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Risk Assessment in the 21st Century (NAS, 2017):
“Translation of high-throughput data into risk-based 
rankings is an important application of exposure data for 
chemical priority-setting.” 
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The Exposure Event is Often 
Unobservable

• The exposure pathway is the actual interaction of the receptor and media, e.g. consuming 
potato chips

• For humans in particular, these events are often unobserved and for many reasons 
(including ethics and privacy) may remain unobservable

• Did you eat the serving size or the whole bag of potato chips?

• Either predict exposure using data and models up-stream of the exposure event

• Or infer exposure pathways from down-stream data, especially biomarkers of exposure 
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Consensus Exposure Predictions 
with the SEEM Framework

• We incorporate multiple models into consensus predictions for 1000s of chemicals 
within the Systematic Empirical Evaluation of Models (SEEM) framework  
(Wambaugh et al., 2013, 2014)

• We evaluate/calibrate predictions with available monitoring data across as many 
chemical classes as possible to allow extrapolation

• Attempt to identify correlations and errors empirically
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Exposures Inferred  from 
NHANES

 Annual survey, data released 
on 2-year cycle, includes 
biomonitoring for chemical 
exposure

 Use as “ground truth” for 
evaluating models

 Different predictive models 
provide different chemical-
specific predictions

• Some models may do a 
better job form some 
chemical classes than 
others overall, so we 
want to evaluate 
performance against 
monitoring data

• SHEDS-HT (Isaacs et al., 
2014) is predictive of 
indoor exposures

CDC, Fourth National Exposure Report  (2011)

National Health and Nutrition Examination Survey
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Exposure-Based Priority Setting:
Using HTS Data (ToxCast)
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Figure from Ring et al., (2017), 
see also Wetmore et al. (2015)
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Chemical Use Identifies Relevant 
Pathways

Chemical-Product Database 
(https://actor.epa.gov/cpcat/) provides chemical 
use information (Dionisio et al., 2015)
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Near field sources have been known to be important at least since 1987 – see Wallace, et al.

Some pathways have much 
higher average exposures!

https://actor.epa.gov/cpcat/
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High Throughput Exposure 
Predictions

SEEM  currently provides consensus human 
exposure predictions for 134,521 chemicals

Ring et al. (in prep.)
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Lowest NHANES limit of 
detection (LOD) 
roughly corresponds to 
~10-6 mg/kg BW/day

95% confident that median population 
would be <LOD for thousands of chemicals

High Throughput Exposure 
Predictions

Ring et al. (in prep.)
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Exposure-Based Priority Setting:
Using HTS Data (Tox21)

Dose range for all 3925 Tox21 
compounds eliciting a ‘possible’-

to-‘likely’ human in vivo
interaction alongside estimated 

daily exposure

56 compounds with 
potential in vivo biological 

interaction at or above 
estimated environmental 

exposures

Sipes et al., in press

Tox21 has screened >8000 chemicals – compare in vitro active concentrations with HTTK 
predicted maximum plasma concentrations 



Office of Research and Development11 of 14

Other Approaches to Exposure: 
Exposure Surveillance with Non-Targeted Analysis

Phillips et al. (submitted)

Scanned 5 examples each of 20 class of consumer products
Of 1,632 chemicals, 1,445 were not present in CPCPdb (Goldsmith et al., 2014)

Tentative or Confirmed Chemicals
Chemicals Listed by Manufacturer
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Exposure-Based Priority Setting:
Environmental Monitoring

Phillips et al. (submitted)

Some chemicals were found to occur in more than 25 out of 100 
different products across many classes 

These chemicals become new priorities for HTS
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Exposure-Based Priority Setting:
Biomonitoring of Mixtures

Frequent itemset mining used to identify combinations of NHANES group B chemicals 
occurring in individuals at a concentration greater than the population median

Kapraun et al., (in press)

• Data-mining methods 
identify chemical 
combinations that occur 
frequently

• We have identified a few 
dozen mixtures present 
in >30% of U.S. 
population

• These mixtures 
become priorities 
for HTS 

• Currently limited by 
targeted nature of 
biomonitoring

• Non-targeted 
analysis?
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Exposure-Based Priority 
Setting

 If you have in vitro high-throughput screening (HTS) data then high throughput 
exposure models allow risk-based calculations
• Chemicals with smaller margins become priorities for follow-up research

 We can use non-targeted analysis to scan our environment for presence of chemicals
• Understudied but commonly occurring chemicals become priorities for HTS

 Data analytics allows the identification of commonly occurring mixtures in biological 
matrices like plasma and urine
• Mixtures occurring in large fractions of the population become priorities for HTS
• Observational discovery of mixtures avoids combinatorial explosion for testing

Risk Assessment in the 21st Century (NAS, 2017):
“Translation of high-throughput data into risk-based 
rankings is an important application of exposure data for 
chemical priority-setting.” 
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