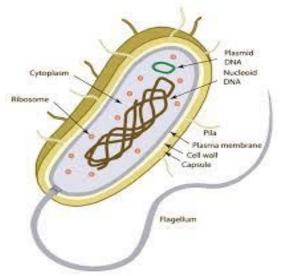
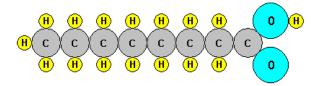


Molecular Analytical Options for the Detection of Legionella Bacteria in Water

Mark Rodgers, EPA-Cincinnati

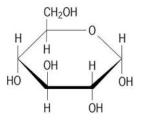

Bacteria detection: culture and molecular methods

Culture method detects living (viable) **culturable** cells



Legionella bacteria growing in lab

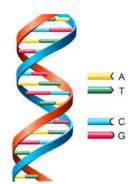
Molecular methods do not detect whole cells-rather these methods detect parts of cells which are specific to that organism



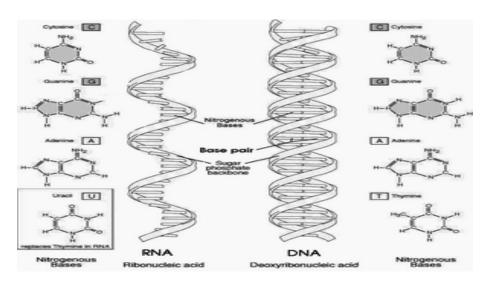
What do we mean by molecular detection?

All cells have 4 types of molecules:

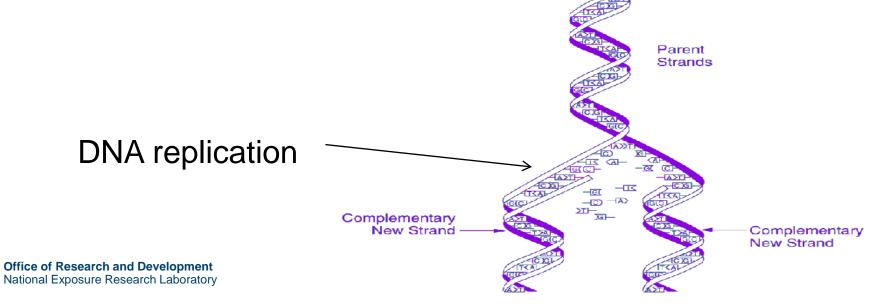
Lipids- long chains of carbon

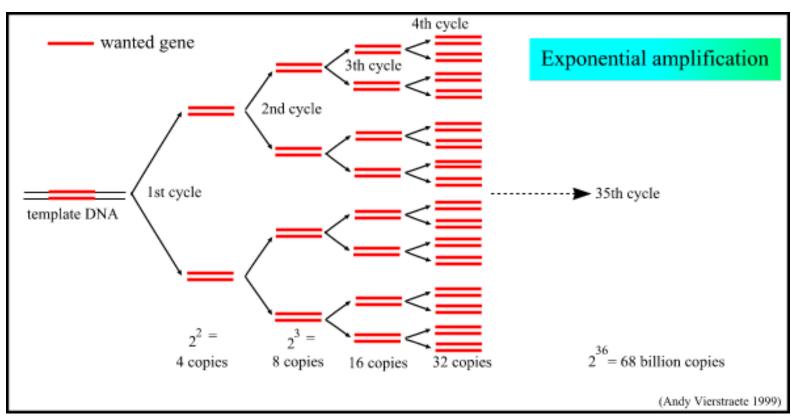


- •Sugars- complex molecules, good antigens
- Proteins- unique sequence of amino acids

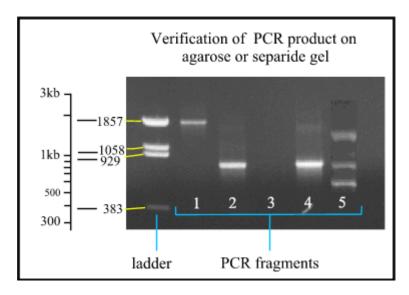

Human Insulin

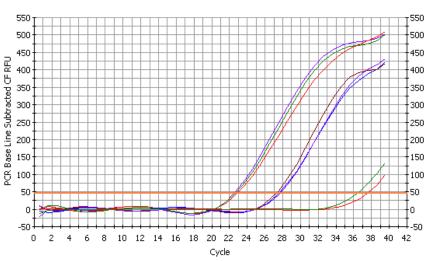
Nucleic acids- most unique molecule in a cell


Analytical assays have been developed based on all of these molecules, but DNA/RNA-based methods are common.



Nucleic acids: RNA and DNA




Exponential Amplification of template DNA

Picture of PCR gel results...... and qPCR results

courses.csusm.edu/

http://users.ugent.be/~avierstr/index.html

Benefits to using molecular detection methods

- 1. Able to detect un-culturable organisms
- 2. Able to get results fast (hours vs days)
- Assays can be designed to be highly sensitive and very specific- can detect target organism in a complex mixture of organisms
- 4. Quality control measurements can ensure sound interpretation of results
- Confidence of positive results increased by using multiple genetic targets
- 6. Can be presence/absence or quantitative

Challenges with DNA detection assays

- 1. Environmental samples can have chemicals that inhibit PCR
 - Controls can be used to detect inhibitory samples
 - New reagents available that minimize inhibition
- 2. Difficult to distinguish DNA signals from live and dead cells
 - Bacteria can be culturable, completely dead, alive but dormant
 - EPA research indicates DNA detection is likely from viable or recently killed cells
 - Methods exist that can help distinguish live vs dead (PMA)
- 3. PCR is prone to false positive results via contamination of assay reagents
- 4. Offers limited options to further analyse sample
 - Having isolates allows serotyping and genetic comparison with other cultured bacteria from same location or from patients

What is important to know about molecular DNA assays?

- Sensitivity of assay- how many molecules must be present to give a reliable positive result?
 - Is defined using a test sample that is known to be positive
 - Is usually reported in terms of genome units or cell equivalents or copy number per liter (for water samples); per ug protein or square centimeters (for biofilm samples)
- Specificity of assay- can it distinguish between genera or species or strains?
 - Examples:
 - less specific assay will identify Legionella in a sample
 - more specific assay will identify L. pneumophila
 - most specific assay will identify L. pneumophila serogroup 1

Legionella qPCR assays and specificities

Reference	Genetic target	Legionella specificity
Mérault, N. et al (2011) Appl Environ Microbiol, 77:1708-1717.	wzm: gene coding for the transmembrane component of O-antigenic polysaccharide in the outer membrane of Legionella	L. pneumophila serogroup 1
Donohue, M. et al (2013) submitted to Environmental Science and Technology	16S rDNA: gene coding for the small subunit of the ribosome	L. pneumophila
Templeton, K. et al (2003) J Clin Microbiol, 41:4016- 4021.	16S rDNA	Legionella species
Office of Research and Davidsment		

Reference	Gene Target	Legionella detection results					
		Culture +	PCR +	Culture PCR +	Culture + PCR	Culture PMA-PCR +	
Miyamoto et al, 1997	165	80%	92%				
Wellinghausen et al, 2001	16S, mip	70%	96-99%				
Joly et al, 2006	16S, mip	43%	77-91%				
Yaradou et al, 2007	unspecified	45%	66%				
Nazarian et al, 2008	23S, mip	69%		29%	2%		
Yuanez et al, 2011	dotA	70%		30%	0	17%	

Research needs:

- Positive *Legionella* spp results- what is the significance to public health and what is an appropriate management response?
- Monitoring for Legionella virulence genes- could this type of information/analysis be a part of a management response?
- What is the best sample for routine analysis- water or biofilm?
- Rapid Legionella tests- are they reliable enough for routine monitoring?

Thank you for your attention