Prediction of pKa from chemical structure using free and open-source tools

Valery Tkachenko³ Alex Korotcov³ Neal Cariello¹ Kamel Mansouri⁴ Antony Williams²

1. Integrated Laboratory Systems, Research Triangle Park, North Carolina, United States

- 2. National Center for Computational Toxicology, US-EPA, North Carolina, United States
- 3. Science Data Software, LLC, Rockville, MD 20850
- 4. ScitoVation, Research Triangle Park, North Carolina, United States

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

pKa What Is It ? Why Is It Important ? How Can We Use It ?

Absorption Of Chemicals Into Cells

Question: Which kind of chemicals will preferentially partition into the plasma membrane, charged or uncharged (ionized or non-ionized)?

- In general, chemicals that make it into the plasma membrane (lipid bilayer) have a better chance of getting into the cell.
- The plasma membrane facing the extracellular space is hydrophobic and lipophilic so will charged or uncharged molecules cross the membrane best?

What Is pKa ?

- pKa is a property that tells us how acidic (or basic) a chemical is. The lower the pKa the stronger the acid.
- The pKa influences the protonation state (charged or uncharged) of the chemical in solution at a given pH value.

Chemistry 101

- K_a is the acid dissociation constant which is a measure of the strength of an acid in solution.
- K_a is an equilibrium constant and pK_a is the -log10 value of K_a, therefore for acids

$$HA \leftrightarrow A^{-} + H^{+}$$
$$K_{A} = \frac{[A^{-}] [H^{+}]}{[HA]}$$
$$pK_{a} = -\log 10 \ \frac{[A^{-}] [H^{+}]}{[HA]}$$

pKa Importance

- pKa values reflect the **ionization state** of a chemical
- Why is this important?
 - Ionization affects lipophilicity, solubility, protein binding and the ability of a chemical to cross the plasma membrane
 - This affects ADMET
- pKa can be used, and is many times required, for
 - Physiologically Based Pharmacokinetic (PBPK) modeling
 - In Vitro To In Vivo Extrapolation (IVIVE)
 - Prediction of tissue:plasma partition coefficients

Using Open Source Software and Data to Build a pKa Prediction Algorithm:

Data Quality, Algorithm Development and Applications

Good Cheminformatics Data Is Hard To Obtain, Especially pKa

- Obtaining high-quality data sets is difficult
- Curation is generally VERY time-consuming without optimized workflows
- Many issues exist with available datasets

An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling^{\$}

K. Mansouri, C. M. Grulke, A. M. Richard, R. S. Judson & A. J. Williams Pages 911-937 | Received 03 Sep 2016, Accepted 24 Oct 2016, Published online: 25 Nov 2016

7912 Chemicals With pKa In Water Are Available From The Datawarrior Website

- This is not a widely-known dataset
- Datawarrior didn't list the references for the data
- We checked ~60 DataWarrior chemicals against literature and the results were good (< 0.3 pKa units difference between DataWarrior and the literature)

the literature)

File Ec	dit Data Chemis	stry Database	e List Macro Help					
Table ♥ ↔	Structure	рКа	Smiles	type	temp	method	basicOrAci	group
1		72	[Br-].O=C(N(CCCCC	a1/apparent	15		basic	NH
2		0.0	O=C(NCC)C=1(C=2()	a1/apparent		spectrophotome	basic	
3		2.7	O=C(NCC)C=1(C=2().	a2/apparent		spectrophotome	basic	
4		6.3	O=[N+]([O-])C1(=CC	a1/apparent	30	spectrophotome	acidic	0-Н
5		9.12	O=C(N(C3(=CC=C(N)	a1/apparent	30	spectrophotome	acidic	0-Н

Dataset Has A Bimodal Distribution

Aggregation method:	Binning column:	рКа
Average	no co	olumns selected
🔵 Sum	Aggregation column	
Row count	Aggregation column:	

QSAR-ready Workflow

QSAR-ready analysis

Full dataset:

- 7904 QSAR-ready structures
- 6245 unique QSAR-ready structures

Acidic dataset

- 3610 QSAR-ready total structures
- 3260 unique QSAR-ready structures

Basic dataset

- 4294 QSAR-ready total structures
- 3680 unique QSAR-ready structures

Modeling Options

To deal with complexity of multiple pKa's for a chemical, three datasets were produced and analyzed:

Option 1: Only structures with a unique pKa value were used.

- Pre-categorized Acidic dataset: 2960
- Pre-categorized Basic dataset: 3158
- Combined: 4897 (no amphoteric)

Option 2: A unique value/structure (average value if

stdDev<2)

- Pre-categorized Acidic dataset: 3095
- Pre-categorized Basic dataset: 3370
- Combined: 5263 (no amphoteric)

Option 3: The entire list of QSAR-ready chemicals was used

with averaging for similar pKa values.

if stdDev =< 1: Average value;</pre>

- if stdDev > 1: strongest pKa (min acidic/max basic)
- Acidic dataset: 3260 unique QSAR-ready structures
- Basic dataset: 3680 unique QSAR-ready structures

Machine Learning And Predicting pKa

• The term Machine Learning was coined in 1959

Machine learning explores the study and construction of algorithms that can learn from and make predictions on data through building a model from sample inputs.

- Each chemical with a pKa produces ~16.5K data points in 12 datasets
- We need to find the best combination of variables (columns) for pKa prediction

basicOrAcidic	рКа	nAcid	ALogP	ALogp2	AMR	apol	naAromAtom	FP5	FP6	FP7	FP8	FP9	FP10	SubFPC1	SubFPC2	SubFPC3
acidic	-6.56	1	0.1005	0.0101	16.4215	22.96034	6	0	0	0	0	0	0	1	1	0
acidic	-1.9	0	0.511	0.261121	8.6916	24.50755	10	0	0	0	0	0	0	0	0	0
acidic	-1.7	0	-0.8807	0.775632	5.8646	19.32276	9	0	0	1	0	0	0	0	0	0
acidic	-1.37	0	-0.4603	0.211876	2.5646	21.08276	10	0	0	0	0	0	0	1	0	0
acidic	-0.9	0	-3.0181	9.108928	41.1246	33.90352	6	1	0	1	0	1	0	1	0	0
acidic	-0.48	1	-2.144	4.596736	9.7839	18.06676	6	0	0	0	0	0	0	1	0	0
acidic	-0.1	0	-0.4603	0.211876	2.5646	12.70917	6	0	0	0	0	0	0	0	0	0
acidic	0.2	0	-0.1759	0.030941	16.215	24.97834	9	0	0	1	0	0	0	0	1	0
acidic	0.31	0	-0.4603	0.211876	2.5646	22.40955	10	0	0	0	0	0	0	3	0	0
		1D/2D de	scriptors					binary fing	gerprints					count sub	structures	

For each one of the data options:

- Split into training (75%) and test (25%)
- Keep similar distribution of pKa values
- Keep similar distribution of acidic and basic pKas for combined datasets
- Descriptors (and fingerprints) are generated for all QSAR-ready structures and can be matched by the generic ID (integers)

A classification model to determine if a molecule will have an <u>acidic pKa</u>, <u>basic pKa</u> or <u>both</u> is trained too.

Training Models

- Create model and estimate performance using only the training dataset
- 5-fold cross-validation was used for training, model performance evaluation and tuning
- Root mean squared error (RMSE) was used as a performance metric for training optimization.
- Choice of machine learning methods:
 - Extreme Gradient Boosting (XGBoost), the advanced traditional (shallow) machine learning (SML) method.
 - Deep Neural Network (DNN), a deep machine learning method (DML).
 - Support Vector Machines (SVM): defines a decision boundary that optimally separates two classes by maximizing the distance between them.

XGBoost training method

- XGBoost is an implementation of gradient boosted decision trees designed for speed and performance.
- Coding was done using R. The caret and xgboost packages were used for all analysis.
- RMSE was a metric to be minimized. 5-fold cross validation was used to train the model using the training dataset
- Highly correlated variables were removed using caret::findCorrelation with a cutoff of 0.90
- Low variance variables were removed using caret::nearZeroVar with a cutoff of 95/5
- The following data subsets were modeled using all binary fingerprints
 - Remove variables that are all 0's (many) and all 1's (few)
 - As above with removal of highly correlated variables
 - As above with removal of near zero variance variables removed

XGBoost training results

- Performance using the basic dataset was substantially better than the acidic dataset
- MACCS and FP (Morgan's, 1024 bins) binary fingerprints generally gave the best performance

Best **RMSE** and **R-Squared** are:

- Basic pKa: 1.585 and 0.765
- Acidic pKa: 1.737 and 0.737

Fingerprint	Option		Acidic Or Basic pKa		RMSE		Test RMSE		R-Squared	Test R-Squared	
fingerprint_maccs 🔹	Option2	Ŧ	basic	Ŧ	RMSE	-	1.585	Ŧ	RSquared 💌	0.765 🔹	
fingerprint_fp	Option1		acidic		RMSE	RMSE		1.737		0.737	
fingerprint_pubchemfp	Option2		basic		RMSE		1.765		RSquared	0.706	
fingerprint_maccs	Option1		acidic		RMSE		1.783		RSquared	0.725	
fingerprint_maccs	Option1		acidic		RMSE 1		1.806		RSquared	0.719	
fingerprint_fp	Option1		basic		RMSE		1.82		RSquared	0.693	
fingerprint_fp	Option2		basic		RMSE		1.82		RSquared	0.692	
fingerprint_maccs	Option2		acidic		RMSE		1.829		RSquared	0.71	
fingerprint_maccs	Option1		basic		RMSE		1.86		RSquared	0.679	
fingerprint_fp	Option3		basic		RMSE		1.863		RSquared	0.686	
fingerprint_fp	Option2		acidic		RMSE		1.87		RSquared	0.695	
fingerprint_maccs	rprint_maccs Option3 acidic		RMSE		1.875		RSquared	0.695			

DNN training method

- The following Deep Neural Network parameters were optimized: optimization algorithm, weight initialization, hidden layers activation function, L2 regularization, dropout regularization, number of hidden layers and nodes in the hidden layers, and learning rate. Keras (https://keras.io/) and Tensorflow (www.tensorflow.org) were used for deep learning models training.
- The final DNN: 3 hidden layers of 256 nodes each followed by a batch normalization and a drop out layer to generalize trained models.
- 5-fold cross validation on training data using mean square error as a loss function with earlier training stopping base on validation loss, thus further improving of the models' generalization.

DNN training results

- Performance using the acidic dataset was substantially better than the basic dataset, and slightly outperforming XGBoost models
- Combination of RDKit Descriptors+MACCS+FCFC(512 bins, radius 3)+Avalon(512 bins), PADEL continues descriptors+MACCS, and MACCS or MACCS+FP (Morgan's, 1024 bins) gave the best DNN models performance

•	Option	Ŧ	Acidic, or Basic pK 💌	Test RMSE	ΨÌ	Test R-Squar 🔻		
	option 1		basic	1.5	06	0.789		
	option 1		acidic	1.5	19	0.798		
	option 2		acidic	1.5	19	0.798		
	option 1		acidic	1.5	38	0.793		
	option 1		acidic	1.5	42	0.792		
	option 2		acidic	1.5	43	0.792		
	option 1		basic	1.5	80	0.768		
	option 1		acidic	1.5	81	0.781		
	option 2		basic	1.5	82	0.763		
	option 1		acidic	1.5	90	0.779		
	option 2		basic	1.5	91	0.760		
	option 2		acidic	1.6	02	0.776		
	option 1		acidic	1.6	10	0.773		
	option 2		acidic	1.6	11	0.773		
	option 1		acidic	1.6	20	0.771		
	option 1		acidic	1.6	38	0.766		
	option 1		acidic	1.6	39	0.765		
	option 1		acidic	1.6	39	0.765		
	option 1		acidic	1.6	42	0.764		
	option 2		basic	1.6	43	0.744		
	option 1		combined	1.6	45	0.737		
		 Option option 1 option 2 option 1 option 1 option 1 option 2 option 1 option 2 option 1 option 2 option 2 option 1 option 2 option 1 option 2 option 1 	Option option 1 option 1 option 2 option 1 option 1 option 1 option 2 option 1 option 2 option 1 option 2 option 1 option 2 option 1 option 1	Option Acidic, or Basic pK option 1 basic option 1 acidic option 2 acidic option 1 basic option 1 acidic option 1 acidic option 2 basic option 1 acidic option 2 basic option 1 acidic option 1 acidic </td <td>OptionAcidic, or Basic pKTest RMSEoption 1basic1.5option 1acidic1.5option 2acidic1.5option 1acidic1.5option 1acidic1.5option 1acidic1.5option 1acidic1.5option 1acidic1.5option 1acidic1.5option 1acidic1.5option 1basic1.5option 1acidic1.5option 2basic1.5option 1acidic1.5option 2basic1.5option 1acidic1.6option 1acidic1.6opt</td> <td>OptionAcidic, or Basic pKTest RMSEIoption 1basic1.506option 1acidic1.519option 2acidic1.519option 1acidic1.538option 1acidic1.542option 2acidic1.543option 1basic1.543option 1basic1.543option 1basic1.580option 1basic1.580option 1acidic1.581option 2basic1.581option 2basic1.590option 1acidic1.602option 2basic1.610option 1acidic1.610option 1acidic1.610option 1acidic1.638option 1acidic1.639option 1acidic1.639option 1acidic1.642option 1acidic1.643option 1acidic1.643option 1acidic1.643option 1acidic1.643option 1acidic1.643option 1acidic1.643option 1acidic1.643option 1acidic1.643option 1acidic1.643option 1combined1.645</td>	OptionAcidic, or Basic pKTest RMSEoption 1basic1.5option 1acidic1.5option 2acidic1.5option 1acidic1.5option 1acidic1.5option 1acidic1.5option 1acidic1.5option 1acidic1.5option 1acidic1.5option 1acidic1.5option 1basic1.5option 1acidic1.5option 2basic1.5option 1acidic1.5option 2basic1.5option 1acidic1.6option 1acidic1.6opt	OptionAcidic, or Basic pKTest RMSEIoption 1basic1.506option 1acidic1.519option 2acidic1.519option 1acidic1.538option 1acidic1.542option 2acidic1.543option 1basic1.543option 1basic1.543option 1basic1.580option 1basic1.580option 1acidic1.581option 2basic1.581option 2basic1.590option 1acidic1.602option 2basic1.610option 1acidic1.610option 1acidic1.610option 1acidic1.638option 1acidic1.639option 1acidic1.639option 1acidic1.642option 1acidic1.643option 1acidic1.643option 1acidic1.643option 1acidic1.643option 1acidic1.643option 1acidic1.643option 1acidic1.643option 1acidic1.643option 1acidic1.643option 1combined1.645		

Best test **RMSE** and **R-Squared** are:

- Basic pKa: 1.506 and 0.789
- Acidic pKa: 1.519 and 0.798

SVM training method

- Used the free and open source package LibSVM3.1 (Chang and Lin 2001).
- Originally designed to solve classification problems then generalized to fit continuous models as well.
- Its algorithm defines a decision boundary that optimally separates two classes by maximizing the distance between them.
- The decision boundary can be described as an hyperplane that is expressed in terms of a linear combination of functions parametrized by support vectors, which consist in a subset of training molecules.
- SVM algorithms search for the support vectors that give the best separating hyperplane using a kernel function

SVM kernel function maximizing the margin between the classes.

SVM training results

Results of Option 1

Results of Option 2

		Train		5f CV		Test				Train		5f CV		Test	
	variables	R2	RMSE	Q2	RMSE	R2	RMSE		variables	R2	RMSE	Q2	RMSE	R2	RMSE
Acidic								Acidic							
Continuous	870	0.96	0.65	0.58	2.18	0.68	1.91	Continuous	913	0.98	0.49	0.61	2.1	0.69	1.89
Fingerprint	1548	0.91	1	0.64	2.02	0.71	1.81	Fingerprint	1552	0.9	1.05	0.63	2.04	0.69	1.87
Fingerprint Count	556	0.9	1.1	0.6	2.16	0.65	2.01	Fingerprint Count	589	0.9	1.09	0.59	2.17	0.65	1.98
Fingerprint – FP Count	2104	0.94	0.8	0.64	2.02	0.72	1.8	Fingerprint – FP Count	2141	0.94	0.85	0.63	2.05	0.71	1.81
Fingerprint - Continuous	2418	0.99	0.11	0.67	1.92	0.76	1.65	Basic							
Basic								Continuous	913	0.97	0.52	0.67	1.88	0.66	1.88
Continuous	876	0.96	0.64	0.65	1.94	0.65	1.93	Fingerprint	1534	0.9	1.02	0.68	1.83	0.75	1.63
Fingerprint	1535	0.91	0.99	0.69	1.84	0.69	1.83	Fingerprint Count	551	0.9	1.02	0.67	1.87	0.73	1.69
Fingerprint Count	544	0.9	1.05	0.68	1.88	0.69	1.83	Fingerprint – FP Count	2085	0.93	0.88	0.71	1.76	0.78	1.53
Fingerprint – FP Count	2079	0.93	0.87	0.72	1.73	0.7	1.8								

Results of Option 3

		Train		5f CV		Test	
	variables	R2	RMSE	Q2	RMSE	R2	RMSE
Acidic							
Continuous	510	0.96	0.66	0.59	2.17	0.57	2.2
Fingerprint	1580	0.91	1	0.64	2.01	0.68	1.91
Fingerprint Count	815	0.88	1.19	0.6	2.14	0.61	2.11
Fingerprint – FP Count	2395	0.93	0.86	0.65	1.99	0.69	1.87
Basic							
Continuous	510	0.95	0.75	0.61	2.01	0.6	2.09
Fingerprint	1543	0.91	0.94	0.72	1.72	0.67	1.9
Fingerprint Count	815	0.89	1.06	0.69	1.79	0.69	1.84
Fingerprint – FP Count	2358	0.93	0.84	0.73	1.67	0.71	1.79

kNN and SVM classification models

		Train	5f CV	Test
kNN	variables	BA	BA	BA
Continuous	15	0.8	0.8	0.77
SVM				
Continuous	15	0.92	0.8	0.73
Continuous	511	0.98	0.79	0.72
Fingerprints	1565	0.98	0.8	0.74
Fingerprint Count	815	0.96	0.8	0.73

These models are used to decide if a test chemical has an acidic pKa, basic pKa, or both (amphoteric)

Future Work

- Predict pKa values for all ionizable chemicals in the EPA CompTox Chemistry Dashboard (<u>https://comptox.epa.gov</u>)
- Develop web service for pKa prediction used for calculation on the fly when registering new chemicals
- Integrate web service into online systems: e.g. the CompTox Chemistry Dashboard to allow for real time prediction of pKa values (<u>https://comptox.epa.gov/dashboard/predictions/index</u>)

Summary

- 7912 Chemicals With pKa In Water were scrapped from from the public Datawarrior Website: <u>http://www.openmolecules.org/datawarrior/</u>
- Automated QSAR data preparation workflow was developed. Three different options of automated split into Acidic, Basic, and Combined sub-sets was developed and tested.
- A classification model to determine if a molecule will have an acidic pKa, basic pKa or both was trained. Will be used for prediction workflow in a dashboard.
- XGBoost models for pKa predictions were trained. MACCS and FP (Morgan's, 1024 bins) binary fingerprints gave the best performance with the following best RMSE and R-Squared are: basic pKa: 1.585 and 0.765; acidic pKa: 1.737 and 0.737.
- The DNN exhibited very good performance and generalization characteristics. The best performance with the following best RMSE and R-Squared are: basic pKa: 1.506 and 0.789; acidic pKa: 1.519 and 0.798.
- For SVM: the results for the acidic dataset reached an R2 test of 0.76 and for the basic dataset, an R2 test of 0.78.