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SEPA Introduction

Environmental Protection
Agency

The timely characterization of the
human and ecological risk posed
by thousands of existing and
emerging commercial chemicals
is a critical challenge facing EPA in
its mission to protect public
health and the environment

e Parketal (2012): At least 3221
chemicals in humans, many appear to be
exogenous
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GIVE A DOG A PHONE
Technology for cur furry friends

NewScientist

We've made
150,000 new chemicals

Tia

We touch them,
we wear them, we eat them

But which ones should
we worry about?

SPECIAL REMORT, page 34

THE GOOD FIGHT CHAMBER OF SE( RETS lS IT ALIVE?
Mot wiolente The greatest ever find cial worm coikd
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November 29, 2014



SEPA High Throughput Risk

Ervironmertal Protection Prioritization

mg/kg BW/day
 High throughput risk prioritization

needs:

1. high throughput hazard Potential
characterization (from HTT project) Hazard from
2. high throughput exposure " wg:vve\/:zz
forecasts Toxicokinetics

3. high throughput toxicokinetics
(i.e., dosimetry) Potential
Exposure
Rate

Lower Medium Higher
Risk Risk Risk
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SEPA High-Throughput

United States
Environmental Protection

Agency B i O a Ct iv i ty m h <% NIEHS

Q?&f National lmstitste of

Environmental Health Sciences

"= Tox21: Examining >10,000 chemicals using ~50 assays \ Tox 7 /
intended to identify interactions with biological N&G.C

pathways (Schmidt, 2009) N S

=  EPA Toxicity Forecaster
(ToxCast):

For a subset (>3000) of Tox21
chemicals run >1000
additional assay endpoints
(Judson et al., 2010)

Most assays conducted in
dose-response format
(identify 50% activity
concentration — AC50 — and
efficacy if data described by a
Hill function)

http://actor.epa.gov/dashboard/
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http://actor.epa.gov/dashboard/

o EPA Application to U.S. EPA Endocrine Disruptor Screening
s Program (EDSP)

United States
Environmental Protection
Agency

High-Throughput
Risk
Prioritization

Toxicokinetics Exposure

6 of 54 Office of Research and Development



Prioritization as in

SEPA High Throughput Chemical  \yemoreetal
EQ\LE?gnSrrE%tﬁél Protection RiSk Prioritization (2015)

Agency

July and December 2014 FIFRA Scientific Advisory Panels reviewed research as it
applies to the Endocrine Disruptor Screening Program

N
P

HUMAN ECOLOGICAL

HAZARD Eco Hazard

Human Hazard

SRSl Human Exposure

Eco Exposure

Office of Research and Development
mg/kg BW/day



Prioritization as in

\eIEPA High 'I:hroughp.u.t CI.1emicaI Wetmore et al.
i Sttes Risk Prioritization (2015)

Environmental Protection
Agency

July and December 2014 FIFRA Scientific Advisory Panels reviewed research as it
applies to the Endocrine Disruptor Screening Program

SeqAPASS (Lalone, 2016)

N
HUMAN /\ ECOLOGICAL

HAZARD Human In Vitro Assays Predicted Ecological
(HTT/ToxCast) » Species Effects

High
Throughput

Toxicokinetics
(Pearce et a., 2017)

Exposure Predictions

» « Calibrated to USGS
Water Monitoring

Exposure Predictions
EXPOSURE | e /lo el o s

(Including SHEDS-HT)
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<EPA High Throughput Risk

United States
Environmental Protection

Prioritization in Practice

mg/kg bw/day

ToxCast-derived
Receptor Bioactivity
Converted to
mg/kg/day with
HTTK

ExpoCast
Exposure
Predictions

Near Field
Far Field

ToxCast Chemicals December, 2014 Panel:
“Scientific Issues Associated with Integrated

Endocrine Bioactivity and Exposure-Based
ToxCast: Toxicity Forecaster Prioritization and Screening®

ExpoCast: Exposure Forecaster

Rapid Exposure and Dosimetry Project provides ExpoCast research
Office of Research and Development



SEPA High Throughput Exposure

United States
Environmental Protection
Agency

High throughput screening +
IVIVE can predict a dose
(mg/kg bw/day) that might
be adverse

Need methods to forecast
exposure for thousands of
chemicals (ExpoCast)

High-Throughput
Risk
Prioritization

Toxicokinetics Exposure

XYM Office of Research and Development



SEPA The Need for High Throughput

United States

Environmental Protection
Exposure
300
250
200 ~ ™ ToxCast Chemicals
Examined
150 -
B Chemicals with
100 - Traditional Exposure
Estimates
50 -
O _

ToxCast Phase | (Wetmore et al. 2012) ToxCast Phase Il (Wetmore et al. 2015)

Office of Research and Development ° Egeghy et al. (2012) — Most chemicals lack exposure data



SEPA Consensus Exposure Predictions

United States

Environmental Protection with the SEEM Framework

* We incorporate multiple models into consensus predictions for 1000s of chemicals within the
Systematic Empirical Evaluation of Models (SEEM) framework (Wambaugh et al., 2013, 2014)

* We evaluate/calibrate predictions with available monitoring data

» This provides information similar to a sensitivity analysis: What models are working?
What data are most needed? This is an iterative process.

» To date we have relied on median U.S. population exposure rates only

D

Estimate
Uncertainty l

Calibrate
models

{po_s;e

Inference

Inferred Exposure

Dataset 1
“ see Model 1 - Joint Regression on Models
VXTI Office of Research and Development Model 2

Evaluate Model Performance
and Refine Models




wEPA Exposures Inferred from

United States
Environmental Protection

NHANES

= Annual survey, data released
on 2-year cycle. National Health and Nutrition Examination Survey

= Different predictive models
provide different chemical-
specific predictions
* Some models may do a
better job form some
chemical classes than
others overall, so we
want to evaluate
performance against
monitoring data

= Separate evaluations can be
done for various
demographics

EX VM Office of Research and Development

CDC, Fourth National Exposure Report (2011)



<EPA Heuristics of Exposure

United States
Environmental Protection
Agency

Wambaugh et al. (2014)

LY M Office of Research and Development

Five descriptors explain
roughly 50% of the
chemical to chemical
variability in median
NHANES exposure rates

Same five predictors work
for all NHANES
demographic groups
analyzed — stratified by
age, sex, and body-mass
index:
* Industrial and
Consumer use
e Pesticide Inert
e Pesticide Active
e Industrial but no
Consumer use
* Production Volume



wEPA Human Exposure Predictions

United States

Boaney o for 134,521 Chemicals

10° Ring et al. (in prep.)
% Pathway
= Nt r Dietary
_E 10 [l Dietary, Industrial
n
= £ Dietary, Residential
E B Dietary, Residential, Industrial
% " # |ndustrial
w 1077
= A pesticide
h + Residential
s
@ # Residential, Industrial
L
= < Residential, Pesticide
E _10—1?_
o A Unknown

10 10°

Chemical Rank
XYM Office of Research and Development



wEPA Human Exposure Predictions

United States

for 134,521 Chemicals

10% Ring et al. (in prep.)
%
Z w0 "
fg, Lowest NHANES limit of
o detection (LOD)
'E_, 1071 roughly corresponds to
S ~10° mg/kg BW/day
LLI
E _“:I—ﬁ'_

10 3
10 l J
Chemical Rank ) ) )
Office of Research and Development 95% confident that median populatlon

would be <LOD for thousands of chemicals



SEPA Water Concentrations

United States
Environmental Protection
Agency

We are now applying
the SEEM
methodology to
models that predict
water concentrations

High-Throughput
Risk
Prioritization

Toxicokinetics Exposure

VARV I Office of Research and Development



wEPA USGS National Water Quality

United States
Environmental Protection

Assessment (NAWQA) Data

https://www.waterqualitydata.us/portal/

Watersheds

LOD indication

Surface Water Sampling Sites

> 600,000 surface water sites in lower 48
> 700 individual chemicals

GPS, date, and time stamps

Office of Research and Development HUC = hydl’Ological unit



<EPA Regional Watersheds (HUC2)

United States
Environmental Protection
Agency

# Samples
® 50
@® 100

@ 150

Conc. (ug/l)
- 0.0016

O)\O 0.0012

0.0008
0.0004

Carbaryl

(N7 Office of Research and Development

Setzer et al., (in prep) Slide from Parichehr Saranjampour



wEPA Sub-Regional Watersheds

U ited States
Environmen tal Protection

o (HUC4)

# Samples
® 50
@® 100

@ 50

Conc. (ug/l)

O)\O 0.10

005

Carbaryl

p{ XTI Office of Research and Development

Setzer et al., (in prep) Slide from Parichehr Saranjampour



wEPA Predicting Water Concentrations

United States
Environmental Protection

for Thousands of Chemicals

Fate & transport models Loading models

A L

RAIDAR HT-EXAIR P
DTD

USETox

(n=82)

Rosenbaum et al.,

(n =74) (n = 91) (n = TBA)

Arnot et al., 2006 Barber et al., 2017 Isaacs et al., 2014 U.S. EPA U.S. EPA

2008

I = geometric mean water concentrations
log (1) = fate and transport models * loading models

AN T I Office of Research and Development

Saranjampour et al., (in prep)



SEPA Idenifying Exposure Pathways

United States
Environmental Protection
Agency

Some pathways have
much higher average
exposures. For
example, chemicals
used in consumer
products in the home
tend to have higher
exposures. But what
chemicals are in

High-Throughput consumer products?

Risk
Prioritization

Toxicokinetics Exposure

r¥X T3 Office of Research and Development



<EPA

United States
Environmental Protection
Agency

>2000 chemicals with Material Safety Data

—pp—

106 NHANES Chemicals

23 of 54

Apparel

Auto and Tires

Baby

Beauty

Craft and Party Supply
Electronics

Grocery

Health

Home

Home Improvement
Patio and Garden
Pets

Sports and Outdoors
Toys

Office of Research and Development

MEDIA

EXPOSURE

PATHWAY
(MEDIA + RECEPTOR)

RECEPTORS

MONITORING
DATA

Pathways

Sheets (MSDS) in CPCPdb (Goldsmith et al., 2014)

Direct Use
(e.g. lotion)

Near-Field
Direct

Chemical Use Identifies Relevant

Some pathways have much higher
average exposures!

Consumer

Products, Articles,
Building Materials

Biomarkers
of Exposure

Residential Use
(e.g. flooring)

Chemical Manufacture

f N

T

Media Samples

Environmental
Release

Air, Soil, Water

Ecological

Ecological
Flora and Fauna

|

Biomarkers
of Exposure

Near field sources have been known to be important at least since 1987 — see Wallace, et al.



SEPA CPdat: Chemical Use Information
Souonmanal proectn for ~30,000 Chemicals

e Chemical-Product
database (CPdat) maps T O
. €« C A | [ actor.epa.gov/cpcat/faces/chemicalUse.xhtml?casrn=57-11-4 Q@ =
many dlffe re nt types Of H Bookmarks 5 DSSToxViewer (@ Journal Selector, targ: M) Journal / Author Nam (£ Selection of GC-MS € [ Elsevier Journal Finde: € Travel Forms |l science » (] Other bookmarks
use information and :
CPCat: Chemical and Product Categories [ Contact Us

. You are here: EPA Home » Computational Toxicology Research » Chemical Use
ontologies onto each ‘
pHHome || pSearch |[#Results || oDictionary | & Download || #Help
other

Chemical: Stearic acid

* Includes CPCPdb CASRN: £7-11-4
(Goldsmith, et al., 2014)
with information on
~2000 products from
major retailors e

Nieas  Hiaam

* Largest single database
h a S CO a rS e St i n fo r m a t i O n : = ml-.C..':CI.:.[)s.-zr,t:ription B Source Description < ACToR Data Set/List ¢ Source & Class of Chemical Category <

consumer_use_ ACToRUseDB Consumer Use ACToR UseDB Use Categories
ACTO R U s e D B food_additive_ACToRUseDB Food Additive ACToR UseDB Use Categories
fragrance_ACToRUseDB Fragrance ACToR UseDB Use Categories
perscnal_care_ACToRUseDB Personal Care Product ACToR UseDB Use Categories
drug_ACToRUseDB Pharmaceutical ACToR UseDB Use Categories
inert_ACToRUseDB Inert ACToR UseDB Use Categories

Office of Research and Development
http://actor.epa.gov/cpcat/

Dionisio et al. (2015)



<EPA Predicting Exposure

United States
Environmental Protection
Agency

e EPA’s public CPdat (http://actor.epa.gov/cpcat/) includes every chemical safety sheet from
a major U.S. retailer (>2000 chemicals) but there are many thousands of other chemicals
(Goldsmith et al, 2015)

e We use applied
statistics, including
machine learning
techniques, to learn
from the data we have  EheNewYork Eimes
to fill in the gaps
ssacs ot o 2016, sen ety
Phillips et al., 2017)

Internet

WORLD US. NY./REGION BUSINESS TECHNOLOGY SCIENCE HEFALTH SPORTS  OPINION

Internet  Start-Ups Business Computing Companies Blog

A $1 Million Research Bargain for Netflix, and Maybe a
 This is similar to Model for Others
how Netflix can Published: Seplember 21, 2009
guess how much
you will like a | m——
movie '.L NETELIS . :
Office of Research and Development 52 Rellors Ragrarie Chags s10

-
(1 ONE MILLIES 'T':”IE-EJ

eon The Merhlie Frize Roped Fatlings



http://actor.epa.gov/cpcat/

<EPA Predicting Chemical

United States
Environmental Protection

Agency ConStituentS

= CPCPdb does not cover = = . == & =  Tox21l:
every chemical-product = = Personal Care
L o =8 _ = = = Product Use
combination (~2000 = W —em — - =
chemicals, but already = = = — =
>8000 in Tox21) = s = = = Tox2l:
. . = - - B Unknown
= We can predict functional u = - Vs
. . a— = =
use and weight fraction m -
for thousands of —= - =3
chemicals = == = a
- = BT = =
ssggeressereseegrecsertess
, 888529280 2253552393E52L2°328 B _
Weight Fraction Bin 8 %ié 3 % 5o 2 E g.§§ 33 o 3"3 o Eé ] S o E Probability of Function
. —— o — = — —
m—Low 233T5352E<58 £ 8T8 gt <0.25
g cx E5E85<g £c 6 TFe QJ 2 2 0.25-0.5
Mid-Low 28 =2 o g2 Y 503 & < O
Mid-High L T8 & =0 & E 8 8 0.5-0.75
@ i =
s High - o £ §t & £ < O mwwm0.75-0.9
g 2! 2 E .,:.E':-% E 3 — >0.9
8 £ 56 3
Office of Research and Development = E % 8 3
o U:.j % =
£ Isaacs et al. (2016)
<



SEPA Non-Targeted Analysis

United States
Environmental Protection
Agency

New refinements to
mass spectrometry
are broadening our
ability to understand
the chemicals present
in environmental and

biological samples
High-Throughput 10108 P

Risk
Prioritization

Toxicokinetics Exposure

YN T3 Office of Research and Development



wEPA Non-Targeted and Suspect-

United States
Environmental Protection

Screening Analysis

= Models present one way forward, but new
analytic techniques may also allow insight in to
chemicals composition of products and the
greater environment

= EPA s coordinating a comparison of non-
targeted screening workflows used by leading
academic and government groups (led by Jon
Sobus and Elin Ulrich)

* Examining house dust, human plasma, and
silicone wristbands (O’Connell, et al., 2014)

* Similar to NORMAN Network (Schymanski “I'm searching for my keys.”
et al., 2015) analysis of water

= Published analysis on house dust (Rager et al.,

2016)
= 100 consumer products from a major U.S. retailer were

analyzed, tentatively identifying 1,632 chemicals, 1,445 which

were not in EPA’s database of consumer product chemicals
Office of Research and Development (Phl”lpS et a/ Submltted)
7



SEPA Suspect Screening in House Dust

United States
Environmental Protection
Agency

Each peak corresponds to a
chemical with an accurate mass
and predicted formula:

947 Peaks in an American Health Homes Dust
Sample

1500+
C17H19NO3
1000- Multiple chemicals can have the
ﬁ same mass and formula:
= HO
500- Q . -
oM\@:%
° HO"
u L n ) ) ) )
0 15 20 25 30 35 40 45 Is chemical A present,

Retention Time chemical B, both, or some
other chemical (neither)?

We are expanding our reference libraries using ToxCast chemicals to enable greater numbers
and better accuracy of confirmed chemicals

Office of Research and Development
See Rager et al., (2016)



. Appropriate Skepticism for Non-Targeted
wvEPA Analysis and Suspect Screening

United States
Environmental Protection
Agency

“As chemists we are obliged to accept the assignment of barium to the
observed activity, but as nuclear chemists working very closely to the
field of physics we cannot yet bring ourselves to take such a drastic
step, which goes against all previous experience in nuclear physics. It
could be, however, that a series of strange coincidences has misled us.”

Hahn and Strassmann (1938)

LN ET I Office of Research and Development



. Appropriate Skepticism for Non-Targeted
wvEPA Analysis and Suspect Screening

United States
Environmental Protection
Agency

“As chemists we are obliged to accept the assignment of barium to the
observed activity, but as nuclear chemists working very closely to the
field of physics we cannot yet bring ourselves to take such a drastic
step, which goes against all previous experience in nuclear physics. It
could be, however, that a series of strange coincidences has misled us.”

Hahn and Strassmann (1938)

1944 Nobel Prize in Chemistry for “discovery of the fission of heavy nuclei"

CYNET I Office of Research and Development



SEPA ExpoCast Consumer Product Scan

United States
Environmental Protection

Log;,(Hg/g)

The chemicals
found in a
cotton shirt

Office of Research and Development
Phillips et al. (submitted)



SEPA ExpoCast Consumer Product Scan

United States
Environmental Protection

Log;,(Hg/g)

+= Chemicals that are present

ﬁﬁ Sliﬂﬁl
MADE i .5 A

+= Chemicals that are absent (but found in other products)

Office of Research and Development
Phillips et al. (submitted)



SEPA ExpoCast Consumer Product Scan

United States
Environmental Protection

Log;,(Hg/g)

The chemicals
- found in a
cotton shirt

Office of Research and Development
Phillips et al. (submitted)



<EPA

United States
Environmental Protection
Agency

ExpoCast Consumer Product Scan

126 M E=— =
Confirmed =

928 ="+ _ : = o = —__é_j - __ N :__ -
Tentative= — =7 - - -

896
Tentative
Chemical Class

[ TITTEITACIVI TN T 1T

Or 1532 Etfe

our database from the major retailer (CPCPdb)

iedls, 1,445 were not present in

Chemical Category
M ToxCast
Ml potent ER
B Flame Retardant
M Chemical in = 25 Products

Product Category
[ cotton clothing

[Evinyl upholstery
M carpet padding

M plastic children's toy
M cereals

M fabric upholstery
[CIshampoo

[ shower curtain

M air freshener

M shaving cream

Ml deodorant

M indoor house paint
M glass cleaners
[Esunscreen

M baby soap

M hand soap

[ skin lotion

M carpet

M lipstick
[[toothpaste

Phillips et al. (submitted)



<EPA

United States

Environmental Protection

Agency

Articles

Formulations

not present in CPCPdb

M |dentified from SSA
M Found on Chemical List

i .
! |
300 200

Unique Chemicals

LI NJET I Office of Research and Development

Carpet
Carpet Padding
Fabric Upholstery
Shower Curtain
Vinyl Upholstery

Plastic Children's Toy

Cotton Clothing

Lipstick
Toothpaste
Sunscreen
Indoor House Paint
Hand Soap
Skin Lotion
Shaving Cream
Baby Soap
Deodorant
Shampoo
Glass Cleaner
Air Freshener

Cereal

Product Scan Summary

Of 1,632 chemicals confirmed or tentatively identified, 1,445 were

logiolug/g)

Phillips et al. (submitted)



<EPA

United States
Environmental Protection
Agency

Using the methods of Phillips et al., (2017):

= [ | BN .
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EEr Ty gonchEYs=0ces"
Y w o axgV=-B0=tGE
€S0 —g®¥UucELO <
° Umu c (9]
=0 Eorlg=s £c
n =0 o .=
oE SIc= X
£ L I2 7]
T 0o £
g L w

Chemical Fu

YA I Office of Research and Development

Predicting Chemical Function

H B B EEEEEEN \Vinyl Upholstery :- :
H HEE HEENE shower Curtain B i
HEE EEE EEEEENrPlastic children's Toy| TN |
H EEE N EEEN Fabricupholstery | | | i Articles
HE BEEEE B BEEN Cotton Clothing
AR BN HEE Carpet Padding ! :
[ | | HE HEEER Carpet ] ! !
[ | E B B BE Toothpaste i ! !
H EEEER Sunscreen N :
[ | HEEEN Skin Lotion :I : :
u B EEEEEE shavingCream | ] ! :
[ | =..==.=. Shampoo H 1 :
Lipstick I I .
EEEEEE BEE Indoor House Paint | | | | Formulations
EREEEEN Hand Soap ] i
HR EEEEER Glass Cleaner I !
Al NEERER Deodorant . [
ENEEEEEN Baby Soap i i !
[ | [ | H EEEER Air Freshener H
H ER BEER EEER Cereal o | I Foods
Srasteriziiess =k
oc5Eaff2 3505285 Unique Chemicals
<ﬁ'ﬁ‘t< >M°Om<35‘°‘,
L gosEtENI DS Tq ]
tegasiduw “5 ar B Unconfirmed ID from SSA
gv- E 3w > Found in FUse
2 e s Novel Predicted Function
e E
2 =
>
nction

Phillips et al. (submitted)



wEPA Analysis of Drinking Water

United States
Environmental Protection
Agency

High resolution mass spectrometry
was used to investigate the
occurrence and identity of
replacement fluorinated compounds
in surface water and sediment of the
Tennessee River near Decatur,
Alabama

A series of nine polyfluorinated carboxylic acids was discovered

Office of Research and Development
Phillips et al. (2017)



<EPA Caveats to Non-Targeted

United States .
Environmental Protection

Screening

* Chemical presence in an object does not mean that exposure occurs

e Only some chemical identities are confirmed, most are tentative
e Can use formulation predictor models as additional evidence

* Chemical presence in an object does not necessarily mean that it is bioavailable
e Can build emission models

* Small range for quantitation leads to underestimation of concentration

* Product de-formulation caveats:

e Samples are being homogenized (e.g., grinding) and are extracted with a
solvent (dichloro methane, DCM)

e Only using one solvent (DCM, polar) and one method GCxGC-TOF-MS
* Varying exposure intimacy, from carpet padding to shampoo to cereal

e Exposure alone is not risk, need hazard data

m Office of Research and Development



<EPA

United States
Environmental Protection
Agency

 Moving beyond NHANES
chemicals

 Non-targeted
analysis of blood may
be possible

* Not just a matter of
sensitivity, must also
“filter out”
endogenous, food,
and drug chemicals

LGB Office of Research and Development

Cumulative percent

Expanded Biomonitoring

Rappaport et al. (2014)

100
90 Iead Caffeine Cholesterol
Arsenic Trimethylamine- N-oxide
DDE
% Homocysteine
Perfluorononanoic acid
10 Venlafaxine v-Tocopherol
50 Benzene _
Enfiries Acetaldehyde Malondialdehyde
50 Hexachloroeyclohexane Sulforaphane
Trichloromethane p-Carotene
40 PCB 170
Cortisol
30 BDE 100 Simvastatin
Ethanol — UTUQS
20 Genistein — w—— Foods
Folic acid, vitamin D3
Aflatoxin B e Pollutants
10 Testosterone
Solanidine S EﬂdﬂgEl’lEIl.IS
H _
0
107 108 105 10 10 102 107! 10° 10' 102 10° 104 10°

Blood concentration (pM)



<EPA

United States
Environmental Protection
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We want to perform
in vitro-in vivo
extrapolation (IVIVE)
of ToxCast activities

Toxicokinetics for IVIVE

High-Throughput
Risk
Prioritization

Toxicokinetics Exposure

LN T Office of Research and Development
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250

200

150

100

50

<EPA

United States
Environmental Protection
Agency

The Need for In Vitro
Toxicokinetics

ToxCast Phase | (Wetmore et al. 2012)

LyX 79 Office of Research and Development

m ToxCast Chemicals
Examined

B Chemicals with
Traditional in vivo TK

® Chemicals with High
Throughput TK

ToxCast Phase Il (Wetmore et al. 2015)

« Studies like Wetmore et al. (2012, 2015), addressed

the need for TK data using in vitro methods



High Throughput Toxicokinetics

<EPA

United States
Environmental Protection
Agency

[ web2elsevierproofcent= X | [ web2elsevierproofcent= X / (R CRAN - Package hitk x

& > C (Y | & Secure | https;//cranr-project.org/web/packages/httk/index.htm Q % | D
I Apps g DSStox (%) Confluence (3 JESEE -4 EHP [EH] Battelle Box

httk: High-Throughput Toxicokinetics

Functions and data tables for simulation and statistical analysis of chemical toxicokineties ("TK") using data obtained from relatively high throughput. in vitro studies. Both physiologically-
based ("PBTK") and empirical (e.g.. one compartment) "TK" models can be parameterized for several hundred chemicals and multiple species. These models are solved efficiently. often
using compiled (C-based) code. A Monte Carlo sampler is included for simulating biological variability and measurement limitations. Functions are also provided for exporting "PBTK"
models to "SBML" and "JARNAC" for use with other simulation software. These functions and data provide a set of tools for in vitro-in vivo extrapolation ("[VIVE") of high throughput
screening data (e.g., ToxCast) to real-world exposures via reverse dosimetry (also known as "RTK").

Version: 1.6

Depends: R(=2.10)

Imports: deSolve, mem, data.table, survey. mvtnorm, trunenorm, stats, utils

Suggests: ggplot2, knitr, rmarkdown, R.rsp. GGally, gplots, scales, EnvStats, MASS, RColoiBrewer, TeachingDemos, classInt. ke, reshape2. gdata, viridis, CensRegMod.,
gmodels, colorspace

Published: 2017-06-08

Author: John Wambaugh, Robert Pearce. Caroline Ring. Jimena Davis, Nisha Sipes. and R. Woodrow Setzer

Maintainer: John Wambaugh <wambaugh.john at epa.gov>

License: GPL-3 https://CRAN.R-project.org/package=httk

NeedsCompilation: yes

Materials: NEWS Can access this from the R GUI:
CRAN checks: httk results « ” « ”
Packages” then “Install Packages

Downloads:

Reference manual: hitk.pdf

Vignettes: Creating Partition Coefficient Evaluation Plots . ! httk” R P ac kag e for I n Vltro 'i n VIVO eXtrap (0] I a.tl on

Age distributions
Global sensitivity analysis an d P BTK
Global sensitivity analysis plotting

Height and weight spline fits and residuals u 5 53 C h e m I Cal S tO d ate

Hematoerit spline fits and residuals

Plofting Css93 = 100’s of additional chemicals being studied

Serum creatimine spline fits and residuals

Generating subpopulations = Pearce et al. (2017) provides documentation and

Evaluating HTTK models for subpopulations
Generating Figure 2 exam p I eS

Generating Figure 3

Plotting Howgate Tohnson data = Built-in vignettes provide further examples of how

AER plotting
[irtual study populations

'R Pack;g; for H.i-Throughnut Toxicokinetics

to use many functions



https://cran.r-project.org/package=httk
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o EPA Using HTTK Predicted Cmax / !
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Screening for toxicity has blind spots and exposure forecasts are highly uncertain, yet:
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Doses ranges for all 3925 Tox21 56 compounds with
compounds eliciting a ‘possible’- potential in vivo biological
to-‘likely’ human in vivo interaction at or above
interaction alongside estimated estimated environmental
daily exposure exposures

Office of Research and Development
Sipes et al., (2017)



SEPA Further Analyzing the CDC NHANES Data

( l@i dnes

Environmental Protection
National Health and Nutrition Examination Survey

Agency

The U.S. Centers for Disease
Control and Prevention (CDC)
National Health and Nutrition
Examination Survey (NHANES)
provides continuously updated
statistically representative data
on biometrics and chemical
exposure

* Using data to identify
populations with

High-Throughput _
greater/lesser risk

Risk
Prioritization

Data sets publicly
available:

http://www.cdc.gov/nchs/nhanes.htm

Toxicokinetics Exposure

LLY RT3 Office of Research and Development



<EPA Population simulator for HTTK

United States
Environmental Protection
Agency

Correlated Monte Carlo sampling of physiological model parameters

Sample NHANES Predict physiological
quantities quantities

Sex Tissue masses
Race/ethnicity Tissue blood flows
Age GFR (kidney function)
Height Hepatocellularity
Weight

Serum creatinine —

Regression equations from literature
(+ residual marginal variability)

LI I  Office of Research and Development

(Similar approach used in SImCYP [Jamei et al. 2009], GastroPlus, ng et a| (m preSS)
PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB [Bosgra et al. 2012], etc.)



wEPA Toxicokinetic IVIVE:
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Rgenay o Protection Convert HTS pM to mg/kg/day

e We use HTTK to

calculate margin Change in Activity : Exposure Ratio
between bioactivity s
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o Public Chemical AssessmentTools from EPA ORD
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High-Throughput
Risk
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SEPA A Google for Chemicals

United States
Environmental Protection
Agency

https://comptox.epa.gov/dashboard
age D R: Mathematical Ann ArcGIS Tutorials webhelp.esri.com/ar D The R Journal >> Cu . One R Tip A Day ° ArcGIS Desktop Help
ites

antal Protection

Home Advanced Search Batch Search Lists

try Dashboard

{ED STy
N s

HIA
AN
" y *
AGENC

&

2 o"\o
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Chemistry Dashboard

A% NITO @ PlotSymbols @ Science

Search a chemical by systematic name, synonym, CAS number, or InChlKey

Single component search | Ignore isotopes

See what people are saying, read the dashboard comments!

Need more? Use advanced search.

758 Thousand Chemicals

LENG Y I  Office of Research and Development

http://comptox.epa.gov/dashboard/

Examples:
“Stearic Acid”
“Bisphenol A”

“C17H19NO3”

Technical leads Tony Williams, Richard Judson, et al. (NCCT)



SEPA A Google for Chemicals

United States
Environmental Protection

Agency http://comptox.epa.gov/dashboard/

(&) Comptox | Search Results X | &5 Google News X

« > CH https://comptox.epa.gov/dashboard/dsstoxdb/results?utf8= v &search=C17H19NO3&formula=1 & D =
“ Bookmarks body temperature do. [ DSSToxViewer (£ ExpoCast Confluence

s 1 United States
. EPAEnvirnnmental Protection | ﬂ
\’ Agency

Search Results

© Searched by Molecular Formula: Found 108 results for 'C17H19NO3".

Show 25  entries

HO.

S
ﬂj
A

[9)
94-62-2 466-99-9 57-27-2 467-15-2 68568-55-8
Piperine Hydromorphone IMorphine Norcodeine Methanone, (4-amino-2..
(& : -
About Contact wssACToR N ===zDSSTox  Privacy Accessibility  Help -

Office of Research and Development
Technical leads Tony Williams, Richard Judson, et al. (NCCT)



n [ ] [ ]
\.,UEESA Public Chemical Assessment Tools
E\g\(.;irr‘gcmental Protection from EPA ORD

Dashboards: Chemistry Dashboard (one stop shop):
http://comptox.epa.gov/dashboard/
ICSS Dashboard (ToxCast data):
http://actor.epa.gov/dashboard/
CPdat:
http://actor.epa.gov/cpcat/

Underlying

Databases: DSStox (Distributed structure-searchable toxicity (DSSTox) public
database, Richard et al., 2002)
ToxRefDB (Animal Study data, Martin et al., 2009)
CPCPdb (Consumer Product Chemical Pathways databse,
Goldsmith et al, 2014)

R Packages: httk: High-Throughput Toxicokinetics (Pearce et al., in press)
https://cran.r-project.org/web/packages/httk/index.html
tcpl: ToxCast Data Analysis Pipeline (Filer et al., 2014)
https://cran.r-project.org/web/packages/tcpl/index.html

YN I Office of Research and Development



http://comptox.epa.gov/dashboard/
http://actor.epa.gov/dashboard/
http://actor.epa.gov/cpcat/
https://cran.r-project.org/web/packages/httk/index.html
https://cran.r-project.org/web/packages/tcpl/index.html

wEPA Conclusions

United States
Environmental Protection
Agency

=  We would like to know more about the risk posed by thousands of chemicals in the environment —
which ones should we start with?

e High throughput screening (HTS) provides a path forward for identifying potential hazard
e Exposure and dosimetry provide real world context to hazards indicated by HTS

= Using in vitro methods developed for pharmaceuticals, we can relatively efficiently predict TK for
large numbers of chemicals, but we are limited by analytical chemistry

= Using high throughput exposure approaches we can make coarse predictions of exposure
e We are actively refining these predictions with new models and data

* |Insome cases, upper confidence limit on current predictions is already many times lower than
predicted hazard

= Expanded monitoring data (exposure surveillance) allows evaluation of model predictions
* Are chemicals missing that we predicted would be there?
e Are there unexpected chemicals?
= All data being made public:
* R package “httk”: https://CRAN.R-project.org/package=httk
e The Chemistry Dashboard (A “Google” for chemicals) http://comptox.epa.gov/
e Consumer Product Database: http://actor.epa.gov/cpcat/

m Office of Research and Development

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA
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