Variability of LD50 Values from Rat Oral Acute Toxicity Studies: Implications for Alternative Model Development

A. Karmaus ${ }^{1}$, J. Fitzpatrick², D. Allen¹, G. Patlewicz², N. Kleinstreuer, W. Casey
${ }^{1}$ Integrated Laboratory Systems, RTP, NC, USA; ${ }^{2}$ EPA/ORD/NCCT, RTP, NC, USA; ${ }^{2}$ NIH/NIEHS/DNTP/NICEATM, RTP, NC, USA

INTRODUCTION

 according to accepanimal approaches

Acute oral toxicity testing is commonly used for hazard classification and labeling of potential systemic toxicants. These classifications are based on LD50 values (the estimated dose that would result in mortality for 50% of animals tested).
In vivo acute systemic toxicity studies can produce variable results, even when conducted

Herein we describe the compilation and analysis of a large dataset of rat oral LD50 values; generating a reference dataset that provides LD50 data for the development and validation of alternative models

DATASET COMPILATION

Rat acute oral systemic toxicity LD50 values were compiled from as many curated resources as possible (Table 1). The resulting inventory, comprised both point estimates (exact LD50 test animals survive after the administration of a single high dose) inclusively. Replicated data between sources were identified so that only unique values retained. The final dataset includes 21,200 LD50 values representing 15,688 chemicals.
Table 1: Sources of Rat Acute Oral Toxicity Data

Database Resource	Rows of Data (\# LD50 values)	Unique CAS
ECHA (ChemProp)	5533	2136
JRC AcutoxBase	637	138
NLM HSDB	3981	2205
OECD (eChemPortal)	10119	2290
PAI (NICEATM)	364	293
NLM ChemIDplus (TEST)	13069	12974

13,339 chemicals with one LD50 value 2,349 chemicals with ≥ 2 LD50 values 1,120 chemicals with ≥ 3 LD50 values 609 chemicals with ≥ 4 LD50 values 347 chemicals with ≥ 5 LD50 values

QSAR-ready structures were identified for a subset of chemicals. These structures were generated using a
standardization workflow that included processing steps such as (but not limited to): desalting, stripping

QSAR-ready structures 11,992 chemicals (16,216 LD50 values) (16,216 LD50 valences, neutralizing structures, and removing duplicates. This subset of 11,992 neutralizing structures, and removing duplicates. This subset of 11,992
chemicals was semi-randomly divided into a training set ($75 \% ; 8,994$ chemicals) and evaluation set ($25 \% \cdot 2998$ chemicals) and used in an international acute oral toxicity predictive modeling effort (QR link), which will culminate in a workshop to be held in Bethesda, MD, on April 11-12, 2018.

- Figure 3: Identification of
"extreme" values. Chemicals with
three or more replicate LD50 point
estimate values (1,120 chemicals)
were evaluated for "e
wire evaluated for "extreme" values
using Tukey Fences $>1.5 \mathrm{x}$
interquartile range). This analysis
dentified 292 "extreme" LD50
values (red), representing 253
chemicals (23% of chemicals)

REPRODUCIBILITY

- Figure 4: Reproducibility as a function of replicates. Standard deviation was evaluated relative to the number of LD50 values per chemical for the 1,120 chemicals with at least three LD50 values. A
greater number of LD50 values was not associated with larger standard deviation. High standard deviations observed when all data were inclucied in the analysis (A) were reduced when the 292 "extreme" values identified in Figure 2 were removed (B). However, the effect of "extreme" value
removal on the global standard deviation was insignificant.

DEFINING UNCERTAINTY FOR MODEL DEVELOPMENT

SUMMARY

- We compiled a comprehensive inventory of rat acute oral systemic toxicity data to serve as the basis for evaluating
LO50 variabiity The final dateset tomprised 21.200 LD5

The majority of LD50 data were point estimate values (14,745 of the 21,200 LD50 values). Of the remaining 6,455 The majortit of LD50 data were point estimate values (14,744 of the 21,200 LD50 values). Of the remaining 6,455
limini test values. nearly 4,00 were trom limit tests sith values of either 2,000 mggkg or $5,000 \mathrm{mg} / \mathrm{kg}$, corresponding
to GHS and EPA cutofs respectively.
- Evaluation of LD50 distribution using Tukey Fences identified 292 "extreme" values from 253 of 1,120 chemicals.
- Even atter removing "extreme" values, 55 chemicals had LD50 values spanning two or more orders of magnitude,
- The standard deviation across LD50 values per chemical did not correlate with the number of LD50 replicate
greater variability)
- To apply our findings to future modeling effirits, we propose using an LD50 range that integrates uncertainty
(characterized by the variaibility we quantified from our dataset). This approach computes an LD50 range per (characterized by the variability we quantified from our dataset). This app.
chemical deffined as the median of the lower quartile $\pm 0.31 \log _{10}($ mg k g)

