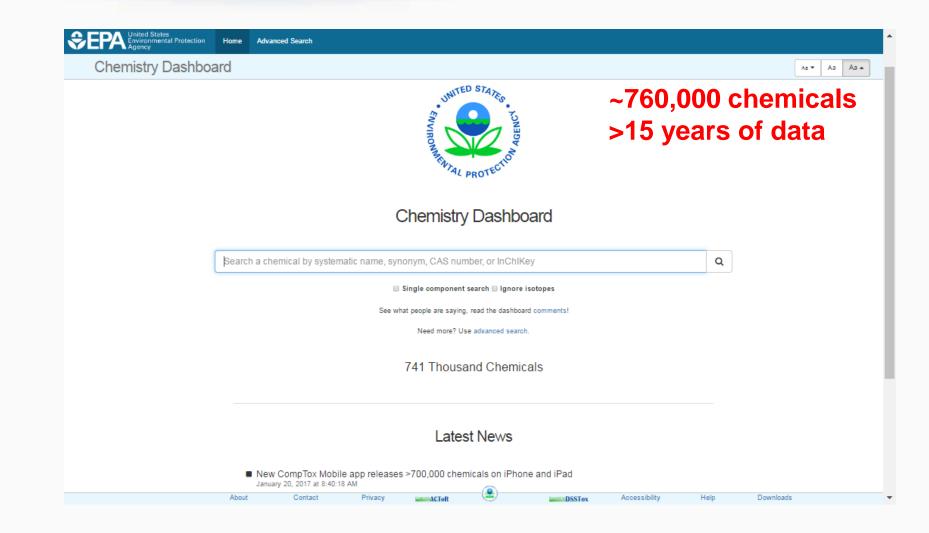
Real-time prediction of physicochemical & toxicological endpoints using the webbased CompTox Chemistry Dashboard

Antony Williams¹, Todd Martin², Valery Tkachenko³, Chris Grulke¹, Kamel Mansouri⁴ and Jeff Edwards¹

National Center for Computational Toxicology, U.S. Environmental Protection Agency, RTP, NC
 Oak Ridge Institute of Science and Education (ORISE) Research Participant, Research Triangle Park, NC
 Science Data Experts, MD, USA
 Scitovation, RTP-NC

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

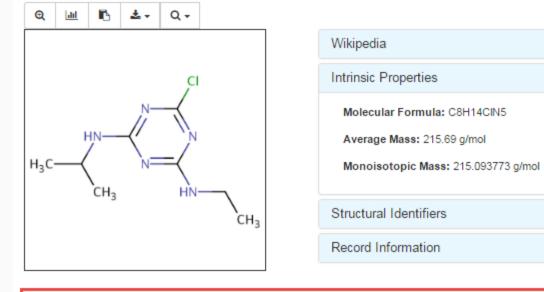
August 2017 ACS Fall Meeting, Washington, DC


The CompTox Chemistry Dashboard

A publicly accessible website delivering access:

- ~760,000 chemicals with related property data
- Experimental and predicted physicochemical property data
- Integration to "biological assay data" for 1000s of chemicals
- Information regarding consumer products containing chemicals
- Links to other agency websites and public data resources
- "Literature" searches for chemicals using public resources
- "Batch searching" for thousands of chemicals
- DOWNLOADABLE Open Data for reuse and repurposing
- In progress : public web services & real time prediction

Comptox Chemistry Dashboard https://comptox.epa.gov



Chemical Page

Atrazine 1912-24-9 | DTXSID9020112 0

Searched by Approved Name: Found 1 result for 'atrazine'.

Wikipedia	
Intrinsic Properties	
Molecular Formula: C8H14CIN5 Average Mass: 215.69 g/mol Monoisotopic Mass: 215.093773 g/mol	Q Find All Chemicals
Structural Identifiers	
Record Information	

Chemical Properties	Synonyms	External Links	Product Composition	Bioassays	Exposure	Analytical	Literature	Comments

Prediction Algorithms

Multiple prediction algorithms used – OPERA, TEST, NICEATM, EPI Suite

LogP: Octanol-Water	Property	Select/Deselect		Me	dian		Range	Unit
Water Solubility	Property	✓ LogP: Octanol-W ✓ Water Solubility	/ater	Experimental	Predicted	Experimental	Predicted	
Density	LogP: Octanol-Water	 Density 		3.32	3.24	3.32	2.40 to 3.73	-
2 on any	Water Solubility	Melting Point		5.26e-04	1.58e-03	5.26e-04	5.70e-04 to 3.68e-03	mol/L
Melting Point	Density	 Boiling Point Surface Tension 			1.14	-	-	g/cm^3
Boiling Point	Melting Point	Vapor Pressure		156	144	153 to 158	132 to 157	°C
	Boiling Point	✓ LogKoa: Octanol	-Air	200	349	200	334 to 364	°C
Surface Tension	Surface Tension	In Henry's Law In the second seco			46.0	-	•	dyn/cm
Vapor Pressure	Vapor Pressure	 Index of Refractivity Molar Refractivity 			2.52e-07	-	7.01e-08 to 5.34e-07	mmHg
	LogKoa: Octanol-Air	 pKa Acidic Appar 			8.38	-	-	-
LogKoa: Octanol-Air	Henry's Law	Molar Volume			6.96e-07	-	-	atm-m3/mole
Henry's Law	Index of Refraction	Polarizability			1.60	-	-	-
nenry s Law	Molar Refractivity	Downl	oad		68.2	-	-	cm^3
Index of Refraction	pKa Acidic Apparent	-	10.3 (1)	-	10.3	-	-	-
	Molar Volume	-	200 (1)	-	200	-	-	cm^3
Molar Refractivity	Polarizability	-	27.0 (1)	-	27.0	-	-	Å^3

pKa Acidic Apparent

Chemical Properties

Data Distribution

	Α	В	С	D	E	F	G	H
1	Property	Avera	ige	Med	ian		Range	Unit
2		Experimental	Predicted	Experimental	Predicted	Experimental	Predicted	
3	LogP: Octanol-Water	3.32 (1)	3.24 (4)	3.32	3.24	3.32	2.40 to 3.73	-
4	Water Solubility	5.26e-04 (1)	1.58e-03 (4)	0.000526	0.00158	0.000526	5.70e-04 to 3.68e-03	mol/L
5	Density	-	1.14 (1)	-	1.14	-	-	g/cm^3
6	Melting Point	155 (7)	144 (3)	156	144	153 to 158	132 to 157	°C
7	Boiling Point	200 (1)	349 (3)	200	349	200	334 to 364	°C
8	Surface Tension	-	46.0 (1)	-	46	-	-	dyn/cm
9	Vapor Pressure	-	2.52e-07 (3)	-	0.00000252	-	7.01e-08 to 5.34e-07	mmHg
10	LogKoa: Octanol-Air	-	8.38 (1)	-	8.38	-	-	-
11	Henry's Law	-	6.96e-07 (1)	-	0.00000696	-	-	atm-m3/mole
12	Index of Refraction	-	1.60 (1)	-	1.6	-	-	-
13	Molar Refractivity	-	68.2 (1)	-	68.2	-	-	cm^3
14	pKa Acidic Apparent	-	10.3 (1)	-	10.3	-	-	-
15	Molar Volume	-	200 (1)	-	200	-	-	cm^3
16	Polarizability	-	27.0 (1)	-	27	-	-	Å^3
17								

Developing "OPERA Models"

- Our approach to modeling:
 - Obtain high quality training sets
 - Apply appropriate modeling approaches
 - Validate performance of models
 - Define the applicability domain and model limitations
 - Use models to predict properties across our full datasets
 - Release as Open Data and Open Models

PHYSPROP Data Files

http://esc.syrres.com/interkow/EpiSuiteData_ISIS_SDF.htm

EPI Suite Data - ISIS/Base & SDF

The downloaded files are provided in "zip" format ... the downloaded file must be "un-zipped" with common utility programs such as <u>WinZip</u>.

... Updated September 15, 2010

Basic Instructions:

(1) Download the zip file(2) Un-Zip the file

<u>NOTE</u> ... zipped files extract to Folders containing the individual data files ... Folders named EPI_ISIS_Data and EPI_SDF_Data

Substructure Searching Files:

ISISTM/Base & SD Files of the EPI Suite Program Experimental Data Files are now available ... The ISISTM/Base files require the commercial program for use ... The SD Files can be imported into other commercial chemical structure programs (such as ChemFinder).

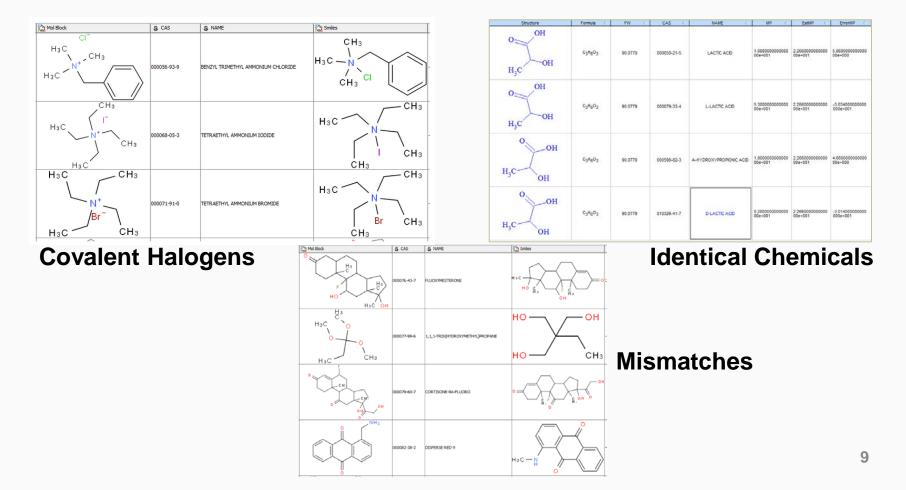
... Click here to download EPI_ISIS_Data.zip ... (about 11 MB)

... Click here to download EPI_SDF_Data.zip ... (about 10 MB)

NOTE ... EPI Suite Data Files (some in Excel, Text, Word format) available at:

http://esc.syrres.com/interkow/EpiSuiteData.htm

Available Properties



- Solubility
- Melting Point
- Boiling Point
- LogP (Octanol-water partition coefficient)
- Atmospheric Hydroxylation Rate
- LogBCF (Bioconcentration Factor)
- Biodegradation Half-life
- Henry's Law Constant
- Fish Biotransformation Half-life
- LogKOA (Octanol/Air Partition Coefficient)
- LogKOC (Soil Adsorption Coefficient)
- Vapor Pressure

Curating Public Data

Public data should be curated prior to modeling

LogP dataset: 15,809 structures

- CAS Checksum: 12163 valid, 3646 invalid (>23%)
- Invalid names: 555
- Invalid SMILES 133
- Valence errors: 322 Molfile, 3782 SMILES (>24%)
- Duplicates check:
 - -31 DUPLICATE MOLFILES
 - -626 DUPLICATE SMILES
 - -531 DUPLICATE NAMES
- SMILES vs. Molfiles (structure check)
 - -1279 differ in stereochemistry (~8%)
 - -362 "Covalent Halogens"
 - -191 differ as tautomers
 - -436 are different compounds (~3%)

Workflow Details and Data

lournal

SAR and QSAR in Environmental Research >

Articles

Volume 27, 2016 - Issue 11: 17th International Conference on QSAR in Environmental and Health Sciences (QSAR 2016) - Part II. Guest Editors: C.G. Barber and G.J. Myatt

Enter keywords, authors, DOI etc.

258 Views 4 CrossRef citations 16 Altmetric

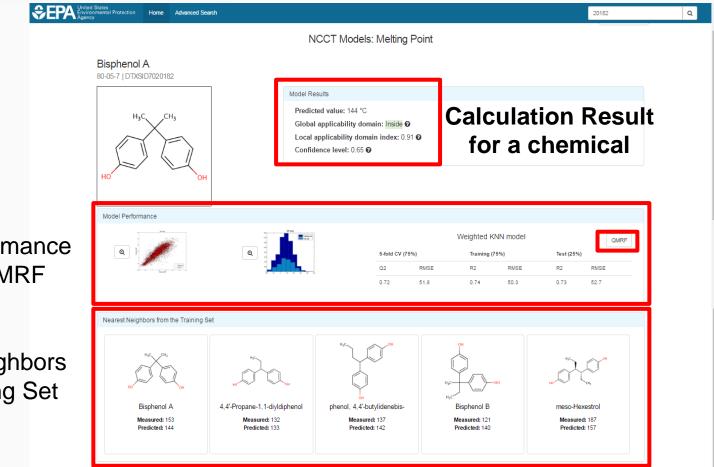
An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling^{\$}

Check for updates

K. Mansouri, C. M. Grulke, A. M. Richard, R. S. Judson & A. J. Williams 🔤 Pages 911-937 | Received 03 Sep 2016, Accepted 24 Oct 2016, Published online: 25 Nov 2016

http://dx.doi.org/10.1080/1062936X.2016.1253611 66 Download citation

OPERA Models: https://github.com/kmansouri/OPERA


OPERA Model Predictions

Summary						
				Melting Po	bint	
LogP: Octanol-Water				Average	Median	Range
Water Solubility		Experimental		155 (7)	156	153 to 158
Water Solubility		Predicted		139 (4)	139	125 to 157
Density	Download as:					
Flash Point	Download as.	TSV Excel	SDF			
Hash Forn				Experimen	tal	
Melting Point						EEN – Inside
Boiling Point	Source			Res		
Boning Point	Jean-Claude B	Jean-Claude Bradley Open Melting Point Dataset			° Applic	cability Domain
Surface Tension	Jean-Claude B	radley Open Meltin	g Point Dataset	158	°C	
Thermal Conductivity	тсі			158	°C	PERA Model Report
mermanoonductivity	Merck Millipore			158	°C	
Vapor Pressure	· · · ·				C	PERA Model Report
Viscosity	Alfa Aesar			158	°C	
(1000ky	Alfa Aesar			156	°C	
LogKoa: Octanol-Air	PhysPropNCC	т		153	°C	
Henry's Law				Predicted	d	
	Source			Res	ult Calculation Details	QMRF
Index of Refraction						
Molar Refractivity	EPISUITE			132	°C Not Available	Not Available
Notar Nell Bouvity	NICEATM			157	°C Not Available	Available
Molar Volume	TEST			125	°C Not Available	Not Available
Polerizability	OPERA			144	°C OBERA Medal Barr	Available
Polarizability	U.S. C.O.				OPERA Model Repo	ort

Modeling Details

Model Performance with full QMRF

Nearest Neighbors from Training Set

QSAR Modeling Reporting Format

🔁 LogP (0000002).pdf - Adobe Acrobat Pro File Edit View Window Help	
🔁 Create 🗸 📑 📄 🖨 🖂 🕸 🕫 🕫 🕼 🕼 🖹	Customize 💌
(a) (a) 1 / 11 [b] (b) (a)	Tools Fill & Sign Comme
Bookmarks	
 I.QSAR identifier I.QSAR identifier (ittle) I.LQSAR identifier (ittle) I.QSAR identifier (ittle) I.QSAR identifier (ittle) I.LQSAR identifier (ittle) I.LQRAR identifier (ittle) <	QMRF identifier (JRC Inventory): To be entered by JRC QMRF Title:LogP: Octanol-water partition coefficient prediction from the NCCT Models Suite. Printing Date:Apr 25, 2016 LQSAR identifier LOSAR identifier LOSER identifier LOSER identifier LOSER identifier LOSER identifier LOSER identifier LOSE: No related models LOSE: No related models NCCT_models V1.02 Suite of QSAR models to predict physico-chemical properties and environmen
 4.1.Type of model 4.2.Explicit algorithm 4.3.Descriptors in the model 4.4.Descriptor selection 4.5.Algorithm and descriptor generation 4.6.Software name and version for descriptor generation 4.7.Chemicals/Descriptors ratio 	PaDEL descriptors V2.21 Open source software to calculate molecular descriptors and fingerprints. Chun Wei Yap (phayapc@nus.edu.sg) http://padel.nus.edu.sg/software/padeldescriptor
5.Defining the applicability domain - OECD Principle 3	MATLAB
5.1.Description of the applicability domain of the model	MATrix LABoratory is a multi-paradigm numerical computing environment and fourth-generation

Downloadable Data File

https://comptox.epa.gov/dashboard/downloads

Downloads

DSSTox Identifier to PubChem Identifier Mapping File

The DSSTox to PubChem Identifiers mapping file is in TXT format and includes the PubChem SID, PubChem CID and DSSTox substance identifier (DTXSID). image

DSSTox identifiers mapped to CAS Numbers and Names File

The DSSTox Identifiers file is in Excel format and includes the CAS Number, DSSTox substance identifier (DTXSID) and the Preferred Name. image

DSSTox Mapping File

The DSSTOX mapping file contains mappings between the DSSTox substance identifier (DTXSID) and the associated InChI String and InChI Key. The file is made available as a Tab Separated Value (TSV) file with each entry represented as shown:

DTXSID7020001 InChI=1S/C11H9N3/c12-10-6-5-8-7-3-1-2-4-9(7)13-11(8)14-10/h1-6H,(H3,12,13,14) FJTNLJLPLJDTRM-UHFFFAOYSA-N

DSSTox Predicted Property Data

A number of property prediction models were developed using curated data as described in the publication "An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling". These property prediction models include logP, water solubility, bioconcentration factor and many others. The files include DTXSIDs, names and the predicted properties where possible. The models cannot predict properties for all chemicals contained in the database (for example, inorganics, organometallics and elements cannot be handled).

DSSTox Synonyms File

The DSSTox synonyms file is in SDF format and includes the DSSTox substance identifier (DTXSID). The preferred name, the CAS Registry Number and the list of associated synonyms for over 720,000 chemicals. In order to view an SDF file you will need to have access to the appropriate piece of software to open an SDF files. Examples include ChemAxon JChem, ACD/ChemFolder or ChemDraw.

Posted: 11/14/2016

Posted: 11/14/2016

Posted: 12/14/2016

Posted: 12/14/2016

HUSIEU, 12/14/2016

Posted: 12/14/2016

OPERA on GitHub

This repository Search	Pull	requests Issues Ma	arketplace Gist		🖍 +• 🌋
kmansouri / OPERA				O Unwatch ▼ 1 ★ Uns	star 1 😵 Fork (
♦ Code ① Issues 0 ⑦	Pull requests 0	ojects 0 🗉 Wiki	Insights 🗸		
ommand line application prov hysicochemical properties and			oplicability dom	ain and accuracy assessme	nt for
36 commits	₿ 1 branch	🛇 0 releases		1 contributor	a <u>t</u> a MIT
Branch: master New pull reques	st		Create r	new file Upload files Find file	Clone or download
🤶 kmansouri committed on GitHu	Ib OPERA 1.2 Windows			Latest co	mmit 731deaf on May 1
) Icon.png		OPERA 1.2 icon			3 months ag
		Initial commit			9 months ag
Logo.png		Added logo and icon			9 months ag
Matlab_Source_code.tar.gz		OPERA 1.2 MATLAB so	urce code		3 months ag
		OPERA 1.2 MATLAB so OPERA 1.2 Linux	urce code		3 months ag 3 months ag
 Matlab_Source_code.tar.gz OPERA_CLi_Linux.tar.gz OPERA_CPP_library.tar.gz 					-

https://github.com/kmansouri/OPERA.git

OPERA Standalone application:

Input:

- MATLAB .mat file, an ASCII file with only a matrix of variables
- SDF file or SMILES strings of QSARready structures. In this case the program will calculate PaDEL 2D descriptors and make the predictions.
- The program will extract the molecules names from the input csv or SDF (or assign arbitrary names if not) as IDs for the predictions.

OPERA Standalone application:

Output:

- Depending on the extension, the can be text file or csv with
 - A list of molecules IDs and predictions
 - Applicability domain
 - Accuracy of the prediction
 - Similarity index to the 5 nearest neighbors
 - The 5 nearest neighbors from the training set: Exp. value, Prediction, InChI key

https://github.com/kmansouri/OPERA.git

EPI Suite Models

https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface

Ŷ	EPA	
	United States	
	Environmental	Protection
	Agency	

		Predicted	
Source	Result	Calculation Details	QMRF
EPISUITE	364 °C	Not Available	Not Available
NICEATM	350 °C	Not Available	Available
ACD/Labs	401 °C	Not Available	Not Available
TEST	360 °C	Not Available	Not Available
OPERA	343 °C	OPERA Model Report	Available

EPI Suite™-Estimation Program Interface

On this page:

- What is EPI SuiteTM?
- How are EPI SuiteTM estimates used?
- Individual models in EPI Suite TM
- <u>Peer Review of EPI Suite</u>TM
- <u>Citing EPI Suite</u>TM
- <u>Hardware and software requirements</u>
- <u>Download and Install EPI SuiteTM</u>
- <u>Copyright notice, terms and coditions of use</u>

What is EPI Suite ™?

The EPI (Estimation Programs Interface) Suite™ is a Windows®-based suite of physical/chemical property and environmental fate estimation programs developed by EPA's and Syracuse Research Corp. (SRC).

EPI Suite^{Tw} uses a single input to run the following estimation programs: KOWWIN^{Tw}, AOPWIN^{Tw}, HENRYWIN^{Tw}, MPBPWIN^{Tw}, BIOWIN^{Tw}, BioHCwin, KOCWIN^{Tw}, WSKOWWIN^{Tw}, WATERNT^{Tw}, BCFBAF^{Tw}, HYDROWIN^{Tw}, KOAWIN and AEROWIN^{Tw}, and the fate models WVOLWIN^{Tw}, STPWIN^{Tw} and LEV3EPI^{Tw}, ECOSAR^{Tw}, which estimates ecotoxicity, is also included in EPI Suite^{Tw}.

Predicted

Now Testing EPI Suite Services

Enter SMILES string to test EPI Web Services.

<pre>XML response: <?xml version='1.0' encoding='UTF-8'?> <s:envelope e<br="" http:="" schemas.xmlsoap.org="" soap="" xmlns:s="http://schemas.xmlsoap.org/soap/e <S:Body></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr><tr><td>S:Envelope
xmlns:S="><s:body> <ns2:getkowresultresponse xmlns:ns2="http://epiwebse <return><td></td><td></td><td></td><td></td><td></td><td></td><td></td></return></ns2:getkowresultresponse </s:body></s:envelope></pre>							
S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/e <s:body> <ns2:getkowresultresponse xmlns:ns2="http://epiwebse <return></return></ns2:getkowresultresponse </s:body>							
.wnlns:S="http://schemas.xmlsoap.org/soap/e <s:body> <ns2:getkowresultresponse xmlns:ns2="http://epiwebse <return></return></ns2:getkowresultresponse </s:body>							
<s:body> <ns2:getkowresultresponse xmlns:ns2="http://epiwebse <return></return></ns2:getkowresultresponse </s:body>							
<pre>xmlns:ns2="http://epiwebse <return></return></pre>	ervices.srcinc.com/">						
<return></return>	ervices.srcinc.com/">						
<logkow>2.82<td>Kow></td><td></td><td></td><td></td><td></td><td></td><td></td></logkow>	Kow>						
	al>2.609999895095825 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
	rences>HANSCH,C ET AL. <td>erimentalReference</td> <td>es></td> <td></td> <td></td> <td></td> <td></td>	erimentalReference	es>				
<experimentalrefer< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></experimentalrefer<>							
	="http://www.w3.org/2001/XMI	LSchema-instance"	xsi:nil="true"/>				
	ntalReferences						
	mlns:xsi="http://www.w3.org/	/2001/XMLSchema-ir	nstance" xsi:nil="	true"/>			
<	ExperimentalReferences			- 1 11 - He H /s			
	<pre>xmlns:xsi="http://www <experimentalreference< pre=""></experimentalreference<></pre>	-	Schema-instance x	s1:n11= true />			
			2001/XWLSchemalins	tance" xsi:nil="true"/>			
			57422 <td></td> <td></td> <td></td> <td></td>				
		•	N5 <td>•</td> <td></td> <td></td> <td></td>	•			
	<factors></factors>						
		ueType>Fragment \</td <td>ValueType></td> <td></td> <td></td> <td></td> <td></td>	ValueType>				
			/NumberOfFragments	>			
	<frag< td=""><td>_ gmentDescription≻-</td><td>-CH3 [aliphatic</td><td>carbon]</td><td><td>n≻</td><td></td></td></frag<>	_ gmentDescription≻-	-CH3 [aliphatic	carbon]	<td>n≻</td> <td></td>	n≻	
	<coet< td=""><td>fficient>0.5472999</td><td>9811172485<td>cient></td><td></td><td></td><td></td></td></coet<>	fficient>0.5472999	9811172485 <td>cient></td> <td></td> <td></td> <td></td>	cient>			
	<tota< td=""><td>alCoefficient>1.64</td><td>418999433517456<td>otalCoefficient></td><td></td><td></td><td></td></td></tota<>	alCoefficient>1.64	418999433517456 <td>otalCoefficient></td> <td></td> <td></td> <td></td>	otalCoefficient>			
	<factors></factors>						
		ueType>Fragment \</td <td></td> <td></td> <td></td> <td></td> <td></td>					
		-	/NumberOfFragments				
			-CH2- [aliphatic	-	<td>n≻</td> <td></td>	n≻	
			01325607391100013256073 <td></td> <td></td> <td></td> <td></td>				

NICEATM Models logP, WS, BP, MP, VP, BCF

		Predicted	
Source	Result	Calculation Details	QMRF
EPISUITE	364 °C	Not Available	Not Available
NICEATM	350 °C	Not Available	Available
ACD/Labs	401 °C	Not Available	Not Available
TEST	360 °C	Not Available	Not Available
OPERA	343 °C	OPERA Model Report	Available

JOURNAL OF CHEMICAL INFORMATION AND MODELING

T.E.S.T Models logP, WS, BP, MP, VP, BCF

		Predicted	
Source	Result	Calculation Details	QMRF
EPISUITE	364 °C	Not Available	Not Available
NICEATM	350 °C	Not Available	Available
ACD/Labs	401 °C	Not Available	Not Available
TEST	360 °C	Not Available	Not Available
OPERA	343 °C	OPERA Model Report	Available

Sepan United States Environmental Protection Agency

Toxicity Estimation Software Tool (TEST)

On this page:

- OSAR Methodologies
- What's New in Version 4.2.1?
- Prior Version History
- <u>System Requirements</u>
- Installation Instructions
- <u>Publications</u>
- <u>Get Email Alerts</u>

The Toxicity Estimation Software Tool (TEST) was developed to allow users to easily estimate the toxicity of chemicals using Quantitative Structure Activity Relationships (QSARs) methodologies. QSARs are mathematical models used to predict measures of toxicity from the physical characteristics of the structure of chemicals (known as molecular descriptors). Simple QSAR models calculate the toxicity of chemicals using a simple linear function of molecular descriptors:

Ask a Technical Expert

Got a question about our research model? Want to give us feedback? Contact a technical expert about <u>TEST</u>.

Batch Predictions for Chemicals

I want OPERA predictions for a set of chemicals – I have their CASRNs (or names)

Batch Predictions for Chemicals

Batch Search @

Please enter one identifier per line

Select Input Type(s)

Chemical Name

- CAS-RN
- InChlKey
- DSSTox Substance ID
- 🔲 Exact Molecular Formula 🔞

Enter Identifiers to Search

143-50-0	
2385-85-5	
86-50-0	
56-38-2	
121-75-5	
57-74-9	
91-94-1	
86-30-6	
92-87-5	*
122-88-7	

Display All Chemicals

Download Chemical Data

Select Output Format

Download as...

v

Customize Results

Select All

Chemical Identifiers

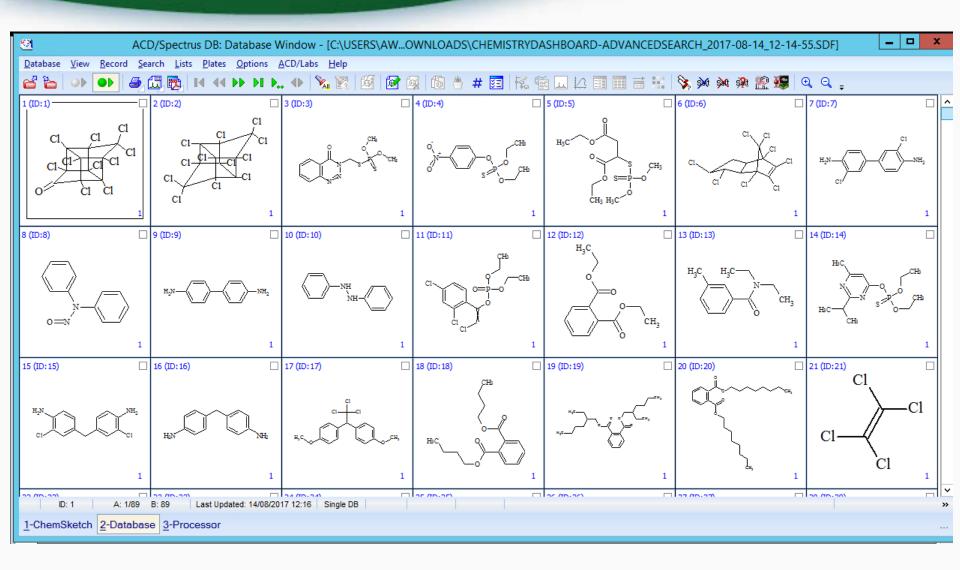
- Chemical Name DTXSID CAS-RN
- InChlKey
- IUPAC Name

Structures

Mol File
SMILES
InChl String

Intrinsic And Predicted Properties

- Molecular Formula
- Average Mass
- Monoisotopic Mass
- OPERA Model Predictions
- TEST Model Predictions


Excel Download

F	ile Ho	ome In	sert Page	Layout	Formulas Dat	ta Review	View Q	Tell me what you	ı want to do			
Pas	Cut	ру т	Arial B I U	• 10		= _ ≫. = = = 	🛱 Wrap T		eneral	0 .00 →.00 Condition	nal Format as Cel	I Insert De
		mat Painter					_			Formattin		5 * *
	Clipboar	rd r	Fail .	Font	E.	Alig	nment	Ta l	Number	Es l	Styles	C
J1(J10 \checkmark : $\times \checkmark f_{\star}$ 27.0573											
						_	_					
	A	B	С	D	E	F	G	Н			K	L
	INPUT	DTXSID	PREFERRE		INCHI KEY	IUPAC NAME					(BP °C OPERA P	
		DTXSID10				1,1a,3,3a,4,5,5,5				913.927 830.325		9.25708e-0(7. 0.00066778 64
						1,1a,2,2,3,3a,4,5			15029.6			
			Azinphos-m			O,O-Dimethyl S-			9.2644	124.108		1.00106e-070.
						O,O-Diethyl O-(4				4.30449		3.17774e-070.
						Diethyl 2-[(dimeth				25.141		3.20069e-0(1.)
	57-74-9					1,2,4,5,6,7,8,8-0			15500.6	106.951		0.00015982 13
			23,3'-Dichlor			3,3'-Dichloro[1,1'-			154.496	31.7767		4.07023e-0{0.
			2 N-Nitrosodi			N,N-DiphenyInitro			36.9494			8.01245e-070.
	92-87-5					[1,1'-Biphenyl]-4,				27.0573		1.06664e-070.
			1,2-Dipheny			1,2-Diphenylhydr				31.9084		6.67506e-0{0.
			Chlorfenving			2-Chloro-1-(2,4-di			73.8391	3.8167		3.32968e-0(0.1
			Diethyl phth			Diethyl benzene-			7.15782	4.31107		2.38023e-0{0.1
		DTXSID20				N,N-Diethyl-3-me			3.9293	3.35701		1.44818e-0(0.1
						O,O-Diethyl O-[6			69.9796	4.76627		1.44199e-0(1.
16	101-14-4	DTXSID50	24,4'-Methyle	101-14-4	IBOFVQJTBBU	4,4'-Methylenebis	NC1=C(CI)C	1.41975e-11	180.611	31.9094	371.57	4.10724e-0{0.

SDF Download

SDF Download

CEPA United States Environmental Protection Agency	n
---	---

ACD/Spectrus DB: Database Window - [C:\USERS\AWOWNLOADS\CHEMISTRYDASHBOARD-ADVANCEDSEARCH_2017-08-14_12-14-55.SDF]	_ D X
Database View Record Search Lists Plates Options ACD/Labs Help	
省 🚡 💿 💿 🎒 🗒 🔀 🔯 I4 44 DD DL 40 🍡 🌠 🚳 🞯 🐼 🚳 🕂 # 📰 👯 🏛 🖬 🖬 🖬 🖬 👬 💱 👾 👾 🎘 🏦 🦉 🖕	
	Ø
La L	
INPUT: 86-50-0	9
PREFERRED.NAME: Azinphos-methyl	
DTXSID: DTXSID3020122	
CASRN: 86-50-0	
INCHI.KEY: CJJOSEISRRTUQB-UHFFFAOYSA-N	
IUPAC.NAME: 0,0-Dimethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl] phosphorodithioate	
SMILES: COP(=S)(OC)SCN1N=NC2=C(C=CC=C2)C1=O	
AOH.CM3/MOLECULE*SEC.OPERA.PRED: 1.68473e-11	
BCF.OPERA.PRED: 9.2644	
BIODEG.DAYS.OPERA.PRED: 124.108	
BP.°C.OPERA.PRED: 329.865	
HL.ATM-M3/MOLE.OPERA.PRED: 1.00106e-07	
KM.DAYS.OPERA.PRED: 0.268824	
KOA.OPERA.PRED: 9.682	
KOC.L/KG.OPERA.PRED: 207.652	
LOGP.OPERA.PRED: 2.56849	
MP.°C.OPERA.PRED: 67.4194	
VP.MMHG.OPERA.PRED: 1.22168e-06	
WS.MOL/L.OPERA.PRED: 6.58108e-05	
BCF.TEST.PRED: 10.3514	
BP.°C.TEST.PRED: -	
D: 3 A: 3/89 B: 89 Last updated: 14/08/2017 12:17 Single DB	>
1-ChemSketch 2-Database 3-Processor	

Real-Time Property Prediction

CEPA United States Environmental Protection

- We are registering chemicals everyday
- At present, prior to release, we do batch predictions of all properties. INEFFICIENT
- At registration we want to calculate all properties based on OPERA, T.E.S.T and EPI Suite models
- The best way to do this is using web service-based calculations

Now working on T.E.S.T services

- 96hr fathead minnow 50% lethal concentration (LC50)
- 48hrr daphnia magna 50% lethal concentration (LC50)
- Tetrahymena pyriformis 50% growth inhibition conc. (IGC50)
- Oral rat 50% lethal dose (LD50)
- Bioconcentration Factor (BCF)
- Developmental Toxicity (DevTox)
- Ames Mutagenicity (Mutagenicity)
- Normal boiling point, Flash point, Melting point
- Surface tension, Viscosity, Water Solubility
- Thermal Conductivity, Vapor Pressure, Density
- EXAMPLE: <u>https://comptox.epa.gov/dashboard/web-test/WS?smiles=CIC(CI)(CI)CI</u>

Services to Support Real-Time Property Prediction

SEPA United States Environmental Protectio	on Home A	dvanced Search Batch Se	arch Lists						Search All	Data	Q	C	ptions 🔻
Chemistry Dashbo	bard							Submit Comment	Share •	Сору 🕶	Aa 🕶	Aa	Aa 🔺
Search Eourch a chemical by systematic Load Concerning the file charge]		00		LogP: Octanc Water Solubi Density Flash Point Melting Point Surface Tens Thermal Con Vapor Press. LogKoa: Octa Henry's Law Index of Refrac Molar Volume Polarizability Giculate	OPERA ol-Water lity ion ductivity irre anol-Air action livity 3	EPI Suite	NON SIST	LAN LAND				
	About	Contact	Privacy	fareaut by ACToR	W	Present by DSSTox	Acces	ssibility	Help	Downloads			

- Provide "programmatic access" to all data rollout API and web services
- Load test existing WebTEST public services
- Load test existing EPI Suite public services
- Create OPERA web services and make public
- Develop web input page for real time predictions

Conclusion

- The CompTox Chemistry Dashboard provides access to data for ~760,000 chemicals
- An **Integration Hub** to predicted data from different models (e.g. TEST, EPI Suite, OPERA)
- Data downloads allows for reuse in other systems and integration of resources to support research
- Real-time prediction based on developing web services is on the horizon

Acknowledgments

Antony Williams

US EPA Office of Research and Development

National Center for Computational Toxicology (NCCT)

Williams.Antony@epa.gov

ORCID: https://orcid.org/0000-0002-2668-4821