

High-Throughput Transcriptomics: From Screening to Pathways

Imran Shah NCCT/ORD/EPA

High-Throughput Transcript Profiling & Functional Assessment

57th Annual Meeting of the Society of Toxicology (SOT)

March 12, 2018

The views expressed in this presentation are those of the author[s] and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Background

TempO-Seq for HTTr

- The **TempO-Seq** human whole transcriptome assay measures the expression of ~21,100 transcripts.
- Requires only picogram amounts of total RNA per sample.
- Compatible with purified RNA samples or cell lysates.
- Transcripts in cell lysates generated in 384-well format barcoded to well position
- Scalable, targeted assay:
 - 1) Measures transcripts of interest
 - 2) Ignores intronic sequences or rRNA
 - 3) Much greater throughput than RNA-Seq
- Per sample **fastq files** are aligned to BioSpyder probe manifest to generate raw count data.

TempO-Seq Assay Illustration

Wednesday, March 14th; 3-4PM; Room 217C High Throughput Transcriptomics: Addressing the Human Risk Assessment Challenges of Chemical Coverage, Metabolism, and Populations Variation.

Experiments

- Cell type: MCF7
- 44 chemicals, 8 conc
- Time points: 6 , 12, 24 h
- Media: PRF- / PRF+ (DMEM +10% HI-FBS)
- Data: 6,804 samples x 21,111 transcripts

MCF7-WF-Pilot

Pilot study to validate workflow and refine experimental design

HTTR-PhI

Large-scale screen (Ongoing)

- Cell type: MCF7
- Compounds: 2,200
- Time Point: 6h
- Media: PRF+
- Concentration Response: 8
- HTTr ~53,000 x 21,111 transcripts

Pilot Chemicals (44) with known MoA

HTTr Workflow

Analysis Pipeline

Python & R analysis pipeline will be available from EPA@GitHub after publication

TempO-Seq Quality

DEGs

- RNA-Seq data have
 - Variance in total # of transcripts between samples
 - Heterogeneous transcript distributions
- A variety of techniques for analyzing differentially expressed genes in transcriptomic studies. DESeq2 has been shown to accurately identify transcriptional responses
- DESeq2 (R package) that uses the negative Binomial (NB) distribution to model count data and effects are "smoothed" over genes with similar variance
- For screening, we ran DESeq2 for count data for each chemical (all concentrations and same-plate DMSO controls)

Concentration-Response Analysis

- Filter transcripts by ANOVA p<0.05 & |LFC2|once>1
- BMDS is standard approach for concentrationresponse analysis
- BMD 2.0 Java GUI-based interactive wrapper for BMDS, currently maintained by Scott Auerbach@NIH
- Scott Auerbach facilitated the implementation of BMD 2.0 command-line version (currently alpha)
 - BMD2 –input data –config bmd2.json –out bmd.json
- All model fits and BMD values exported for storage

Tuesday 10:45-12:15 CC Exhibit Hall **P453** Joshua Harrill

Differential Gene Expression and Concentration-Response Modeling Workflow for High-Throughput Transcriptomic (HTTr) Data: Results from MCF7 Cells

MoA Prediction

Connectivity mapping analysis using DEGs and CRGs Pathway analysis using DEGs and CRGs

Machine learning to build MoA models

reactome.org

MoA by Connectivity Mapping

Find best positive matches

Issues

- Translating DEG/CRG to signature
- Many measures of similarity
- Only as good as reference chemical MoA annotation
- Highly sensitive but not very specific
- Chemicals that cause global perturbations "hit" all MoAs – how do we distinguish signal from noise ?

Lamb *et al* (2006) Musa *el al* (2017)

Infer MIE/Target by best match

CMap Signatures

- Use CMap v2 database: Affymetrix data on 1176 chemicals, 5 cell lines
- Translate FC profiles to "signatures"
- Convert L2FC data to standardized Z vector
- For z0=1,2,3 create discrete Z where value = 1 if Z>z0 and -1 where Z<z0
- Store signatures in MongoDB database for rapid searching

HTTr Signatures creation

- Calculate FC using DESeq2
- Filter probes with |L2FC|>=0.6 & p<0.05
- Construct Z-score based profiles

Search all query profiles against database (MCF7 only)

- Score hits using different GSEA, Jiang & Gentleman (JG),
- Assign MoA(s) based on hit

Quantifying Performance

Conduct Leave-one-out (LOO) evaluation of hits:

- 1. Annotate chemicals with known MoAs
 - MoAs/Targets: 143
 - Chemicals: 614
- 2. Use to predict MoA
- 3. Search "hits" by connectivity with score= ϑ
 - If ϑ> ϑ₀ if query.target== hit.target: pred=TP elif query.target!= hit.target: pred=FP
 - If hit ϑ< ϑ₀ if query.target== hit.target: pred=FN elif query.target!= hit.target: pred=TN
- 4. Measure sensitivity, specificity, BA

Evaluating Different Databases

media	timeh	moa	pos	neg	BA	Sn	Sp	th0	gene	httr-av	httr-md	httr-mx	httr-p75	httr-p95	Ехр	
DMEM	6	Protein-Reactive	3	41	0.82	1	0.63	0.216								
		Vmat	2	42	0.81	1	0.62	0.3485	SLC18A2	1	0	4	0	40	off	
					0.81	1	0.62	0.3485	0.348 SLC18A3		0	1	0	10	1 off	
					0.81	1	0.62	0.3485	SLC18A1	0	0	0	0	00	off	
					0.81	1	0.62	0.3485	SLC18B1	0	0	0	0	00	off	
		Estrogen	4	40	0.78	0.92	0.64	0.342 E	0.342 ESR1		3060	14283	10365	140290	on	
					0.78	0.92	0.64	0.342 E	ESR2	5	2	17	6	160	off	
		Mitochondria	4	40	0.64	0.67	0.62	0.3751	NDUFB9	8298	4191	36884	6012	27380	on	
					0.64	0.67	0.62	0.375	NDUFB1	1629	611	8532	865	6097	on	
					0.64	0.67	0.62	0.375	NDUFS6	1536	1059	5441	1279	41340	on	
					0.64	0.67	0.62	0.3750	CYB5R3	428	375	1083	444	893	on	
					0.64	0.67	0.62	0.375 CYB5R1		423	309	1278	341	1044	on	
					0.64	0.67	0.62	0.3750	СҮВА	294	198	804	293	682	on	
		Anti-Estrogen	3	41	0.55	0.5	0.61	0.212E	ESR1	6001	3060	14283	10365	14029	on	
					0.55	0.5	0.61	0.212E	ESR2	5	2	17	6	160	off	
		Thyroid	2	42	0.55	0.5	0.6	0.2961	THRB	47	44	80	68	76	off	
					0.55	0.5	0.6	0.2961	ΓHRA	20	21	44	24	360	off	
		Рро	2	42	0.55	0.5	0.6	0.328								
		Anti-Androgen	4	40												
					0.47	0.33	0.6	0.374	٩R	56	29	198	78	1580	on	
		Steroidogenesis	4	40	0.46	0.33	0.59	0.372								
		Ppara	5	39	0.32	0.06	0.57	0.317 F	PPARA	24	16	75	24	610	off	
		Triazene	2	41		0	0.59	0.287 F	PDE7A	1284	848	3810	1842	30370	on	
		Cholesterol	2	41		0	0.59	0.3891	HMGCR	313	188	897	421	744	on	
		Ion-Channel	2	42		0	0.59	0.3415	SCN1B	272	183	857	368	665 0	on	
		Pparg	2	42		0	0.61	0.298 F	PPARG	107	56	392	123	3220	on	
		Triazene	2	41		0	0.59	0.287 F	PDE6D	68	46	135	116	1280	on	
						0	0.59	0.287 F	PDE3B	68	52	170	69	1620	on	
		Pparg	2	42		0	0.61	0.298 F	PPARGC1B	46	46	77	61	710	off	
						0	0.61	0.298 F	PPARGC1A	0	0	0	0	00	off	
		Cytotoxicity	2	42		0	0 59	0 124								

Predicting MoA via Pathways

- Transcriptional perturbations of key pathways predicts MoA
- Pathway analysis
 - Select DEGs or CRGs to identify enriched pathways
 - Link enriched pathways to MoA
- Issues
 - Choice of pathway database
 - Scoring pathway enrichment
 - How do we objectively evaluate predictive accuracy
 - Linking pathways → MoA?
 - Effectively using signaling and geneticregulatory network information

"Super-Pathways"

- Cluster Hallmark and canonical pathways (Reactome, KEGG, PID and BioCarta) from MSigDB V6 using genes
- Use hierarchical agglomerative clustering to organize superpathways by similarity
- Each clade in the dendrogram shows groups of functionally related pathways
- Concentric rings show information about the source of information, HTTr coverage, and # of genes in each superpathway

Pathway Analysis

- The HTTr profiles for chemical treatments were searched against 224 super-pathways.
- Pathways were scored using different metrics that used the entire HTTr profile (e.g. enrichment scores), and just DEGs.
- The significance of scores was estimated by simulation.

Predicting MoA by Machine Learning

- Claim: Classifiers can be learned from transcriptional profiles labeled with MoA
- Machine Learning
 - Train models using DEGs for chemicals with known MoA
 - Predict MoA using classifiers
 - Added curated data improves performance
- Issues
 - Finding reproducible models difficult (too many genes too few chemicals)
 - Need new approaches for reducing dimensionality and increasing signal to noise

Summary

- <u>Technology</u>: Targeted RNA-Seq based HTTr is a powerful tool for assaying global chemical-induced perturbations.
- <u>Workflow:</u> We have developed a standardized, scalable workflow to generate large-scale HTTr data for thousands of chemicals.
- <u>Connectivity mapping:</u> Performance baseline for MoA prediction. Like most nearest neighbor prediction techniques, it is highly sensitive but not specific. Cross-platform connectivity mapping currently shows limited accuracy.
- <u>Pathway analysis:</u> Aggregated pathway analysis could provide a more biologically-relevant approach for MoA interpretation. Need new approaches to distinguish primary mechanisms from non-specific secondary/tertiary transcriptional cascades.
- <u>Machine learning</u>: We are developing machine learning approaches to improve specificity of MoA predictions. Challenges remain in curating information about primary MoA of chemicals, and dealing with paucity of data for MoA classes.
- Further evaluation of MoA Prediction approaches is being conducted and will be published soon. All computational workflows and data will be disseminated publicly.

Additional Information

10:45-12:15 CC Exhibit Hall P866 Imran Shah Predicting Chemical Mechanisms-of-Action Using High-

Throughput Transcriptomic Data

Tuesday 10:45-12:15 CC Exhibit Hall **P453** Joshua Harrill

Differential Gene Expression and Concentration-Response Modeling Workflow for High-Throughput Transcriptomic (HTTr) Data: Results from MCF7 Cells

Wednesday 3-4PM Room 217C

High Throughput Transcriptomics: Addressing the Human Risk Assessment Challenges of Chemical Coverage, Metabolism, and Populations Variation.

Acknowledgements

Additional Information

Populations Variation.

10:45-12:15 CC Exhibit Hall P866 Imran Shah Predicting Chemical Mechanisms-of-Action Using High-Throughput Transcriptomic Data

Tuesday 10:45-12:15 CC Exhibit Hall **P453** Joshua Harrill Differential Gene Expression and Concentration-Response Modeling Workflow for High-Throughput Transcriptomic (HTTr) Data: Results from MCF7 Cells

Wednesday 3-4PM Room 217C High Throughput Transcriptomics: Addressing the Human Risk Assessment Challenges of Chemical Coverage, Metabolism, and

