

Abstract: Reduced inorganic nitrogen ($NH_3 + NH_4^+$) is an increasingly important contributor to the total nitrogen deposition budget, yet the bidirectional nature of NH_3 air-surface exchange makes incorporation of NH_3 measurements into dry deposition schemes in field-scale and regional chemical transport models (CTMs) difficult. The purpose of this study is to develop a methodology for providing NADP with modeled NH₃ fluxes using biweekly AMoN concentrations. NH_3 fluxes derived from site specific NH_3 measurements (AMoN) and surface parameterizations (i.e., compensation points) can provide "best" estimates of NH₃ deposition for developing ecosystem specific deposition budgets and assessing sub-grid variability of NH₃ fluxes in CTMs. This effort will therefore improve the total nitrogen deposition estimates provided by TDEP, which does not currently use the AMoN NH₃ concentrations for dry deposition estimates.

This project consists of two phases:

- Phase I Develop a database of soil and vegetation chemistry, micrometeorology, and surface physical characteristics at three pilot AMoN sites
- Phase II Use datasets to parameterize and test a two-layer bi-directional NH₃ flux model for implementation at AMoN sites
- Assess model sensitivities to biogeochemical and meteorological inputs
- Develop methodologies for use of time-integrated NH₃ concentrations
- Standardize model configuration for implementation across AMoN

Phase 1 field measurements began in the summer of 2017 and will continue through spring 2018. This paper describes field and laboratory methods and presents preliminary results of soil chemistry measurements.

Sites

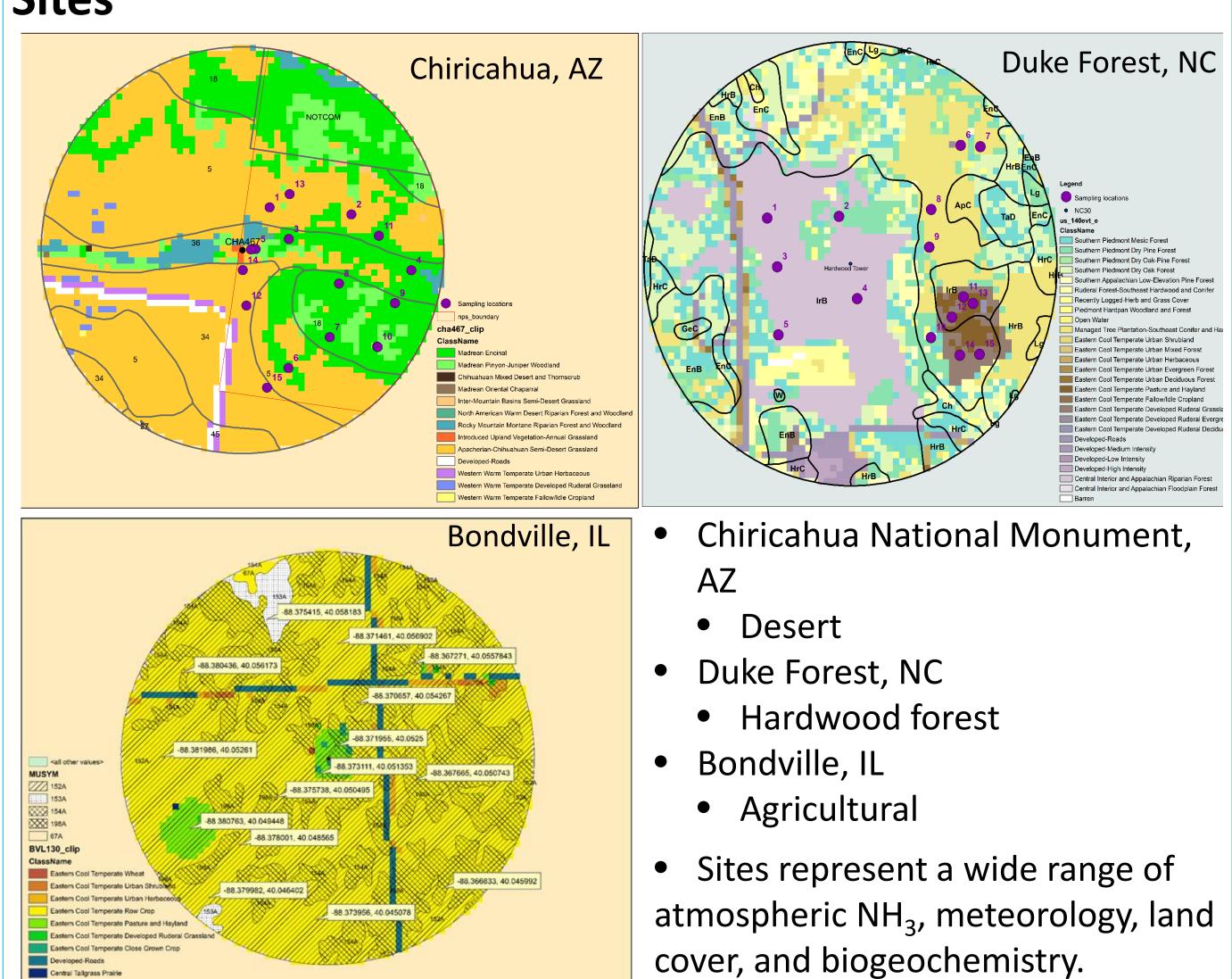
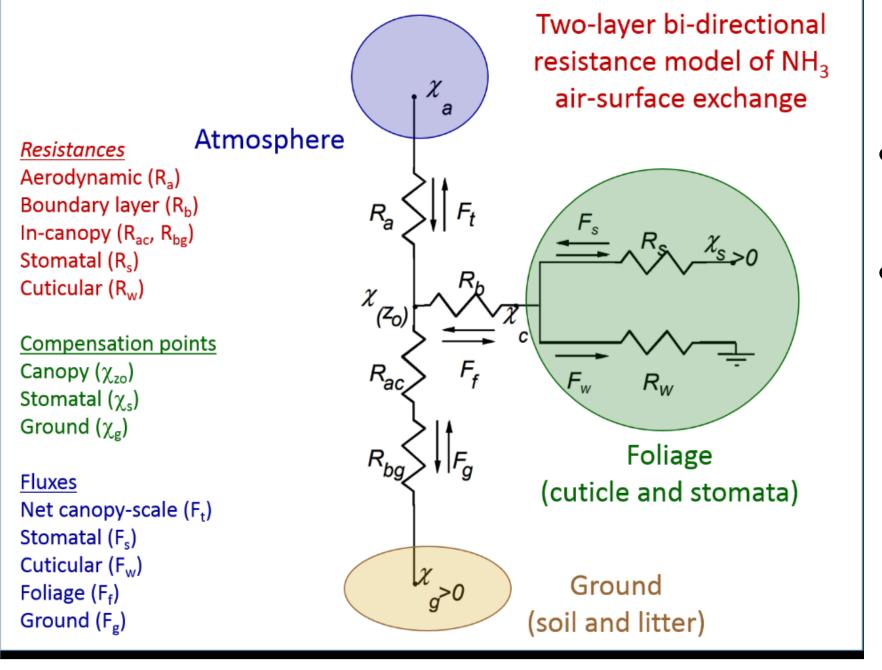



Figure 1: Sampling locations around the Chiricahua National Monument (AZ98), Duke Forest (NC30), and Bondville (IL11) AMoN sites identified as black dots in the center of a sampling domain of 1 km radius. Maps include overlay of soil (NRCS) Web Soil Survey) and vegetation types (LANDFIRE).

AMoN Site Characterization Study: Phase I Field Measurements

Walker, J.T.¹; Mishoe, K.P.²; Rogers, C.M.²; Wu, Z.¹; Macy, T.³; Puchalski, M.³; Schwede, D.¹; Hutchison, K., Baumgardner, R.¹, Robarge, W.⁴ ¹US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC ²Amec Foster Wheeler Environment and Infrastructure, Inc., Gainesville, FL ³US Environmental Protection Agency, Office of Air and Radiation, Office of Air Programs, Washington DC ⁴North Carolina State University, Department of Crop and Soil Sciences, Raleigh, NC

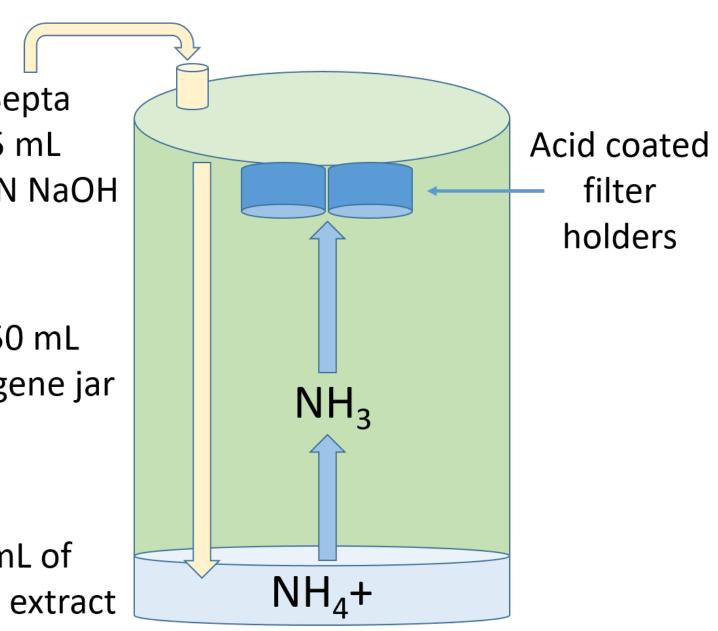
Modeling Framework

Figure 2: Two-layer bidirectional NH₃ flux model (see Massad et al., 2010)

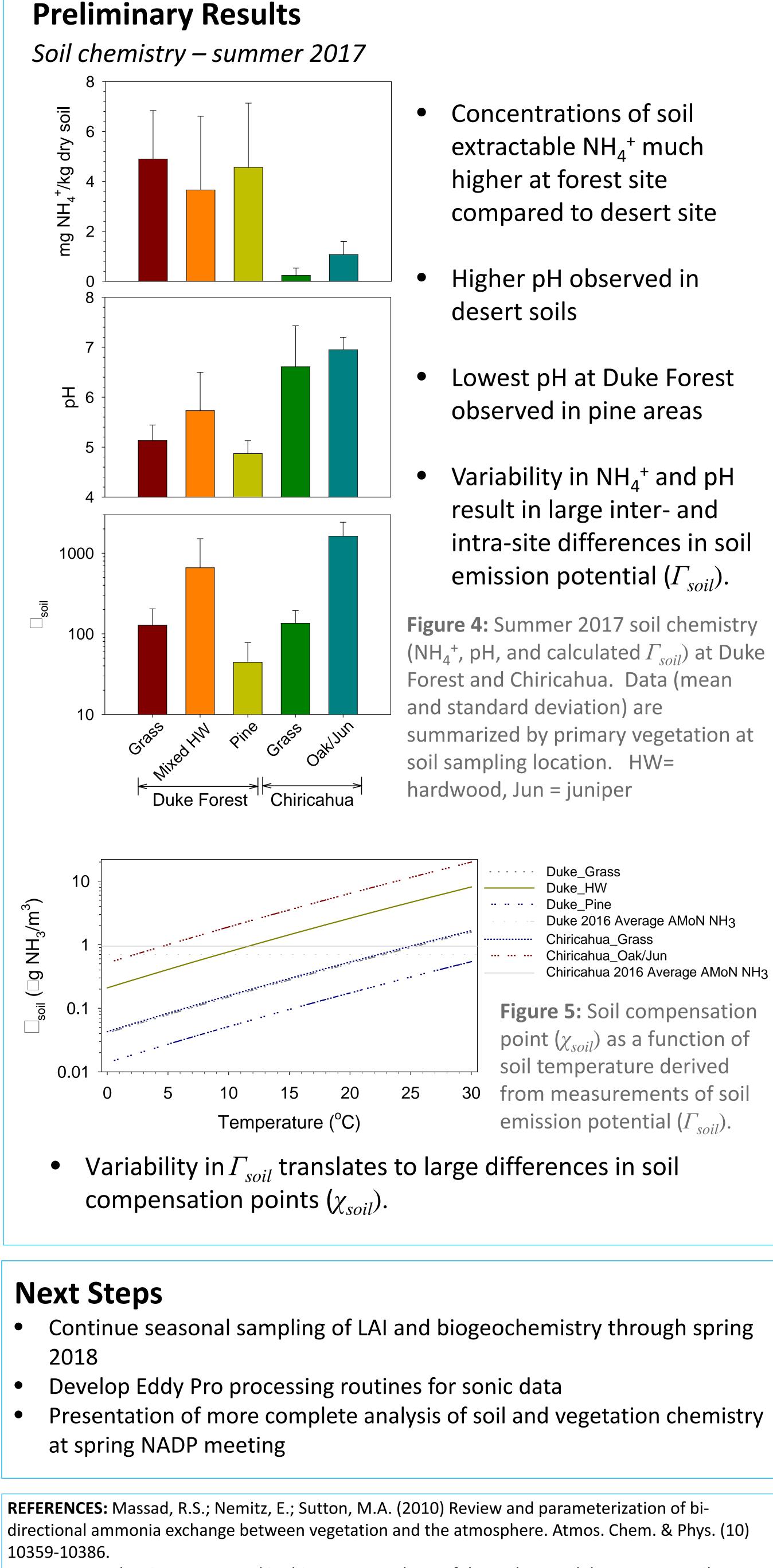
• May revise model to include litter component based on field measurements. • Γ_{soil} , Γ_{litter} , $\Gamma_{stomatal}$, χ_{soil} , χ_{litter} , $\chi_{stomata}$

Methods

Table 1: Data collected during Phase 1.


	Devenue et ev	
Category	Parameter	Frequency
Micrometeorology	3D wind, solar radiation, RH, surface	Continuous; reported as
	wetness, precipitation	hourly
Soil conditions	Moisture, temperature	Continuous; reported as
		hourly
Soil chemistry	[NH ₄ ⁺], [NO ₃ ⁻], pH	Seasonal, dominant soil
		types
Vegetation structure	LAI	Seasonal
Vegetation chemistry	Bulk leaf and litter analyzed for	Seasonal, litter and
	moisture, pH, soluble total [N], [NH ₄ ⁺]	dominant vegetation
Atmospheric chemistry	NH ₄ ⁺ , NH ₃ , HNO ₃ , NO ₃ ⁻ , SO ₂ , SO ₄ ²⁻ , Ca ²⁺ ,	Weekly (CASTNET); bi-
(CASTNET; NADP/AMoN)	Mg ²⁺ , Na ⁺ , K ⁺ , Cl ⁻	weekly (AMoN)
Wet deposition	pH, specific conductance, NO ₃ ⁻ , NH ₄ ⁺ ,	Weekly
(NADP/NTN)	SO ₄ ²⁻ , Ca ²⁺ , Mg ²⁺ , Na ⁺ , K ⁺ , Cl ⁻	

4, , 0,	, ,
Soils : Two depths, N extractions with 0.01 M CaCl ₂ , pH in 1:1 water and 1:2 CaCl ₂ • Measurements of NH ₄ ⁺ and H ⁺ used to calculate Γ_{soil}	Se 5 r 0.3 N
 Litter and Vegetation: Samples ground in liquid N, extracted in water Measurements of bulk soluble NH₄⁺ and H⁺ used to calculate 	250 Nalge
• Mass of NH_4^+ collected from extracts using sealed headspace diffusion technique (recovery > 98%)	5 ml plant e Figure 3 samp


- Modeling approach will follow bidirectional framework described by Massad et al., 2010.
- Parameterizations will be consistent with CMAQ where possible.
- Soil, live vegetation, and leaf litter will be sampled seasonally to develop estimates of surface NH₃ emission potentials (Γ) from which NH₃ compensation points (χ) will be derived.

Compensation point

 $\chi = \frac{161500}{2}$ Emission potential (Γ)

3: Schematic of sealed headspace diffusion oler for collection of NH_4^+ from vegetation extracts.

DISCLAIMER: The views expressed in this poster are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

NC STATE UNIVERSITY

