

Overview of Atherosclerosis and Chemical Stressors

Wayne Cascio, MD, FACC

Acting Director, National Health and Environmental Effects Research Laboratory

Office of Research & Development, US EPA

Research Triangle Park, NC

Understanding the Combined Effects of Environmental Chemical and Non-Chemical Stressors: Atherosclerosis as a Model

Research Triangle Park, NC April 3, 2018

€PA

Wayne Cascio, MD

- No conflicts of interest
- The presentation represents the opinions of the speaker and does not necessarily represent the policies of the US EPA

Clinical-Pathology of Atherosclerosis Vascular Beds Affected and Clinical Presentations

• Coronary artery disease (CAD)

- Angina, Unstable angina, Myocardial infarction
- Heart failure
- Cerebrovascular atherosclerotic disease
 - Ischemic stroke
 - Transient ischemic attacks
- Aortic atherosclerotic disease
 - Aneurysm, Dissection
- Peripheral arterial vascular disease (PAD)
 - Renal, Mesenteric and Peripheral limb ischemia, Claudication

Stages in the Development of Atherosclerosis Changes at the Cellular Level

- Inner layer, the tunica intima
 - lined by endothelial cells
- Middle layer, or tunica media
 - SMCs embedded in a complex extracellular matrix
- Adventitia, the outer layer of arteries
 - contains mast cells, nerve endings & microvessels

The initial steps of atherosclerosis include:

- Adhesion of leukocytes to the activated endothelial monolayer
- Migration of the bound leukocytes into the intima
- Maturation of monocytes into macrophages
- Uptake of lipid foam cells

Stages in the Development of Atherosclerosis Changes at the Cellular Level

Lesion progression:

- Migration of SMCs from the media to the intima
- Proliferation of SMCs and synthesis of extracellular matrix macromolecules (e.g. collagen, elastin)
- Plaque macrophages and SMCs can die
- Extracellular lipid derived from dead and dying cells can accumulate in the central region of a plaque
 - the lipid or necrotic core
- Plaques cholesterol crystals and microvessels

Thrombosis:

- Fracture of the plaque's fibrous cap
- Blood coagulation components
 - in contact with tissue factors in the plaque's interior
- Triggers thrombus formation

From Libby P, et al. Nature 2011 5

Initiation, Progression, and Complications of Atherosclerosis

€PA

https://upload.wikimedia.org/wikipedia/commons/5/5b/Late_complications_of_atherosclerosis.PNG

€PA

Global Burden of Cardiovascular Disease Largely driven by complications of atherosclerosis in 2015

In 2015 the number of deaths due to:

- Cardiovascular disease ~18 Million
- Ischemic heart disease ~9 Million
- Stroke ~6.3 Million

Between 1990 and 2015 the:

 Estimated increase in the number deaths from cardiovascular disease ~ 5.3 Million

Roth G et al. J Am Coll Cardiol 2017

Cardiology June 2017

Temporal Trends for Cardiovascular Disease EPA Disability-Adjusted-Life-Years: Changes 1990 to 2010 Global Percent Change 1990 to 2010 Cardiovascular & Circulatory Disease Disease Non-Communicable, Maternal, & Nutritional 200 **Other Non-Communicable** Major Depressive Illness **Aortic Aneurysm** Low Back Pain Injuries Heart 150 Diabetes Cardiomyopathy Other Cardio & Circulatory Hypertension Road Injury schemic Endocarditis Self-Harm 100 Falls Malaria Stroke Fib 50 ⊲ 8 9 12 13 15 16 20 53 4 17 Ο 10 14 19 42 49 92 100 127 146 з 5 6 7 11 18 37 1 COPD Iron-Deficiency Anemia Sepsis heral Disease **Fuberculosis** Encephalopathy Rheumatic Heart Disease **Congenital Anomalies** -50 Preterm Birth Complications r Respiratory nfection Neonatal **Diarrheal Diseases** Neonatal Malnutritio Periph Vascular I -100oteinower | -150Modified from Benziger CP et al. Global Heart 2016 8 -200

Temporal Trends for Cardiovascular Disease Comparison with leading causes of DALYs

Global Percent Change 1990 to 2010

Modified from Benziger CP et al. *Global Heart* 2016 9

Contribution of Pollution to Deaths Caused by Non-Communicable Diseases, 2015

Air pollution contributes to:

- 25% of ischemic heart disease
- over 20% of ischemic and hemorrhagic stroke
- 20% of all cardiovascular disease

11

Recent U.S. Mortality Trends Within Heart Disease

Age-Adjusted Mortality Rates

Rate of decline slowed from 4.96% for 2000-2011 to 2.66% for 2011-2015

Cardiovascular Disease A Costly Burden for the U.S. Projections through 2035

In 2015, 102.7 million (41.5%) of the U.S. population had at least one CVD condition:

- Coronary Heart Disease 16
- Stroke
- Congestive Heart Failure
- Atrial Fibrillation

EPA

High Blood Pressure

16.8 million 7.5 million

- 5.8 million
- 5.2 million 96.1 million

In 2035, the number of Americans with CVD is projected to rise to 131.2 million (45%) of the total U.S. population

This means additional increases of:

- Coronary Heart Disease
- Stroke
- Congestive Heart Failure
- Atrial Fibrillation
- High Blood Pressure

7.2 million3.7 million

- 3.0 million
- 2.0 million
- 27.1 million

Long-term PM_{2.5} and NO₂ increased coronary calcium, an indictor of atherosclerosis

From Kaufman JD et al. Lancet 2016

Long-Term PM_{2.5} & Nox Exposure Associated Atherosclerosis Progression

MESA Air Study – Led by University of Washington

Health & Long-Term Air Pollution Exposure Association between PM and Coronary Artery Disease

5,679 patients who underwent coronary angiography at Duke University between 2002– 2009 and resided in North Carolina*

 $1 \mu g/m^3$ increase in annual average $PM_{2.5}$ was associated with an:

- 11.1% relative increase in odds of significant CAD
- 14.2% increase in the odds of having had a heart attack during the previous year

6,575 Ohio residents undergoing elective diagnostic coronary angiography found the same relationship**

Air Pollution Worsens Vascular Risk Factors Risk Factors for Atherosclerosis and Air Quality

MAMERICAN COLLEGE of CARDIOLOGY ASCVD Risk Estimator Plus	Estimate Risk	Ø Therapy Impact	Advice
Current 10-Year ASCVD Risk ~%	Previous 10 Year ASCVD Risk	~%	
Patient Demographics			

Current Age Sex Race Image: Male Female White African American Other

Current Labs/Exam

EPA

Total Cholesterol (mg/dL)	HDL Cholesterol (mg/dL)	LDL Cholesterol (mg/dL) 0	Systolic Blo	Systolic Blood Pressure (mm of Hg)	
٢	\$		\$	٢	
Value must be between 130 - 320	Value must be between 20 - 100	Value must be between 30-300	Value must be b	tween 90-200	
Personal Histo	ry				
History of Diabetes?	On Hypertension Treatment?	Smoker: O			
Yes No	Yes No	Yes	Former	No	
On a Statin?	On Aspirin Therapy?				
Yes No	Yes No				

Poor Air Quality:

Age – might accelerate aging

Total Cholesterol – increases cholesterol

HDL – decreases HDL particle number

LDL – oxidizes LDL and ox-LDL receptor

Systolic BP – increases blood pressure

Diabetes – associated with type II diabetes

Statin Therapy – might protective

http://tools.acc.org/ASCVD-Risk-Estimator-Plus/#!/calculate/estimate/

Environmental Toxicant Exposures Can Accelerate the Aging Process

EPA

Atherosclerosi

Long-term Health Effects
(Cumulative effects of toxicants)
Accelerate aging process

Hasten organ dysfunction

Modified from N. Künzli et al. *Progress in Cardiovascular Diseases* 2011

Framework Describing the Environmental Factors in Cardiovascular Disease

EPA

From Cosselman, K. E. et al. Nat. Rev. Cardiol. 2015

Cardiovascular Effects of <u>Chronic</u> Exposure to Traffic-Related Air Pollution

EPA

From Cosselman, K. E. et al. Nat. Rev. Cardiol. 2015

Environmental Toxicant Exposures Can Trigger Clinical Cardiovascular Events

EPA

From N. Künzli et al. Progress in Cardiovascular Diseases 53: 334, 2011 21

Cardiovascular Effects of <u>Acute</u> Exposure to Traffic-Related Air Pollution

Contributions of Environmental Pollutants to Cardiovascular Disease Pathology

SEPA

Compounds and mechanisms related to the development of vascular disease observed in either:

- *in vivo* exposure studies
- *in vitro* cellular models

€PA

Questions

Thank you

Wayne E. Cascio, MD, FACC Acting Director, National Health and Environmental Effects Research Laboratory Office of Research and Development U.S. Environmental Protection Agency

Email: cascio.wayne@epa.gov

- No conflicts of interest
- The presentation represents the opinions of the speaker and does not necessarily represent the policies of the US EPA