
EU H Score	1631
EU R Score	1498
New Zealand	1402
Japan	877
Australia	1626
Korea	567
Malaysia	138
WHMIS-SIMDUT	378
All sources	2873



ECHA (REACH dossiers)

Applicant's summary and conclusion

practically nontoxic

Interpretation of results:

REACH Field Mapping

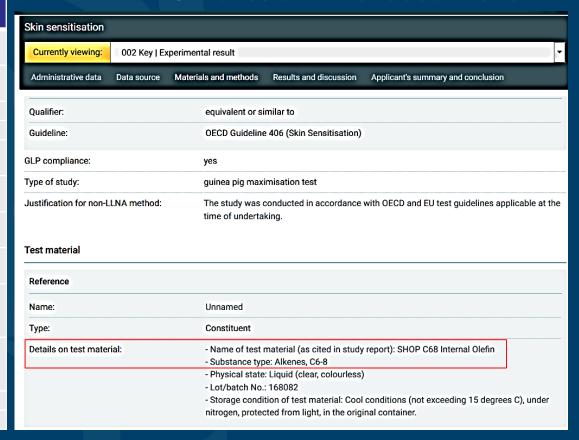
GHS Category	Link in REACH dossier
Acute Toxicity	Acute Toxicity: oral / inhalation / dermal
Carcinogenicity	Carcinogenicity
Genotoxicity / Mutagenicity	Genetic toxicity: in vitro / in vivo
Endocrine Disruption	N/A
Reproductive	Toxicity to reproduction
Developmental	Developmental toxicity / teratogenicity
Neurological	Neurotoxicity
Repeated Dose	Repeated dose toxicity: oral / inhalation / dermal
Skin Sensitization	Skin sensitisation
Eye Irritation	Eye irritation
Dermal Irritation	Skin irritation / corrosion
Acute aquatic	Short-term toxicity to fish
Chronic aquatic	Long-term toxicity to fish
Persistence	Biodegradation in water: screening tests
Bioaccumulation	Bioaccumulation: aquatic / sediment

Steps for obtaining REACH dossier data

- ➤ Download list of chemicals (get dossier numbers)
- >Download records for given endpoint
- Parse html files (using Java code) to JSON files
- Convert JSON files to flat text file
- ➤Omit records with wrong test type, poor reliability, QSAR, estimated values, ambiguous results
- ➤ Determine best CAS number from available fields
- ➤Omit "bad" chemicals in terms of QSAR (e.g. polymers, salts, unspecified structure) based on SciFinder record for given CAS number
- ➤Omit duplicate records (need 80% agreement for binary endpoint)

eChemPortal

The Global Portal to Information on Chemical Substances eChemPortal eChemPortal Skin sensitisation > Home > Substance Search Define the search criteria for the Query Block. > Property Search Save Cancel > GHS Search > What's new? Study result type: General Information experimental result > Participating Databases Reliability: > Roles & Responsibilities 1 (reliable without restriction)|2 (reliable with restrictions) > Linking to eChemPortal Reference, Year: > Schedules of Assessments > Structure Search Type of method: > GHS Classifications Userful links Type of study: > FAQ Guinea pig maximisation test > How to search for information Test guideline, Qualifier: > Contact us Disclaimer Test guideline, Guideline: OECD Guideline 406 (Skin Sensitisation) **GLP** compliance: Species: guinea pig Strain: Interpretation of results: not sensitising sensitising


Cancel Save

Tested substance is important!

Name of test Record # Substance type material SHOP C68 Internal Alkenes, C6-8 15664 016 Olefin SHOP C68 Internal Alkenes, C6-8 2040 016 Olefin **NEODENE-8** C8 alpha olefin 15664 017 2040 017 **NEODENE-8** C8 alpha olefin SHOP C134 Alkenes. 15664 018 C11/C13/C14 Internal Olefin SHOP C134 Alkenes. 2040 018 C11/C13/C14 Internal Olefin Internal Olefin 114 15664 019 Alkenes, C11-15 LP11 Internal Olefin 114 Alkenes, C11-15 2040 019 LP11 C20-C24 Alkenes. Alkenes, C20-24 15664 027 Branched and Linear C20-C24 Alkenes. Branched and Alkenes, C20-24 2040 027 Linear 15664 028 **ENORDET 0241** 2040 028 **ENORDET 0241**

From REACH dossier for tetradec-1-ene

All tests are "not sensitizing" so we can still learn from it qualitatively

Comparison of flame retardants

						Human Health Effects					Ecotox.		Fate			
Tool / Study	CAS Name	Acute Toxicity	Carcinogenicity	Genotoxicity / Mutagenicity	Endocrine Disruption	Reproductive	Developmental	Neurological	Repeated Dose	Skin Sensitization	Eye Irritation	Dermal Irritation	Acute	Chronic	Persistance	Bioaccumulation
T.E.S.T.		M		L	nd		nd						L		VH	L
ChemHAT			Н	Н	VH		VH	VH	Н		М	L			VH	Н
NITE	1163-19-5	L	L	M		L	L		Н	L	M	M	L			
ECHA	DecaBDE	L	L	L		L	L		L	L	L	L	L	L	VH	L
DfE		L	М	L	nd	L	Н	L	М	L	L	L	L	L	VH	Н
Green Screen		L	М	L	М	L	M	М	L	L	L	L	L	L	VH	М
T.E.S.T.		L		L	nd		Н						VH		Н	M
ChemHAT		M			Н						Н		VH	VH	М	M
NITE	115-86-6	L	L			L	L				M	L	VH			
ECHA	TPP	L	L	L		L	L	L	L	L	M	L	VH	Н	L	M
DfE		L	M	L	nd	L	L	L	Н	L	L	VL	VH	VH	L	M
Green Screen		L	L	L	nd	L	L	L	M	L	M	L	Н	Н	L	M
T.E.S.T.		L		L	nd		nd						VH		VH	L
ChemHAT																
NITE	57583-54-7															
ECHA	RDP	L	L	L		L	L	L		L	L	L	L	L	L	M
DfE		L	M§	L	nd	L	M	M	М	L	L	VL	VH	VH	М	Н
Green Screen		L	L	L	nd	L	L	L	M	L	M	L	L	Н	M	Н
T.E.S.T.		L		L	nd		nd						L		VH	L
ChemHAT														L		
NITE	5945-33-5															
ECHA	BPADP															
DfE		L	М	L	nd	L	L§	L§	L	L	L	L	L	L	Н	Н
Green Screen		L	L	L	nd	L	L	L	М	L	M	L	L	L	Н	L
			Not availa	ble		Not imple	mented									

Questions???

The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency