
Valery Tkachenko3

Alex Korotcov3

Neal Cariello1

Kamel Mansouri4

Antony Williams2

1. Integrated Laboratory Systems, Research Triangle Park, North Carolina, United States
2. National Center for Computational Toxicology, US-EPA, North Carolina, United States
3. Science Data Software, LLC, Rockville, MD 20850
4. ScitoVation, Research Triangle Park, North Carolina, United States

Prediction of pKa from chemical structure 
using free and open-source tools
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pKa
What Is It ?

Why Is It Important ?
How Can We Use It ?

How Can We Predict It ?



Question: Which kind of chemicals will preferentially partition into the plasma 
membrane, charged or uncharged (ionized or non-ionized)?

• In general, chemicals that make it into the plasma membrane (lipid bilayer)  
have a better chance of getting into the cell.

• The plasma membrane facing the extracellular space is hydrophobic and 
lipophilic so will charged or uncharged molecules cross the membrane 
best?

Absorption Of Chemicals Into Cells



What Is pKa ?
• pKa is a property that tells us how acidic (or basic) a chemical is. The 

lower the pKa the stronger the acid.

• The pKa influences the protonation state (charged or uncharged) of the 
chemical in solution at a given pH value.



Chemistry 101

• Ka is the acid dissociation constant which is a measure of the strength of 
an acid in solution.  

• Ka is an equilibrium constant and pKa is the -log10 value of Ka, therefore 
for acids

𝐻𝐻𝐻𝐻 ↔ 𝐻𝐻− + 𝐻𝐻+

𝐾𝐾𝐴𝐴 =
]𝐻𝐻− [𝐻𝐻+

𝐻𝐻𝐻𝐻

𝑝𝑝𝐾𝐾𝑎𝑎 = −𝑙𝑙𝑙𝑙𝑙𝑙10
]𝐻𝐻− [𝐻𝐻+

𝐻𝐻𝐻𝐻



pKa Importance

• pKa values reflect the ionization state of a chemical 

• Why is this important?
• Ionization affects lipophilicity, solubility, protein binding and the 

ability of a chemical to cross the plasma membrane
• This affects ADMET

• pKa can be used, and is many times required, for 
• Physiologically Based Pharmacokinetic (PBPK) modeling
• In Vitro To In Vivo Extrapolation (IVIVE)
• Prediction of tissue:plasma partition coefficients



Using Open Source Software and 
Data to Build a pKa Prediction 

Algorithm:

Data Quality, Algorithm 
Development and Applications



Good Cheminformatics Data Is Hard To Obtain, 
Especially pKa

• Obtaining high-quality data sets is difficult
• Curation is generally VERY time-consuming without optimized 

workflows
• Many issues exist with available datasets



7912 Chemicals With pKa In Water Are Available 
From The Datawarrior Website

• This is not a widely-known dataset
• Datawarrior didn’t list the references for the data 
• We checked ~60 DataWarrior chemicals against literature and the 

results were good (< 0.3 pKa units difference between DataWarrior and 
the literature)



Dataset Has A Bimodal Distribution 

7912 structures
 3614 acidic 
 4298 basic 



QSAR-ready Workflow

Remove of 
duplicates

Normalize Nitros
& tautomers

Clean salts and 
counterions

Remove inorganics 
and mixtures

Final inspection 
QSAR-ready 
structures

Indigo

KNIME workflow



QSAR-ready analysis

Full dataset: 
• 7904 QSAR-ready structures
• 6245 unique QSAR-ready structures

Acidic dataset
• 3610 QSAR-ready total structures
• 3260 unique QSAR-ready structures

Basic dataset
• 4294 QSAR-ready total structures
• 3680 unique QSAR-ready structures

1659 Duplicate structures! 

Standard deviation of duplicates
2 as a threshold for averaging? 



Modeling Options 
To deal with complexity of multiple pKa's for a chemical, 
three datasets were produced and analyzed:
Option 1: Only structures with a unique pKa value were used. 

• Pre-categorized Acidic dataset: 2960 
• Pre-categorized Basic dataset: 3158 
• Combined: 4897 (no amphoteric)

Option 2: A unique value/structure (average value if 
stdDev<2)

• Pre-categorized Acidic dataset: 3095 
• Pre-categorized Basic dataset: 3370 
• Combined: 5263 (no amphoteric)

Option 3: The entire list of QSAR-ready chemicals was used 
with averaging for similar pKa values. 

if stdDev =< 1: Average value; 
if stdDev > 1: strongest pKa (min acidic/max basic) 
• Acidic dataset: 3260 unique QSAR-ready structures
• Basic dataset: 3680 unique QSAR-ready structures

Combined dataset

Acidic dataset

Basic dataset



Machine Learning And Predicting pKa

• The term Machine Learning was coined in 1959 
Machine learning explores the study and construction of algorithms 
that can learn from and make predictions on data through building a 
model from sample inputs.

• Each chemical with a pKa produces ~16.5K data points in 12 datasets
• We need to find the best combination of variables (columns) for pKa

prediction



Train And Test Sets For Modeling
For each one of the data options:
• Split into training (75%) and test (25%)
• Keep similar distribution of pKa values
• Keep similar distribution of acidic and basic pKas for combined 

datasets
• Descriptors (and fingerprints) are generated for all QSAR-ready 

structures and can be matched by the generic ID (integers)
A classification model to determine if a molecule will have an acidic pKa, 
basic pKa or both is trained too.



Training Models 
• Create model and estimate performance using only the training dataset
• 5-fold cross-validation was used for training, model performance 

evaluation and tuning 
• Root mean squared error (RMSE) was used as a performance metric for 

training optimization.
• Choice of machine learning methods: 

• Extreme Gradient Boosting (XGBoost), the advanced traditional 
(shallow) machine learning (SML) method. 

• Deep Neural Network (DNN), a deep machine learning method 
(DML).

• Support Vector Machines (SVM): defines a decision boundary that 
optimally separates two classes by maximizing the distance between 
them.



XGBoost training method
• XGBoost is an implementation of gradient boosted decision trees 

designed for speed and performance.
• Coding was done using R. The caret and xgboost packages were used 

for all analysis.
• RMSE was a metric to be minimized. 5-fold cross validation was used to 

train the model using the training dataset
• Highly correlated variables were removed using caret::findCorrelation

with a cutoff of 0.90
• Low variance variables were removed using caret::nearZeroVar with a 

cutoff of 95/5
• The following data subsets were modeled using all binary fingerprints

• Remove variables that are all 0's (many) and all 1's (few)
• As above with removal of highly correlated variables
• As above with removal of near zero variance variables removed



XGBoost training results
• Performance using the basic dataset was substantially better than the 

acidic dataset 
• MACCS and FP (Morgan’s, 1024 bins) binary fingerprints generally gave 

the best performance
Best RMSE and R-Squared are:

• Basic pKa: 1.585 and 0.765
• Acidic pKa: 1.737 and 0.737



DNN training method
• The following Deep Neural Network parameters were optimized: 

optimization algorithm, weight initialization, hidden layers activation 
function, L2 regularization, dropout regularization, number of hidden 
layers and nodes in the hidden layers, and learning rate. Keras
(https://keras.io/) and Tensorflow (www.tensorflow.org) were used for 
deep learning models training.

• The final DNN: 3 hidden layers of 256 nodes 
each followed by a batch normalization and a 
drop out layer to generalize trained models.

• 5-fold cross validation on training data using 
mean square error as a loss function with earlier 
training stopping base on validation loss, thus 
further improving of the models’ generalization. 



DNN training results
• Performance using the acidic dataset was substantially better than the 

basic dataset, and slightly outperforming XGBoost models
• Combination of RDKit Descriptors+MACCS+FCFC(512 bins, radius 

3)+Avalon(512 bins), PADEL continues descriptors+MACCS, and MACCS or 
MACCS+FP (Morgan’s, 1024 bins) gave the best DNN models performance

Best test RMSE and R-Squared are:
• Basic pKa: 1.506 and 0.789
• Acidic pKa: 1.519 and 0.798

Test Train



SVM training method

• Used the free and open source package LibSVM3.1 (Chang and Lin 2001).
• Originally designed to solve classification problems then generalized to fit continuous 

models as well.
• Its algorithm defines a decision boundary that optimally separates two classes by 

maximizing the distance between them.
• The decision boundary can be described as an hyperplane that is expressed in terms of 

a linear combination of functions parametrized by support vectors, 
which consist in a subset of training molecules.
• SVM algorithms search for the support vectors
that give the best separating hyperplane using 
a kernel function

SVM kernel function maximizing the margin between the classes.



SVM training results

Train 5f CV Test
variables R2 RMSE Q2 RMSE R2 RMSE

Acidic
Continuous 870 0.96 0.65 0.58 2.18 0.68 1.91
Fingerprint 1548 0.91 1 0.64 2.02 0.71 1.81
Fingerprint Count 556 0.9 1.1 0.6 2.16 0.65 2.01
Fingerprint – FP Count 2104 0.94 0.8 0.64 2.02 0.72 1.8
Fingerprint - Continuous 2418 0.99 0.11 0.67 1.92 0.76 1.65
Basic
Continuous 876 0.96 0.64 0.65 1.94 0.65 1.93
Fingerprint 1535 0.91 0.99 0.69 1.84 0.69 1.83
Fingerprint Count 544 0.9 1.05 0.68 1.88 0.69 1.83
Fingerprint – FP Count 2079 0.93 0.87 0.72 1.73 0.7 1.8

Train 5f CV Test
variables R2 RMSE Q2 RMSE R2 RMSE

Acidic
Continuous 913 0.98 0.49 0.61 2.1 0.69 1.89
Fingerprint 1552 0.9 1.05 0.63 2.04 0.69 1.87
Fingerprint Count 589 0.9 1.09 0.59 2.17 0.65 1.98
Fingerprint – FP Count 2141 0.94 0.85 0.63 2.05 0.71 1.81
Basic
Continuous 913 0.97 0.52 0.67 1.88 0.66 1.88
Fingerprint 1534 0.9 1.02 0.68 1.83 0.75 1.63
Fingerprint Count 551 0.9 1.02 0.67 1.87 0.73 1.69
Fingerprint – FP Count 2085 0.93 0.88 0.71 1.76 0.78 1.53

Train 5f CV Test
variables R2 RMSE Q2 RMSE R2 RMSE

Acidic
Continuous 510 0.96 0.66 0.59 2.17 0.57 2.2
Fingerprint 1580 0.91 1 0.64 2.01 0.68 1.91
Fingerprint Count 815 0.88 1.19 0.6 2.14 0.61 2.11
Fingerprint – FP Count 2395 0.93 0.86 0.65 1.99 0.69 1.87
Basic
Continuous 510 0.95 0.75 0.61 2.01 0.6 2.09
Fingerprint 1543 0.91 0.94 0.72 1.72 0.67 1.9
Fingerprint Count 815 0.89 1.06 0.69 1.79 0.69 1.84
Fingerprint – FP Count 2358 0.93 0.84 0.73 1.67 0.71 1.79

Train 5f CV Test
kNN variables BA BA BA
Continuous 15 0.8 0.8 0.77
SVM
Continuous 15 0.92 0.8 0.73
Continuous 511 0.98 0.79 0.72
Fingerprints 1565 0.98 0.8 0.74
Fingerprint Count 815 0.96 0.8 0.73

Results of Option 1 Results of Option 2

Results of Option 3 kNN and SVM classification models

These models are used to decide if a test chemical 
has an acidic pKa, basic pKa, or both (amphoteric)



Future Work

• Predict pKa values for all ionizable chemicals in the EPA CompTox 
Chemistry Dashboard (https://comptox.epa.gov) 

• Develop web service for pKa prediction – used for calculation on the 
fly when registering new chemicals

• Integrate web service into online systems: e.g. the CompTox 
Chemistry Dashboard to allow for real time prediction of pKa values 
(https://comptox.epa.gov/dashboard/predictions/index) 

https://comptox.epa.gov/
https://comptox.epa.gov/dashboard/predictions/index


Summary
• 7912 Chemicals With pKa In Water were scrapped from from the public 

Datawarrior Website: http://www.openmolecules.org/datawarrior/
• Automated QSAR data preparation workflow was developed. Three different 

options of automated split into Acidic, Basic, and Combined sub-sets was 
developed and tested. 

• A classification model to determine if a molecule will have an acidic pKa, basic pKa
or both was trained. Will be used for prediction workflow in a dashboard.

• XGBoost models for pKa predictions were trained. MACCS and FP (Morgan’s, 1024 
bins) binary fingerprints gave the best performance with the following best RMSE 
and R-Squared are: basic  pKa: 1.585 and 0.765; acidic pKa: 1.737 and 0.737.

• The DNN exhibited very good performance and generalization characteristics. The 
best performance with the following best RMSE and R-Squared are: basic  pKa: 
1.506 and 0.789; acidic pKa: 1.519 and 0.798. 

• For SVM: the results for the acidic dataset reached an R2 test of 0.76 and for the 
basic dataset, an R2 test of 0.78.

http://www.openmolecules.org/datawarrior/
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