

Exposure-Based Screening and Priority Setting

John Wambaugh, Dustin Kapraun, Kristin Isaacs, Jon Sobus, Katherine Phillips,

Woodrow Setzer

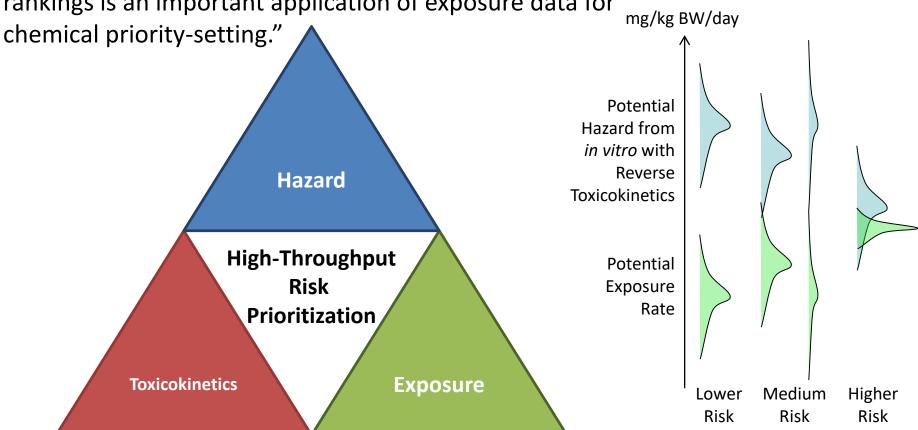
Office of Research and Development U.S. Environmental Protection Agency wambaugh.john@epa.gov

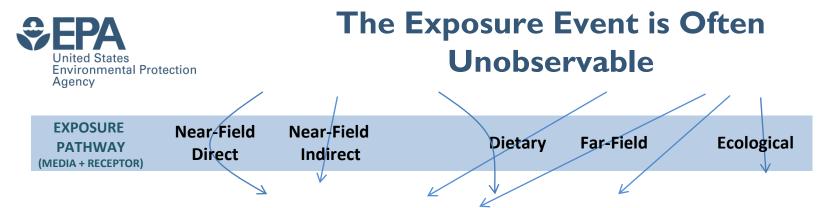
Considerations of
Exposure Dose, and
Metabolism in 3R's

10th World Congress on
Alternatives and Animal
Use in the Life Sciences
Seattle, WA

August 21, 2017

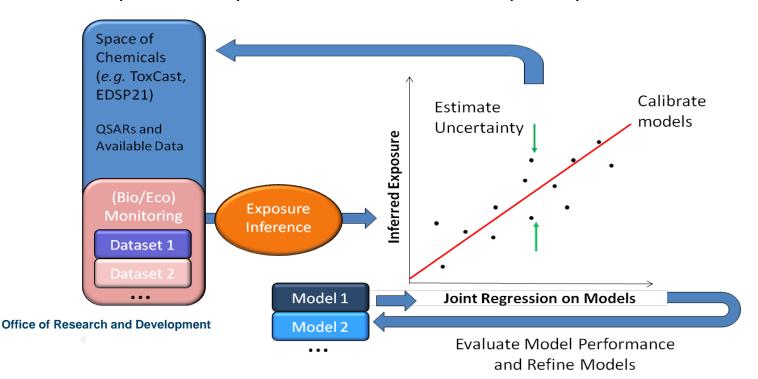
ORCID: 0000-0002-4024-534X


The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA


Introduction

Risk Assessment in the 21st Century (NAS, 2017):

"Translation of high-throughput data into risk-based rankings is an important application of exposure data for

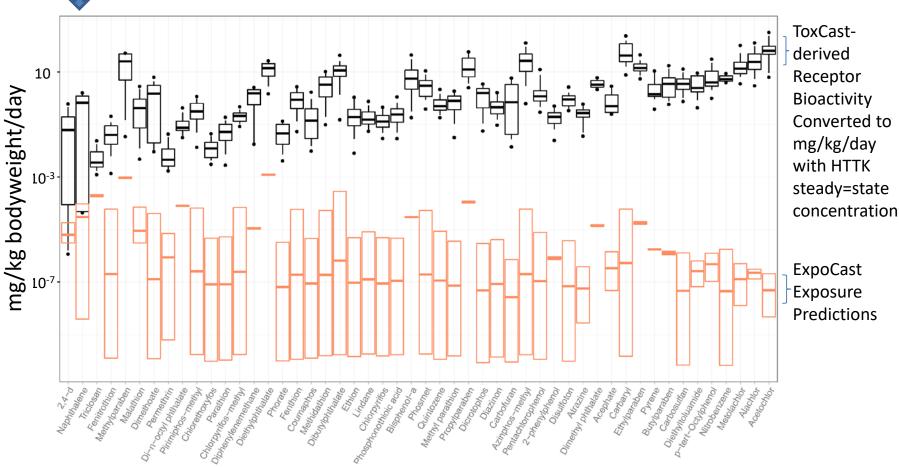

- The exposure pathway is the actual interaction of the receptor and media, e.g. consuming potato chips
- For humans in particular, these events are often unobserved and for many reasons (including ethics and privacy) may remain unobservable
 - Did you eat the serving size or the whole bag of potato chips?
- Either predict exposure using data and models up-stream of the exposure event
- Or infer exposure pathways from down-stream data, especially biomarkers of exposure

4 of 14

Consensus Exposure Predictionswith the **SEEM Framework**

- We incorporate multiple models into consensus predictions for 1000s of chemicals within the Systematic Empirical Evaluation of Models (SEEM) framework (Wambaugh et al., 2013, 2014)
- We evaluate/calibrate predictions with available monitoring data across as many chemical classes as possible to allow extrapolation
 - Attempt to identify correlations and errors empirically

- Annual survey, data released on 2-year cycle, includes biomonitoring for chemical exposure
- Use as "ground truth" for evaluating models
- Different predictive models provide different chemicalspecific predictions
 - Some models may do a better job form some chemical classes than others overall, so we want to evaluate performance against monitoring data
 - SHEDS-HT (Isaacs et al., 2014) is predictive of indoor exposures

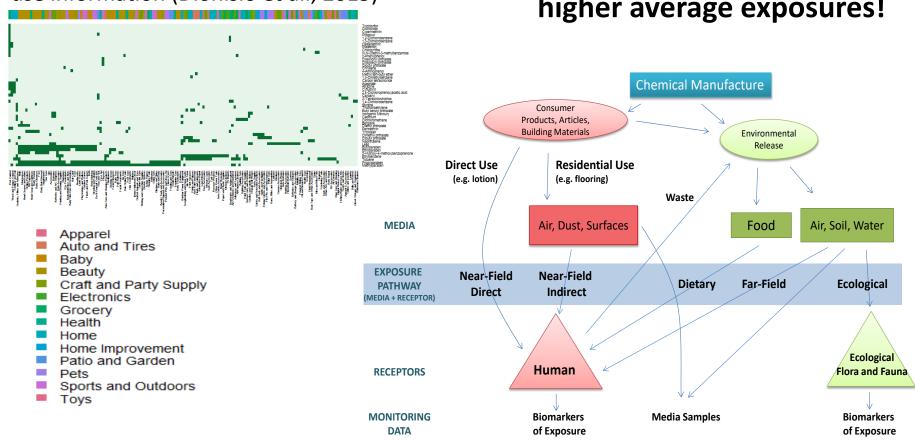

Exposures Inferred from NHANES

National Health and Nutrition Examination Survey

Exposure-Based Priority Setting: Using HTS Data (ToxCast)

Priority chemicals have smaller predicted margin between hazard and exposure

ToxCast Chemicals with NHANES data



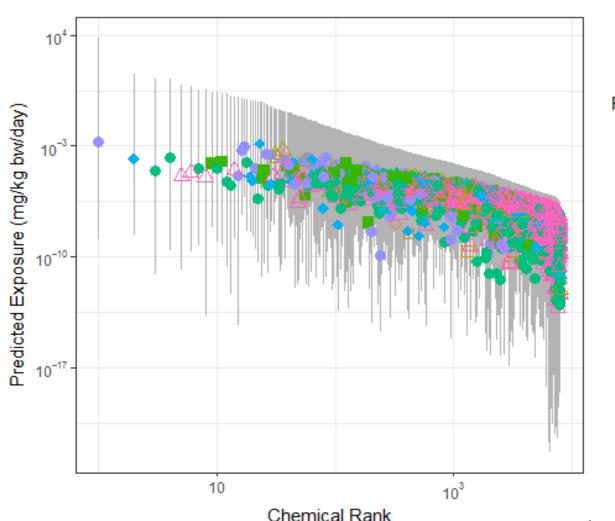
Chemical Use Identifies Relevant Pathways

Chemical-Product Database

(https://actor.epa.gov/cpcat/) provides chemical use information (Dionisio et al., 2015)

Some pathways have much higher average exposures!

7 of 14

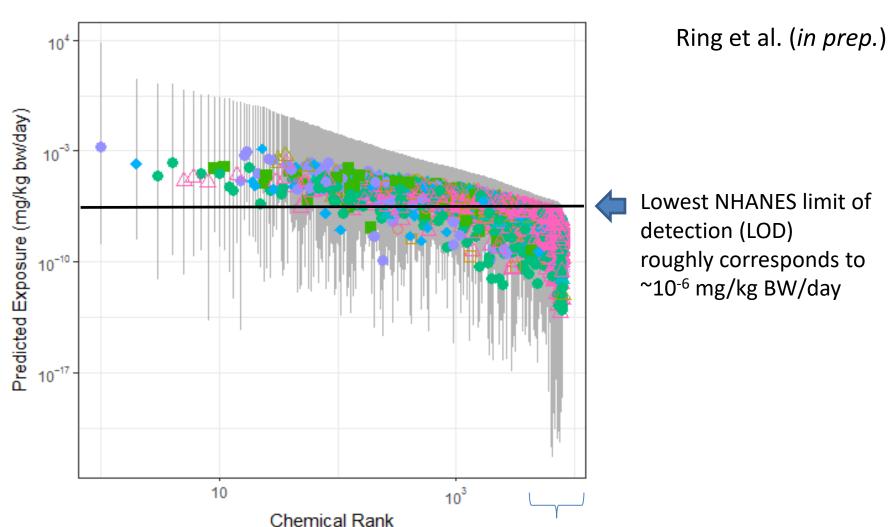

Chemicals

106 NHANES

Office of Research and Development

High Throughput Exposure Predictions

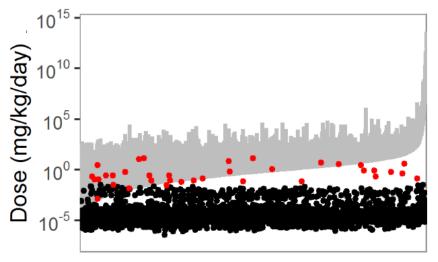
Ring et al. (in prep.)

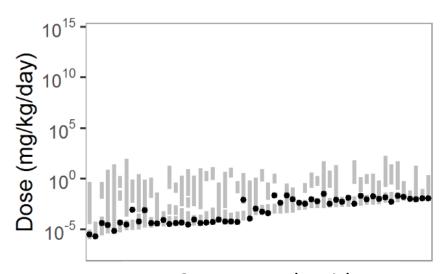

Pathway

- Dietary
- Dietary, Industrial
- Dietary, Residential
- Dietary, Residential, Industrial
- Industrial
- Pesticide
- Residential
- Residential, Industrial
- Residential, Pesticide
- \triangle Unknown

SEEM currently provides consensus human exposure predictions for 134,521 chemicals

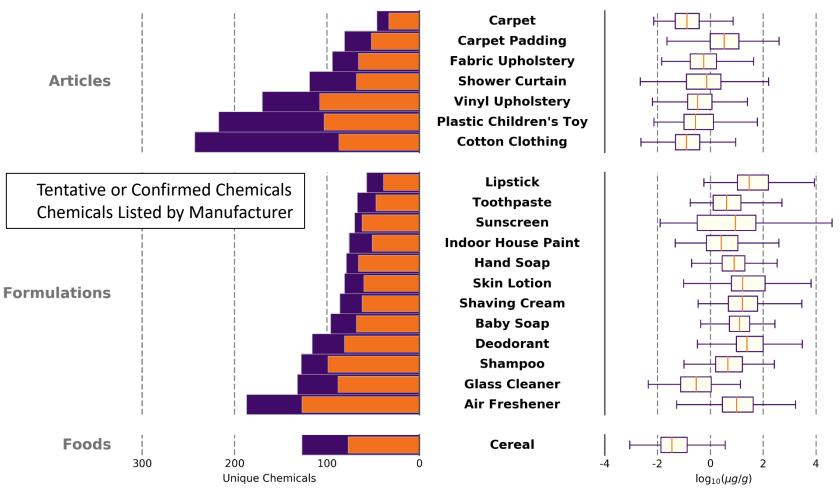
High Throughput Exposure Predictions



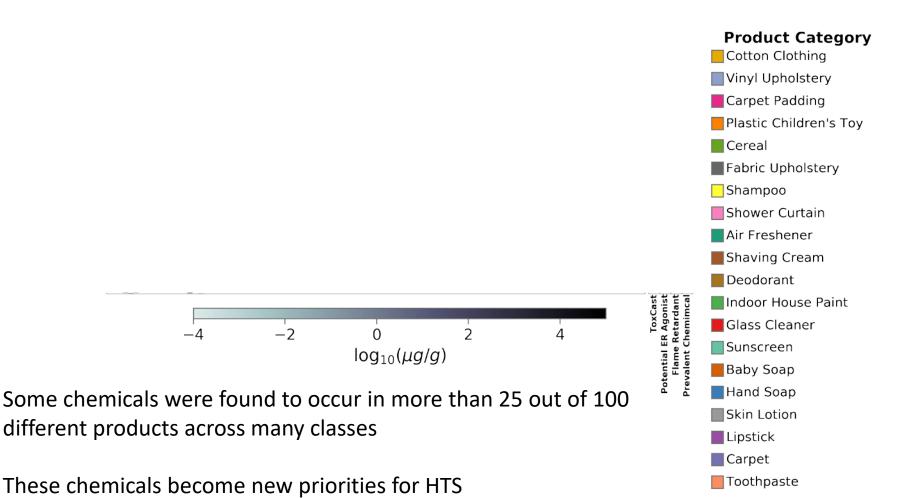

Exposure-Based Priority Setting: Using HTS Data (Tox21)

Tox21 has screened >8000 chemicals – compare in vitro active concentrations with HTTK predicted maximum plasma concentrations

Dose range for all 3925 Tox21 compounds eliciting a 'possible'-to-'likely' human *in vivo* interaction alongside estimated daily exposure

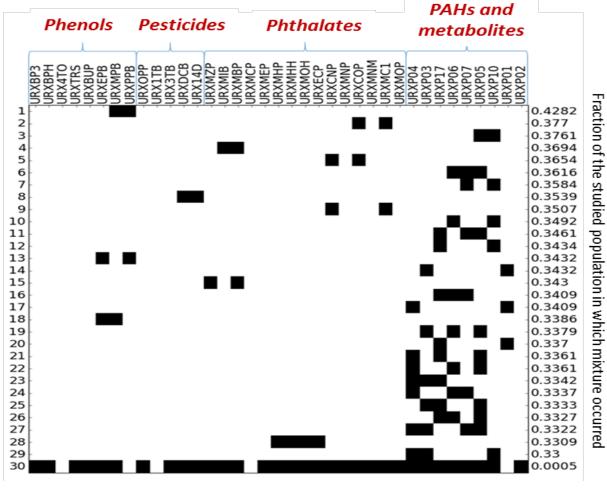


56 compounds with potential *in vivo* biological interaction at or above estimated environmental exposures


Other Approaches to Exposure: Exposure Surveillance with Non-Targeted Analysis

Scanned 5 examples each of 20 class of consumer products
Of 1,632 chemicals, 1,445 were not present in CPCPdb (Goldsmith et al., 2014)

Exposure-Based Priority Setting: Environmental Monitoring


Exposure-Based Priority Setting: Biomonitoring of Mixtures

- Data-mining methods identify chemical combinations that occur frequently
- We have identified a few dozen mixtures present in >30% of U.S. population
 - These mixtures become priorities for HTS

Prevalent Mixtures

- Currently limited by targeted nature of biomonitoring
 - Non-targeted analysis?

Office of Research and Development

Frequent itemset mining used to identify combinations of NHANES group B chemicals occurring in individuals at a concentration greater than the population median

Exposure-Based Priority Setting

- If you have in vitro high-throughput screening (HTS) data then high throughput exposure models allow risk-based calculations
 - Chemicals with smaller margins become priorities for follow-up research
- We can use non-targeted analysis to scan our environment for presence of chemicals
 - Understudied but commonly occurring chemicals become priorities for HTS
- Data analytics allows the identification of commonly occurring mixtures in biological matrices like plasma and urine
 - Mixtures occurring in large fractions of the population become priorities for HTS
 - Observational discovery of mixtures avoids combinatorial explosion for testing

Risk Assessment in the 21st Century (NAS, 2017):

"Translation of high-throughput data into risk-based rankings is an important application of exposure data for chemical priority-setting."

Chemical Safety for Sustainability (CSS) Rapid Exposure and Dosimetry (RED) Project Co-Leads Kristin Isaacs and John Wambaugh

NCCT

Chris Grulke Greg Honda*

Richard Judson

Andrew McEachran*

Robert Pearce*

Ann Richard

Parichehr

Saranjampour*

Risa Sayre*

Woody Setzer

Rusty Thomas

John Wambaugh

Antony Williams

NRMRL NE

Yirui Liang*

Xiaoyu Liu

NHEERL

Linda Adams

Christopher

Ecklund

Marina Evans

Mike Hughes

Jane Ellen

Simmons

Lead CSS Matrix Interfaces:

John Kenneke (NERL)

John Cowden (NCCT)

*Trainees

NERL

Craig Barber

Namdi Brandon*

Peter Egeghy

Hongtai Huang*

Brandall Ingle*

Kristin Isaacs

Sarah Laughlin-

Toth*

Seth Newton

Katherine Phillips

Paul Price

Jeanette Reyes*

Jon Sobus

John Streicher*

Mark Strynar

Mike Tornero-Velez

Elin Ulrich

Dan Vallero

Barbara Wetmore

Collaborators

Arnot Research and Consulting

Jon Arnot

Battelle Memorial Institute

Anne Louise Sumner

Anne Gregg

Chemical Computing Group

Rocky Goldsmith

National Institute for Environmental Health

Sciences (NIEHS) National Toxicology Program

Mike Devito

Steve Ferguson

Nisha Sipes

Netherlands Organisation for Applied Scientifi

Research (TNO)

Sieto Bosgra

Research Triangle Institute

Timothy Fennell

ScitoVation

Harvey Clewell Chantel Nicolas

Silent Spring Institute

Robin Dodson

Southwest Research Institute

Alice Yau

Kristin Favela

Summit Toxicology

Lesa Aylward

Tox StrategiesCaroline Ring

University of California, Davis

Deborah Bennett

University of Michigan

Olivier Jolliet

University of North Carolina, Chapel Hill

Alex Tropsha

University of Texas, Arlington

Hyeong-Moo Shin

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA

References

- Dionisio, Kathie L., et al. "Exploring Consumer Exposure Pathways and Patterns of Use for Chemicals in the Environment." Toxicology Reports (2015)
- Goldsmith, M-R., et al. "Development of a consumer product ingredient database for chemical exposure screening and prioritization." Food and chemical toxicology 65 (2014): 269-279.
- Isaacs, Kristin K., et al. "SHEDS-HT: An Integrated Probabilistic Exposure Model for Prioritizing Exposures to Chemicals with Near-Field and Dietary Sources." Environmental Science and Technology 48.21 (2014): 12750-12759.
- Kapraun, Dustin et al., "A Method for Identifying Prevalent Chemical Combinations in the US Population," Environmental Health Perspectives, in press
- Phillips, Katherine A., et al. "Suspect Screening Analysis of Chemicals in Consumer Products", submitted.
- Ring, Caroline, et al., "Identifying populations sensitive to environmental chemicals by simulating toxicokinetic variability", Environment International (2017).
- Ring, Caroline, et al., "Chemical Exposure Pathway Prediction for Screening and Priority-Setting", in preparation
- Sipes, Nisha, et al. "An Intuitive Approach for Predicting Potential Human Health Risk with the Tox21 10k Library", Environmental Science and Technology, in rpess

- Wallace et al., "The TEAM Study: Personal exposures to toxic substances in air, drinking water, and breath of 400 residents of New Jersey, North Carolina, and North Dakota." Environmental Research 43: 209-307 (1987)
- Wambaugh, John F., et al. "High-throughput models for exposure-based chemical prioritization in the ExpoCast project." Environmental science & technology 47.15 (2013): 8479-848.
- Wambaugh, John F., et al. "High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals." Environmental science & technology (2014).
- Wetmore, Barbara A., et al. "Integration of dosimetry, exposure and high-throughput screening data in chemical toxicity assessment." Toxicological Sciences (2012): kfr254.
- Wetmore, Barbara A., et al. "Incorporating High-Throughput Exposure Predictions with Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing." Toxicological Sciences 148.1 (2015): 121-136.