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• The TempO-Seq human whole transcriptome assay
measures the expression of ~21,100 transcripts.

• Requires only picogram amounts of total RNA per
sample.

• Compatible with purified RNA samples or cell
lysates.

• Transcripts in cell lysates generated in 384-well
format barcoded to well position

• Scalable, targeted assay: 
• 1) Measures transcripts of interest
• 2) Ignores intronic sequences or rRNA
• 3) Much greater throughput than RNA-Seq

• Per sample fastq files are aligned to BioSpyder
probe manifest to generate raw count data.

TempO-Seq Assay Illustration

TempO-Seq for HTTr

Wednesday, March 14th; 3-4PM; Room 217C
High Throughput Transcriptomics: Addressing the 
Human Risk Assessment Challenges of Chemical 
Coverage, Metabolism, and Populations Variation.



Experiments

• Cell type: MCF7
• 44 chemicals, 8 conc 
• Time points: 6 , 12, 24 h
• Media: PRF- / PRF+ (DMEM 

+10% HI-FBS)
• Data: 6,804 samples x 21,111 

transcripts

MCF7-WF-Pilot
Pilot study to validate 
workflow and refine 
experimental design

• Cell type: MCF7
• Compounds: 2,200
• Time Point: 6h
• Media: PRF+
• Concentration Response: 8 
• HTTr ~53,000 x 21,111 

transcripts

HTTR-PhI
Large-scale screen 

(Ongoing)



Pilot Chemicals (44) with known MoA

cAMP inducer Na+ channel Hypolipidemic HMGCR SH Reactive

VMAT Mito Complex I SH Reactive

Antiandrogen



HTTr Workflow
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Analysis Pipeline
TempOSeq 

data 
processing

Fastq alignment 
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Python & R analysis pipeline will be available from EPA@GitHub after publication
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• RNA-Seq data have
• Variance in total # of transcripts between 

samples
• Heterogeneous transcript distributions

• A variety of techniques for analyzing 
differentially expressed genes in 
transcriptomic studies. DESeq2  has been 
shown to accurately identify 
transcriptional responses

• DESeq2 (R package) that uses the negative 
Binomial (NB) distribution to model count 
data and effects are “smoothed” over 
genes with similar variance

• For screening, we ran DESeq2 for count 
data for each chemical (all concentrations 
and same-plate DMSO controls)

DEGs





Concentration-Response Analysis

• Filter transcripts by ANOVA p<0.05 & 
|LFC2|once>1

• BMDS is standard approach for concentration-
response analysis

• BMD 2.0 Java GUI-based interactive wrapper 
for BMDS, currently maintained by Scott 
Auerbach@NIH

• Scott Auerbach facilitated the implementation 
of BMD 2.0 command-line version (currently 
alpha)

• BMD2 –input data –config bmd2.json –out 
bmd.json

• All model fits and BMD values exported for 
storage 

Acenaphthylene
208-96-8 | DTXSID3023845

CYP1A1_10775
BMD = 2.04 µM

Tuesday 10:45-12:15 CC Exhibit Hall P453
Joshua Harrill
Differential Gene Expression and Concentration-
Response Modeling Workflow for High-Throughput 
Transcriptomic (HTTr) Data: Results from MCF7 Cells 



MoA Prediction 

Connectivity mapping 
analysis using DEGs and CRGs

Pathway analysis using DEGs 
and CRGs

Machine learning to build 
MoA models

reactome.org
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MoA by Connectivity Mapping

Chemicals

Input DEGs or 
CRGs

Query Signature DB
CMap or BSP Find best positive matches

Lamb et al (2006)
Musa el al (2017) Infer MIE/Target 

by best match

Ge
ne

s

Issues
• Translating DEG/CRG to 

signature
• Many measures of 

similarity
• Only as good as reference 

chemical MoA annotation 
• Highly sensitive but not 

very specific
• Chemicals that cause 

global perturbations “hit” 
all MoAs – how do we 
distinguish signal from 
noise ? 



CMap Signatures
• Use CMap v2 database: Affymetrix data on 

1176 chemicals, 5 cell lines

• Translate FC profiles to “signatures” 

• Convert L2FC data to standardized Z 
vector

• For z0=1,2,3 create discrete Z where 
value = 1 if Z>z0 and -1 where Z<z0

• Store signatures in MongoDB database for 
rapid searching

HTTr Signatures creation
• Calculate FC using DESeq2

• Filter probes with |L2FC|>=0.6 & p<0.05 

• Construct Z-score based profiles

Search all query profiles against database (MCF7 
only)

• Score hits using different GSEA, Jiang & 
Gentleman (JG), 

• Assign MoA(s) based on hit





Quantifying Performance
Conduct Leave-one-out (LOO) evaluation of 
hits:
1. Annotate chemicals with known MoAs

• MoAs/Targets: 143
• Chemicals: 614

2. Use to predict MoA
3. Search “hits” by connectivity with score= ϑ

• If ϑ> ϑ0 
if query.target== hit.target:

pred=TP
elif query.target!= hit.target:

pred=FP
• If hit ϑ< ϑ0 

if query.target== hit.target:
pred=FN

elif query.target!= hit.target:
pred=TN

4. Measure sensitivity, specificity, BA

Connectivity Mapping

Query
Signature

DB
Signature



Evaluating Different Databases

cMap vs cMap

DEGs
• Query: Affymetrix

cMap DEGs
• DB: Affymetrix cMap

HTTr vs cMap

DEGs
• Query: TempO-Seq

DEGs
• DB: Affymetrix cMap

CRGs
• Query: TempO-Seq

CRGs
• DB: Affymetrix cMap

HTTr vs HTTr

DEGs
• Query: HTTr DEGs
• DB: HTTr DEGs

CRGs
• Query: HTTr CRGs
• Query: HTTr CRGs



media timeh moa pos neg BA Sn Sp th0 gene httr-av httr-md httr-mx httr-p75 httr-p95 Exp

DMEM 6 Protein-Reactive 3 41 0.82 1 0.63 0.216
Vmat 2 42 0.81 1 0.62 0.348SLC18A2 1 0 4 0 4off

0.81 1 0.62 0.348SLC18A3 0 0 1 0 1off
0.81 1 0.62 0.348SLC18A1 0 0 0 0 0off
0.81 1 0.62 0.348SLC18B1 0 0 0 0 0off

Estrogen 4 40 0.78 0.92 0.64 0.342ESR1 6001 3060 14283 10365 14029on
0.78 0.92 0.64 0.342ESR2 5 2 17 6 16off

Mitochondria 4 40 0.64 0.67 0.62 0.375NDUFB9 8298 4191 36884 6012 27380on
0.64 0.67 0.62 0.375NDUFB1 1629 611 8532 865 6097on
0.64 0.67 0.62 0.375NDUFS6 1536 1059 5441 1279 4134on
0.64 0.67 0.62 0.375CYB5R3 428 375 1083 444 893on
0.64 0.67 0.62 0.375CYB5R1 423 309 1278 341 1044on
0.64 0.67 0.62 0.375CYBA 294 198 804 293 682on

Anti-Estrogen 3 41 0.55 0.5 0.61 0.212ESR1 6001 3060 14283 10365 14029on
0.55 0.5 0.61 0.212ESR2 5 2 17 6 16off

Thyroid 2 42 0.55 0.5 0.6 0.296THRB 47 44 80 68 76off
0.55 0.5 0.6 0.296THRA 20 21 44 24 36off

Ppo 2 42 0.55 0.5 0.6 0.328
Anti-Androgen 4 40

0.47 0.33 0.6 0.374AR 56 29 198 78 158on
Steroidogenesis 4 40 0.46 0.33 0.59 0.372

Ppara 5 39 0.32 0.06 0.57 0.317PPARA 24 16 75 24 61off
Triazene 2 41 0 0.59 0.287PDE7A 1284 848 3810 1842 3037on

Cholesterol 2 41 0 0.59 0.389HMGCR 313 188 897 421 744on
Ion-Channel 2 42 0 0.59 0.341SCN1B 272 183 857 368 665on

Pparg 2 42 0 0.61 0.298PPARG 107 56 392 123 322on
Triazene 2 41 0 0.59 0.287PDE6D 68 46 135 116 128on

0 0.59 0.287PDE3B 68 52 170 69 162on
Pparg 2 42 0 0.61 0.298PPARGC1B 46 46 77 61 71off

0 0.61 0.298PPARGC1A 0 0 0 0 0off
Cytotoxicity 2 42 0 0.59 0.124



Predicting MoA via Pathways

• Transcriptional perturbations of key 
pathways predicts MoA

• Pathway analysis
• Select DEGs or CRGs to identify enriched 

pathways
• Link enriched pathways to MoA

• Issues
• Choice of pathway database  
• Scoring pathway enrichment
• How do we objectively evaluate 

predictive accuracy
• Linking pathways MoA?
• Effectively using signaling and genetic-

regulatory network information 

reactome.org



“Super-Pathways”

• Cluster Hallmark and canonical 
pathways (Reactome, KEGG, PID 
and BioCarta) from MSigDB V6 
using genes 

• Use hierarchical agglomerative 
clustering to organize super-
pathways by similarity

• Each clade in the dendrogram
shows groups of functionally 
related pathways 

• Concentric rings show 
information about the source of 
information, HTTr coverage, and 
# of genes in each super-
pathway



Pathway Analysis

• The HTTr profiles for chemical 
treatments were searched 
against 224 super-pathways. 

• Pathways were scored using 
different metrics that used 
the entire HTTr profile (e.g. 
enrichment scores), and just 
DEGs. 

• The significance of scores was 
estimated by simulation. 







Predicting MoA by Machine Learning

• Claim: Classifiers can be learned 
from transcriptional profiles 
labeled with MoA

• Machine Learning
• Train models using DEGs for 

chemicals with known MoA
• Predict MoA using classifiers
• Added curated data improves 

performance
• Issues

• Finding reproducible models 
difficult (too many genes too few 
chemicals)

• Need new approaches for 
reducing dimensionality and 
increasing signal to noise

Transcripts MoAs
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Machine learning for MoA



Summary
• Technology: Targeted RNA-Seq based HTTr is a powerful tool for 

assaying global chemical-induced perturbations. 
• Workflow: We have developed a standardized, scalable workflow to 

generate large-scale HTTr data for thousands of chemicals.
• Connectivity mapping: Performance baseline for MoA prediction. Like 

most nearest neighbor prediction techniques, it is highly sensitive but 
not specific. Cross-platform connectivity mapping currently shows 
limited accuracy. 

• Pathway analysis: Aggregated pathway analysis could provide a more 
biologically-relevant approach for MoA interpretation. Need new 
approaches to distinguish primary mechanisms from non-specific 
secondary/tertiary transcriptional cascades.

• Machine learning: We are developing machine learning approaches to 
improve specificity of MoA predictions. Challenges remain in curating 
information about primary MoA of chemicals, and dealing with 
paucity of data for MoA classes. 

• Further evaluation of MoA Prediction approaches is being conducted 
and will be published soon. All computational workflows and data will 
be disseminated publicly. 

Additional Information

10:45-12:15  CC Exhibit Hall P866 
Imran Shah
Predicting Chemical Mechanisms-of-Action Using High-
Throughput Transcriptomic Data 

Tuesday 10:45-12:15 CC Exhibit Hall P453 
Joshua Harrill
Differential Gene Expression and Concentration-
Response Modeling Workflow for High-Throughput 
Transcriptomic (HTTr) Data: Results from MCF7 Cells 

Wednesday 3-4PM Room 217C
High Throughput Transcriptomics: Addressing the 
Human Risk Assessment Challenges of Chemical 
Coverage, Metabolism, and Populations Variation.
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