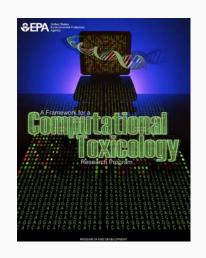


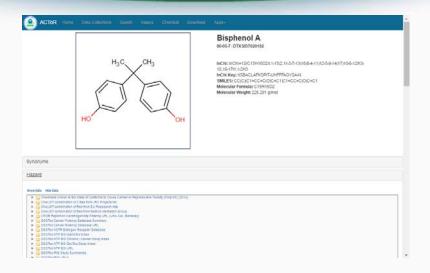
New developments in delivering public access to data from the National Center for Computational Toxicology at the EPA

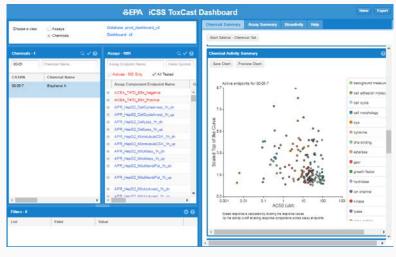

Antony Williams¹, Chris Grulke¹, Andrew McEachran², Grace Patlewicz¹, Imran Shah¹, John Wambaugh¹, Ann Richard¹, Richard Judson¹ and Jeff Edwards¹

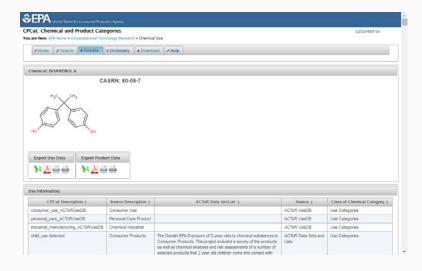
1) National Center for Computational Toxicology, U.S. Environmental Protection Agency, RTP, NC 2) Oak Ridge Institute of Science and Education (ORISE) Research Participant, Research Triangle Park, NC

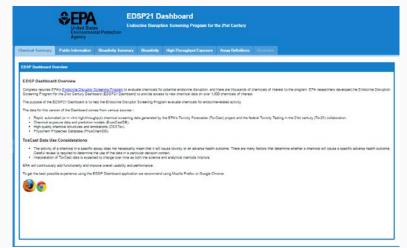
The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

National Center for Computational Toxicology






- National Center for Computational Toxicology established in 2005 to integrate:
 - High-throughput and high-content technologies
 - Modern molecular biology
 - Data mining and statistical modeling
 - Computational biology and chemistry
- Outputs: a lot of data, models, algorithms and software applications
- Open Data we want scientists to interrogate it, learn from it, develop understanding


Early Dashboard Applications

Earlier Dashboards

- Chemistry data mashed together based on CAS Number/Names
- Chemistry data quality issues
- Multiple applications requiring maintenance

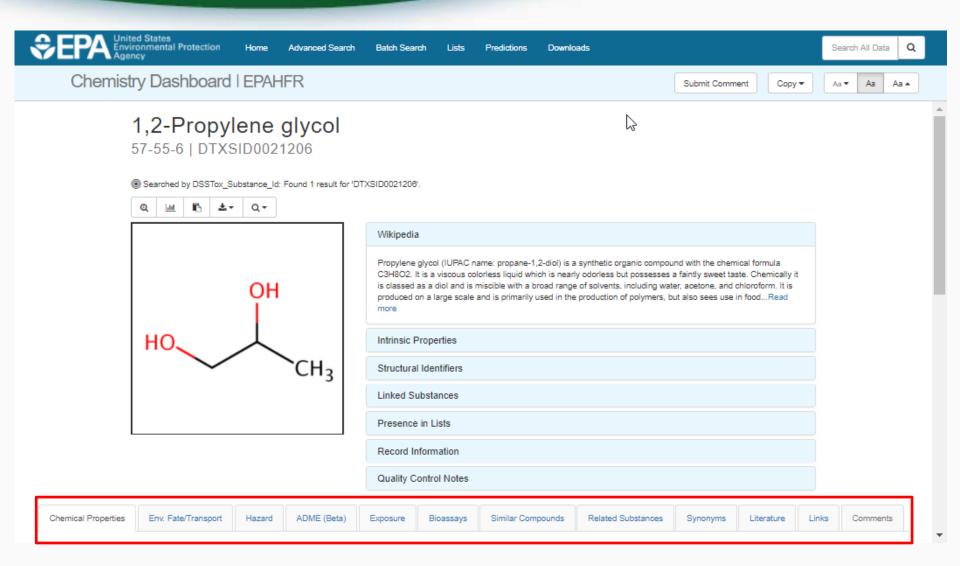
 April 2016 – beta release of the CompTox Chemistry Dashboard as an integration hub

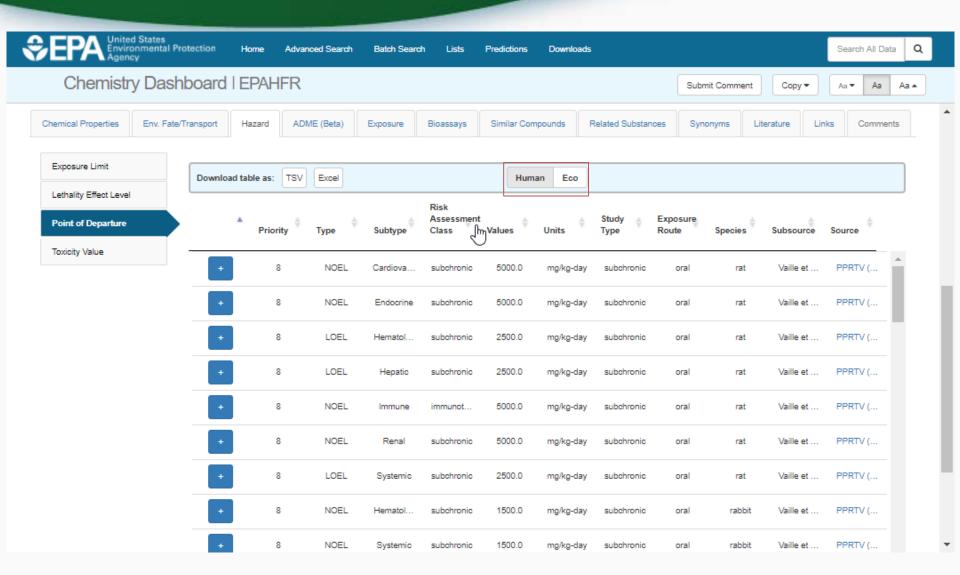
The CompTox Chemistry Dashboard

A publicly accessible website delivering access:

- ~760,000 chemicals with related property data
- Experimental and predicted physicochemical property data
- Integration to "biological assay data" for 1000s of chemicals
- Information regarding consumer products containing chemicals
- Links to other agency websites and public data resources
- "Literature" searches for chemicals using public resources
- "Batch searching" for thousands of chemicals
- DOWNLOADABLE Open Data for reuse and repurposing

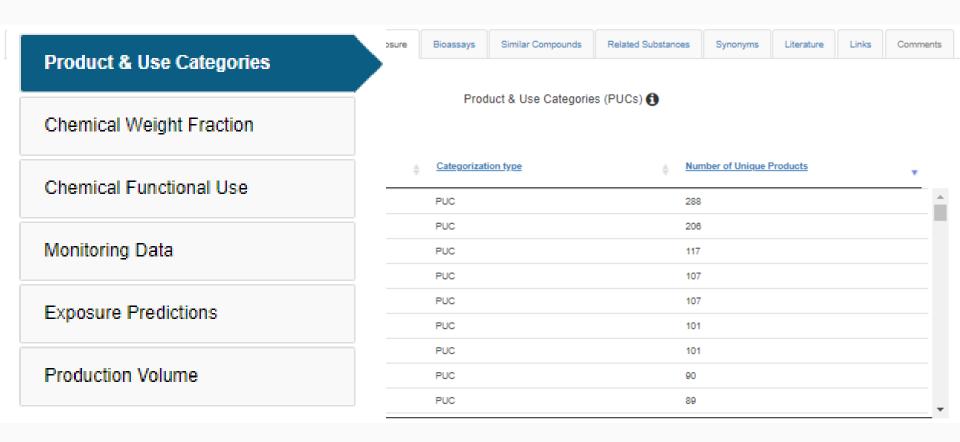
CompTox Chemistry Dashboard


https://comptox.epa.gov/dashboard

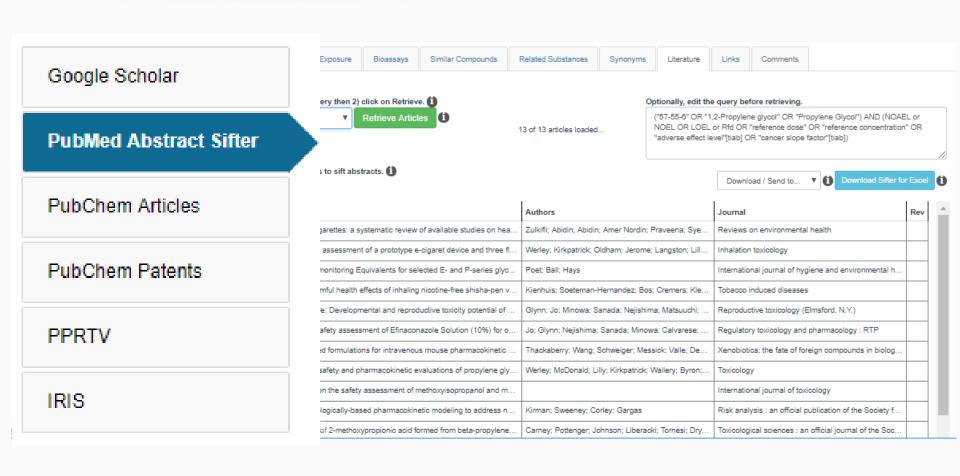

Detailed Chemical Pages

Access to Chemical Hazard Data

In Vitro Bioassay Screening

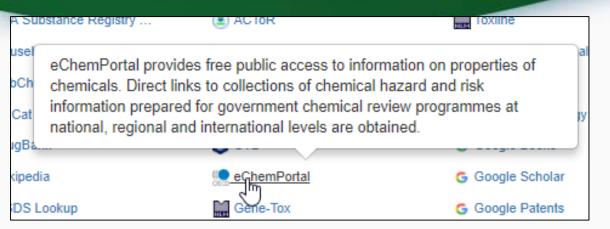

ToxCast and Tox21

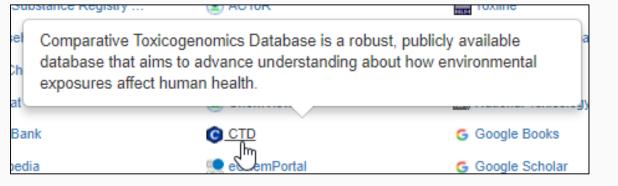
Sources of Exposure to Chemicals


Identifiers to Support Searches

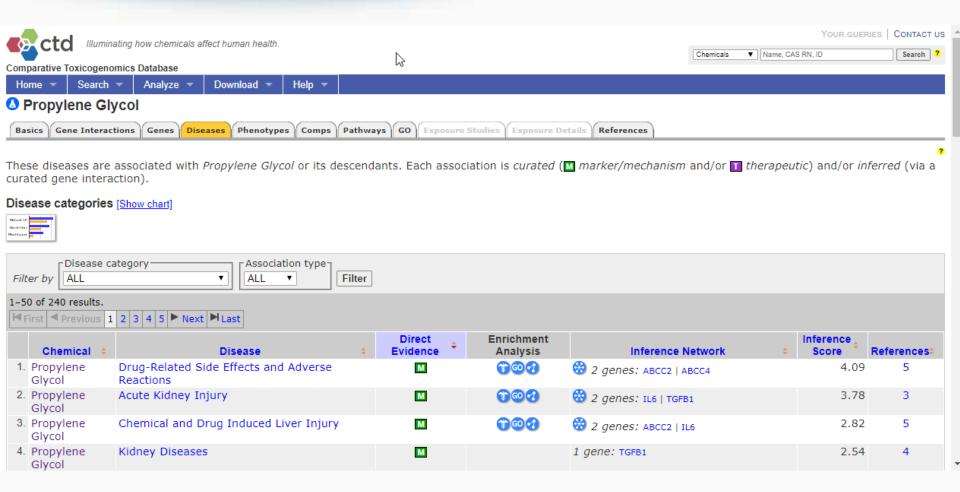
Chemical Properties	Env. Fate/Transport	Hazard	ADME (Beta)	Exposure	Bioassays	Similar Compounds	Related Substances	Synonyms
Found 78 synonyms								
		L	egend: Valid S	Synonyms G	Good Synonyms	Other Synonyms	l Copy all Synonyms	
1,2-Propylene glycol								
Propane-1,2-diol								
1,2-Propanediol								
57-55-6 Auttve CA8-RN								
alpha-Propylene glycol								
(+/-) 1,2-Propanediol								
(RS)-1,2-Propanediol								
dl-Propylene glycol								
3-01-00-02142 Belictein Re	egistry Number							
1,2-Propanediol								
(.+)-1,2-Propanediol								
(.+)-Propylene glycol								
1,2-(RS)-Propanediol								
1,2-DIHYDROXYPROPAI	VE							
1,2-PROPANDIOL								

Literature Searches and Links

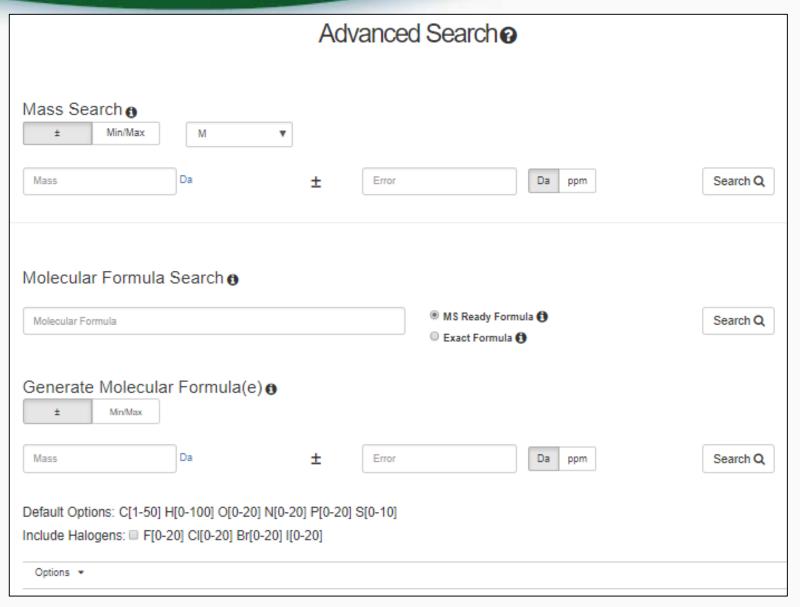

External Links to Data and Services


N2										
Chemical Properties	Env. Fate/Transport	Hazard	ADME (Beta)	Exposure	Bioassays	Similar Compounds	Related Substances	Synonyms	Literature	Links
General	Toxico	logy		Publications		Analytical		Prediction		
EPA Substance Reg	istry (£) AC	ΓoR		Toxline		RSC Analytic	al Abstracts	🐧 2D NMR HSQC	C/HMBC Pr	
Household Products	Data on Dru	gPortal		Environment	al Health Per	▲ Tox21 Analyti	cal Data	Carbon-13 NMI	R Prediction	
PubChem	CCI	RIS		NIEHS		MONA: Mass	Bank North	🐧 Proton NMR Pr	ediction	
CPCat	Che	emView		National Tox	icology Progr	NIST IR Spec	trum	ChemRTP Pred	dictor	
DrugBank	© СТІ)		G Google Book	(S	NIST MIST MS Spe	ctrum			
W Wikipedia	🥌 eCł	emPortal		G Google Scho	olar					
Q MSDS Lookup	Ger	ne-Tox		G Google Pate	nts					
(iii) ChEMBL	HSI	OB		PPRTVWEB						
Q Chemical Vendors	Tox	Cast Dashboa	rd 2	PubMed						
MIOSH Chemical Sa	ifety Lac	tMed		IRIS Assess	ments					
toxPlanet	Inte	rnational Toxic	ity Esti	EPA HERO						
ACS Reagent Chem	icals & ATS	DR Toxic Sub	stances	C RSC Publica	tions					
W Wikidata	♠ AC [*]	ToR PDF Repo	ort	■ BioCaddie D	ataMed					
ChemHat: Hazards	and A CRI	EST		♠ Springer Ma	terials					
🜞 Wolfram Alpha				Federal Reg	ister					

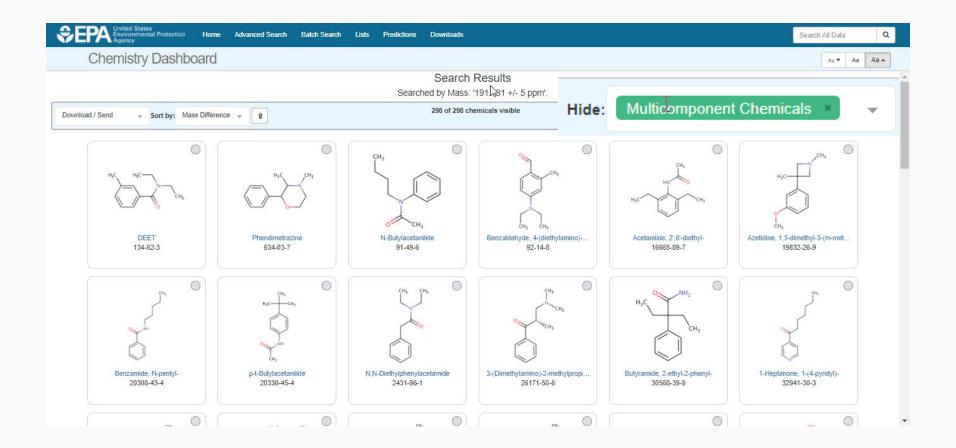
Integrated Linkouts

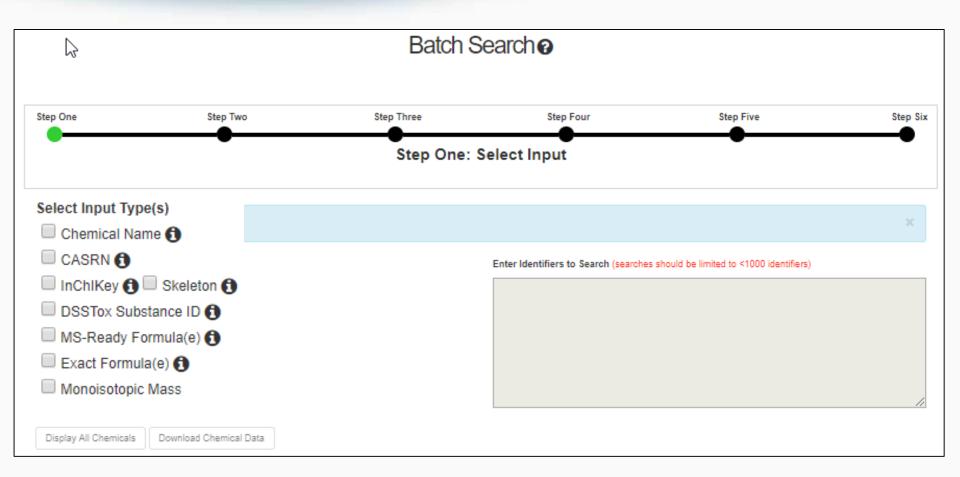


Integrated Linkouts


Comparative Toxicogenomics DB

Advanced Searches


Advanced Searches Mass Based Search


Advanced Searches

Batch Searches

Batch Search

Select Input Type(s) Chemical Name

CASRN 6

☐ InChlKey **(1)** ☐ Skeleton **(1)**

DSSTox Substance ID

MS-Ready Formula(e) 6

Exact Formula(e) 6

Monoisotopic Mass

20

Enter Identifiers to Search (searches should be limited to <1000 identifiers)

C6H12O3 C7H7N3 C8H11NO C7H5NOS C9H15NO C11H12O C9H8O3 C6H12O5 C9H15NO2

Metadata

☐ Curation Level Details 🚯

Data Sources 6

Assay Hit Count 6

Include links to ACToR reports - SLOW! (BETA)

✓ NHANES/Predicted Exposure

✓ Include ToxVal Data Availability

✓ Number of PubMed Articles

☐ Abstract Sifter Input File (Beta) **1**

■ MetFrag Input File(Beta)

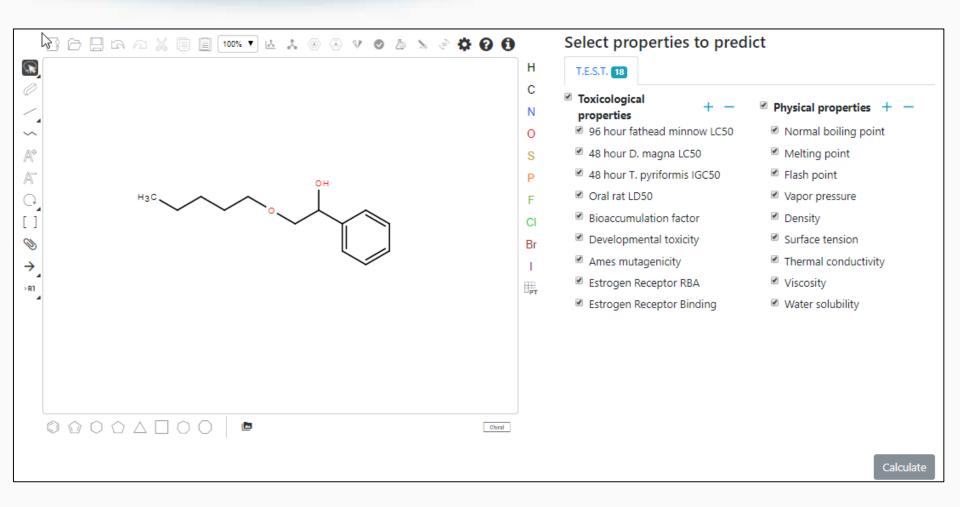
✓ IRIS

✓ PPRTV

■ PubChem Data Sources

□ ToxPrint fingerprints <a>6

- NIOSH IDLH Values
- NIOSH International Chemical Safety Cards
- NIOSH Pocket Guide to Chemical Hazards
- NIOSH Skin Notation Profiles
- NORMAN Collaborative Trial 2015 Targets and Suspects
- Norman Network PFAS (KEMI Report)
- NORMAN Network Priority List
- NormaNEWS: Norman Early Warning System
- PFAS list provided by X.Trier et al
- Pharmaceutical List with EU, Swiss and US Consumption Data
- Provisional Peer Reviewed Toxicity Values
- ☐ Stockholm Convention on Organic Pollutants
- ☑ STOFF-IDENT Database of Water-Relevant Substances
- Superfund Chemical Data Matrix
- Surfactant List Screened in Swiss Wastewater (2014)


Excel Output

					D TOXCAST	TOXCAST	NUMBER_C	PUBCHEM	STO
C6H12O3	MS Ready I	DTXCID701	91	Υ	0.36	2/562	24	83	Υ
C6H12O3	MS Ready I	DTXCID0034	67	Υ	0.36	1/276	376	80	Υ
C6H12O3	MS Ready I	DTXCID106	65	Υ	4.42	5/113	6	77	Υ
C6H12O3	MS Ready I	DTXCID105	45	Υ	0.0	0/163	3	94	-
C6H12O3	MS Ready I	DTXCID901	38	Υ	-	-	14	110	Υ
C6H12O3	MS Ready I	DTXCID4024	34	Υ	0.0	0/113	_	53	Υ
C6H12O3	MS Ready I	DTXCID202	31	Υ	-	_	_	36	Υ
C6H12O3	MS Ready I	DTXCID2024	30	-	2.54	7/276	-	54	_
C6H12O3	MS Ready I	DTXCID109	26	Υ	-	-	-	46	_
C6H12O3	MS Ready I	DTXCID202	24	Υ	0.0	0/113	-	47	_
C6H12O3	MS Ready I	DTXCID303	22	Υ	-	-	-	89	_
C6H12O3	MS Ready I	DTXCID302	20	Υ	-	-	2	25	Υ
C6H12O3	MS Ready I	DTXCID4074	19	Υ	-	_	12	62	_
C6H12O3	MS Ready I	DTXCID704	17	Υ	-	_	_	64	_
C6H12O3	MS Ready I	DTXCID704	16	Υ	-	_	3	49	_

Real-Time Predictions

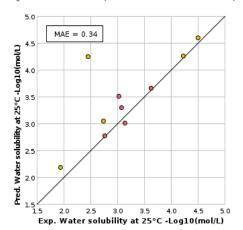
Real-Time Predictions

		Formanion and al	Prediction							
P	roperty	Experimental Value	Consensus	Hierarchical clustering	Single model	Group contribution	Nearest neighbor			
Ø 9₁	6 hour fathead minnow LC50		4.477 -Log10(mol/L) 6.954 mg/L	4.195 -Log10(mol/L) 13.288 mg/L	3.994 -Log10(mol/L) 21.110 mg/L	3.478 -Log10(mol/L) 69.224 mg/L	6.238 -Log10(mol/L) 0.120 mg/L			
4	8 hour D. magna LC50		4.398 -Log10(mol/L) 8.328 mg/L	3.877 -Log10(mol/L) 27.677 mg/L	4.039 -Log10(mol/L) 19.026 mg/L	4.084 -Log10(mol/L) 17.173 mg/L	5.593 -Log10(mol/L) 0.532 mg/L			
4	8 hour T. pyriformis IGC50		4.063 -Log10(mol/L) 18.039 mg/L	3.731 -Log10(mol/L) 38.668 mg/L		3.386 -Log10(mol/L) 85.610 mg/L	5.070 -Log10(mol/L) 1.773 mg/L			
0	oral rat LD50		1.758 -Log10(mol/kg) 3640.950 mg/kg	1.982 -Log10(mol/kg) 2172.756 mg/kg			1.533 -Log10(mol/kg) 6101.245 mg/kg			
В	ioaccumulation factor		1.797 Log10 62.700	2.202 Log10 159.310	1.287 Log10 19.346	1.181 Log10 15.157	2.520 Log10 330.834			
D	evelopmental toxicity		false	false	false		true			
А	mes mutagenicity		false	false			false			
E:	strogen Receptor RBA		-3.075 Log10 8.418*10 ⁻⁴	-3.078 Log10 8.356*10 ⁻⁴	-3.720 Log10 1.907*10 ⁻⁴		-2.427 Log10 0.004			
E:	strogen Receptor Binding		true	true	true	false	true			

Real-Time Predictions

Predicted Water solubility at 25°C for OC(C=1C=CC=CC1)COCCCCC from Consensus method

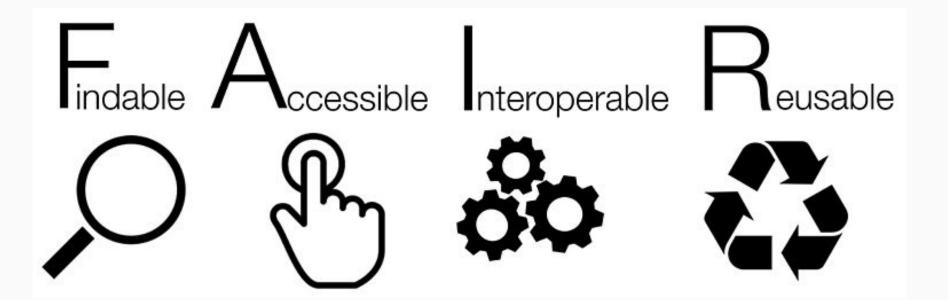
Prediction results


Endpoint	Experimental value	Predicted value
Water solubility at 25°C -Log10(mol/L)	N/A	2.46
Water solubility at 25°C mg/L	N/A	723.26

Individual Predictions						
Method	Predicted value -Log10(mol/L)					
Hierarchical clustering	2.42					
Group contribution	2.32					
Nearest neighbor	2.64					
	-					

Predictions for the test chemical and for the most similar chemicals

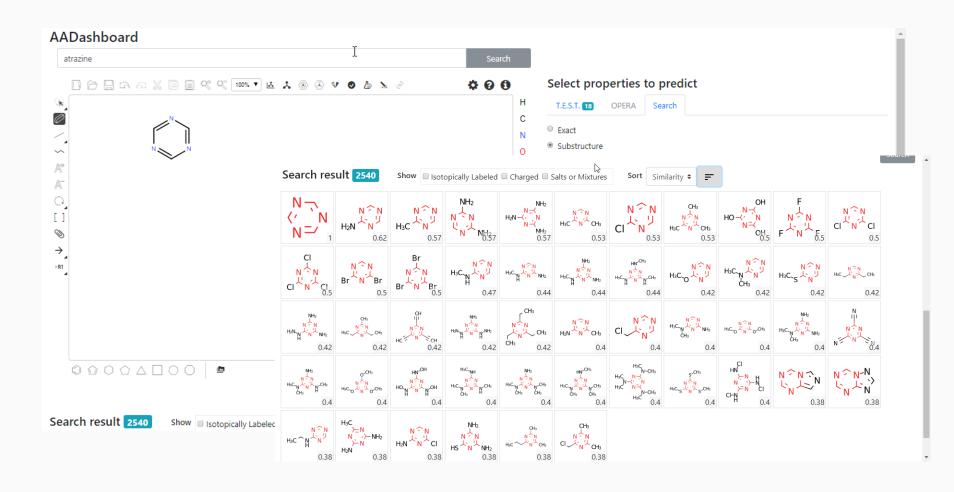
Rediction results (colors defined in table below)

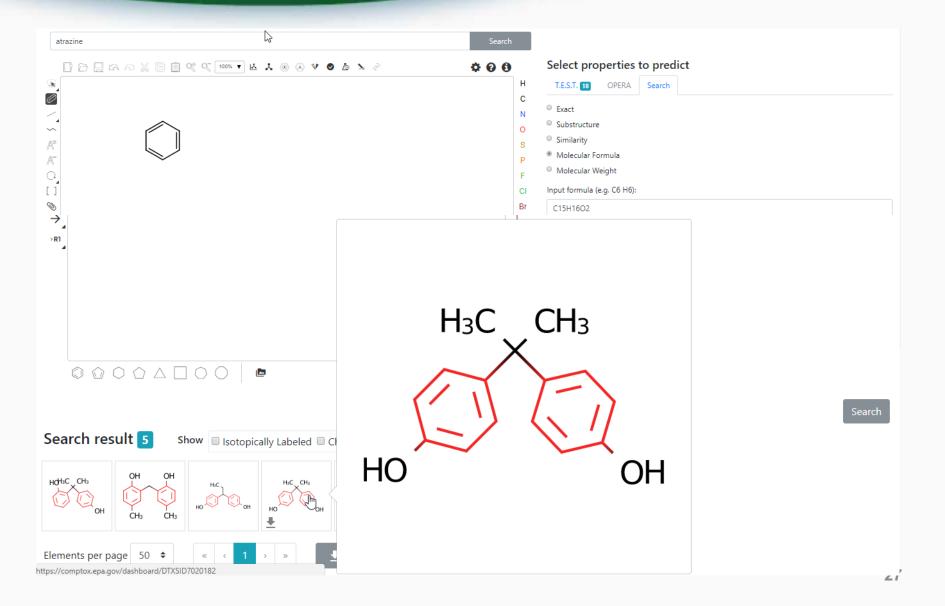

Chemicals	MAE*
Entire set	0.58
Similarity coefficient ≥ 0.5	0.34

^{*}Mean absolute error in -Log10(mol/L)

CAS	Structure	Similarity Coefficient	Experimental value -Log10(mol/L)	Predicted value -Log10(mol/L)
OC(C=1C=CC=CC1)COCCCCC (test chemical)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		N/A	2.46
<u>104-40-5</u>	0	0.68	4.50	4.60
1219-38-1	J	0.67	4.22	4.26


Our support for FAIR Data

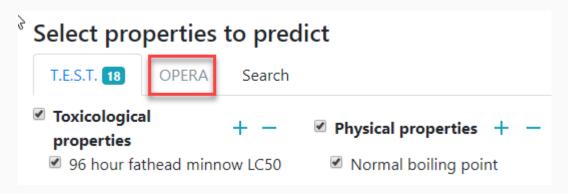

Downloadable Data


Prototype Development

Prototype Development

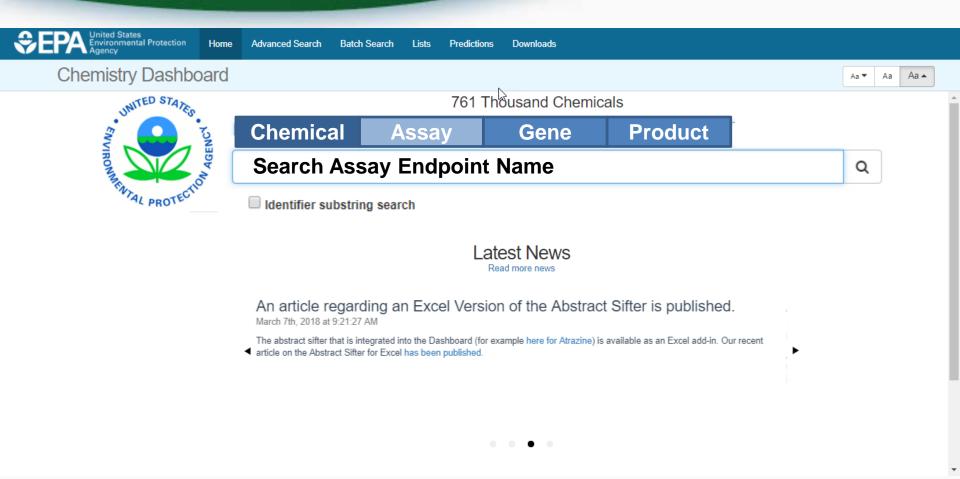
Future Development Real Time OPERA Predictions

Mansouri et al. J Cheminform (2018) 10:10 https://doi.org/10.1186/s13321-018-0263-1


Journal of Cheminformatics

RESEARCH ARTICLE

Open Access


OPERA models for predicting physicochemical properties and environmental fate endpoints

Kamel Mansouri^{1,2,3*}, Chris M. Grulke¹, Richard S. Judson¹ and Antony J. Williams¹

Future Search Possibilities

Conclusion

- The CompTox Chemistry Dashboard provides access to data for ~760,000 chemicals
- High quality data from ongoing curation efforts
- An integration hub for multiple "modules"
 - Experimental and predicted properties
 - Human and Ecological Hazard data
 - Exposure data products, data in the environment
 - In vitro bioassay data ToxCast/Tox21
 - Literature searching Google Scholar and PubMed
 - Specialized searches mass/formula for analytical support
 - Batch searching and Real Time Predictions
- The primary architecture for NCCT data

Acknowledgments

- The NCCT CompTox Chemistry Dashboard Development Team
- NERL scientists (Jon Sobus, Elin Ulrich) –
 Mass Spectrometry
- Kamel Mansouri OPERA models
- Todd Martin TEST predictions
- Nancy Baker Abstract Sifter

Antony Williams

US EPA Office of Research and Development
National Center for Computational Toxicology (NCCT)

Williams.Antony@epa.gov

ORCID: https://orcid.org/0000-0002-2668-4821