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Models Incorporate Knowledge, Assumptions
and Data

* Training sets

* Choices of parameters

e Description of kinetics

SUNTORY WHISKY

THE ART OF JAPANESE WHISKY

SINCE 1923

A “fit for purpose” model is an abstraction of
a complicated problem that allows us to reach
a decision.

“The more you know who you are, and what
you want, the less you let things upset you.”
Bob, Lost in Translation via Todd Gouin
model. (Written by Sofia Coppola)

A fit for purpose model is defined as much by
what is omitted as what is included in the

We have to accept that there will always be areas in need of better data and models -- our
knowledge will always be incomplete, and thus we wish to extrapolate.
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United States
Environmental Protection

Applicability”
* Do not build beyond the ability to evaluate predictions
e Collect data to allow larger, systematic studies

e Carefully determine whether, when, and why model errors are
conservative and correlated

Who is winning the US Presidential election? | Jncertainty Analysis on How this was viewed at the time
Clinton vs. Trump: Two Controversial Candidates
‘‘‘‘‘‘‘‘‘‘‘‘‘ November 4: (November 5):
FiveThirtyEight

Trump Is Just A Normal Polling Error Nate Silver Is Unskewing Polls — All Of Them — In
Behind Clinton Trump’s DII’EFtIDn

Aug Sep Oct Nov The vaunted 538 election forecaster
By Ryan Gri

ey neer @ e

2010 Eraceson 000

is putting his thumb on the scales.

Daily Mirror/RealClearPolitics

—5aE | Model errors, especially correlated errors, matter
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mg/kg BW/day
= January, 2017 U.S. National Academies of Science report:

“Translation of high-throughput data into risk-based rankings is

an important application of exposure data for chemical priority- oo Hazar
setting. Recent advances in high-throughput toxicity assessment, Toxic?ﬁr\::triiz
notably the ToxCast and Tox21 programs... and in high-

throughput computational exposure assessment... have enabled

first-tier risk-based rankings of chemicals on the basis of margins

of eXposur‘e" Potential Exposure
from ExpoCast

= Tox21/ToxCast: Examining thousands of chemicals using
in vitro assays that test parent chemical in concentration LoWer  yegum e Higher
response Risk Risk

A fit for purpose exposure

model might provide

context for high throughput

in vitro toxicity screening

= ExpoCast: Tentative exposure predictions for daily human
exposure rates (mg/kg/day)

= What is acceptable uncertainty?

JEXIEL Office of Research and Development See Wetmore et al. (2015)
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 We incorporate multiple models into consensus predictions for 1000s of chemicals
within the Systematic Empirical Evaluation of Models (SEEM) framework
(Wambaugh et al., 2013, 2014)

* We evaluate/calibrate predictions with available monitoring data across as many
chemical classes as possible to allow extrapolation

e Attempt to identify correlations and errors empirically

D

Estimate
Uncertainty l

Calibrate
models

fpc:ure

Inference

Inferred Exposure

Dataset 1
e Model 1 - Joint Regression on Models =
Model 2

JELIEL Office of Research and Development .. Evaluate Model Performance
and Refine Models




SEPA SEEM Evolution
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Model and Predictors Calibration/Evaluation Data SEEM Conclusion
! * Existing complex fate and |
c | transport models have low |
Q , ( correlation to measured :
O . exposures .
2 I Near Field / Far Field * Near field factor most |
— important :
Ml Production Volume RZ2 =0.14 Wambaugh et al. (2013)
cC I Use Categories * Simple, readily available data |
Q! ( * Better correlation to I
O, measured exposures :
re) I ' e Similar predictions across )
(C\l . demographics 1
I R2= 0.5 Wambaugh et al. (2014);
! Isaacs, et al. (2014) * Need volume of distribution '
i predictions (httk package)to |
8 | P erature ( use NHANES blood and serum
. < Models - data .
= Diopisio, ei-af. (2015) * Analysis is ongoing :
M | CPcat Database I
. Ring et al. (in prep.).
JEEIEL Office of Research and Development Approach described in Wambaugh et al.

(2013) ExpoCast Framework Paper
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Five descriptors explain
Wambaugh et al. (2014) roughly 50% of the
chemical to chemical
variability in median
NHANES exposure rates

Same five predictors work
for all NHANES
demographic groups
analyzed — stratified by
age, sex, and body-mass
index:
* Industrial and
Consumer use
e Pesticide Inert
* Pesticide Active
* Industrial but no
Consumer use

Office of Research and Development e Production Volume



<EPA Exposure Pathways
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. Chemical Manufacture
Why does a heuristic - —
. onsumer
model like Wambaugh Products, Articles, \

p) uilding Material Environmental
et al. (2014) work: R

Direct Use l Residential Use

(e.g., lotion) (e.g. ,flooring)

EXPOSURE Near-Field Neazr%:ield

MEDIA

ry Far-Field Ecological

PATHWAY Direct Indirect

(MEDIA + RECEPTOR)
lora and Faun

RECEPTORS A
/
v v

MONITORING Biomarkers Media Samples Biomarkers
DATA of Exposure of Exposure

Ecological

Office of Research and Development Figure from Kristin Isaacs
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By Pathway?

Definition of “pathway” is fuzzy here:

* Not talking about biology

o Tier1 e But human activity and toxicokinetics are
both significant factors

Organism Level

~— Tier 2
Cellular Level

Molecular Level

/ Environmental Perturbation
Toxicity Pathway
Mk Adverse Outcome

Toxicokinetics:
e [nhalation
e Dermal,

* Ingestion

_90f20 | Figures from Pleil and Sheldon (2011)
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Knowledge of Exposure
Pathways

“In particular, the
assumption that
100% of [quantity
emitted, applied,
or ingested] is
being applied to
each individual use
scenario is a very
conservative
assumption for
many compound /
use scenario pairs.”

Office of Research and Development

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes,
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Risk-Based High-Throughput Chemical Screening and Prioritization
using Exposure Models and in Vitro Bioactivity Assays
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Multiple regression models:

Log(Parent Exposure) = a + m * log(Model Prediction) + b* Near Field + €

1

€~ N(0, o)
Residual error,
unexplained by
the regression

model

Inferred Exposure

Weighted HTE Model Predictions

Office of Research and Development



<EPA SEEM is a Linear Regression
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Multiple regression models:

Log(Parent Exposure) = a + m * log(Model Prediction) + b* Near Field + €

1

Not all models have predictions
for all chemicals
e We can run SHEDS-HT
(Isaacs et al., 2014) for
~2500 chemicals

Inferred Exposure

What do we do for the rest?
e Assign the average value?
e Zero?

Weighted HTE Model Predictions

JEEXIEL] Office of Research and Development



wEPA Pathway Predictors:
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When averaging over many exposure models, the key is to know which one to use...

OOB Error  |Positives Error |Balanced Sources of Sources of
Pathway Negatives|Rate Rate Accuracy Positives Negatives

FDA CEDI, ACToR
USEdb, NHANES ACToR USEdb,

Dietary 2429 13331 7.8 34 92 Curation NHANES Curation
CPCPdb,
ExpoCast, ACToR USEdb,
Near-Field 1382 3498 20 51 80NHANES Curation NHANES Curation
NHANES curation,
REDs, ACToR Diet Positives,
Far-Field USEdb, NHANES ACToR USEdb,
Pesticide 1726 9204 9.2 48 91 Curation NHANES Curation
USGS Water
Occurence, ACToR USEdb,
Far Field ACToR USEdb, Dietary and
Industrial 3183 3792 18 21 82 NHANES Curation Pesticde Positives
f Using Random Forest to predict based upon production

Arbitrary pathway choices

Need better ontology
Office of Research and Development

volume, OPERA phys-chem, and ToxPrint structure
descriptors
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* Pathways predicted from production
volume, OPERA physico-chemical
properties and ToxPrint structure
descriptors

* Machine learning (Random Forest) —
generates a chemical specific probability
of exposure by that pathway (used as a
Bayesian prior)

* Manual inspection determined that tools
we had were pretty lousy for NHANES, so
did a manual curation guided by CPcat
(Dionisio, 2015) Color Key
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wEPA Third Generation SEEM
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R%=0.518

C
O |-
= Root Mean Sq. Error = 19.9 e
O 407 i
e)
(]
| -
(a
Q Pathway
o]0} = Dietary, Residential
e [ Dietary, Residential, Industrial
Q TN Dietary, Residential, Pesticide
é B |ndustrial
-5 |
1 # Pesticide
Q & Residential
-8 4 Residential, Industrial
2 Residential, Pesticide
FAN Residential, Pesticide, Industrial

L
L
(Vs )

107"

JEELIEL] Office of Research and Development Exposure Inferred from .
NHANES Blood, Serum, and Urine



SEPA Model Coefficients
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All
Chemicals Pest
Pathway Mean Pred. SHEDS-HT | Docs RAIDAR | USETox Prod. Vol

(P E RS -15.1 (0.665) 23 71.50%
- -0.288 1.1
Dietary -0.0654 (0.213) 6 0.11% (1.13) (1.83)
- 2.15 1.36
Residential 0.405 (0.196) 17 2.03% (0.775) (0.385)
- 0.438 0.419 -4.57 0.326
Pesticide -0.531 (0.113) 89 12.40% (0.671)  (0.527) (0.576)  (0.846)

-2.05 -0.808  2.73
-1.77 (1.02) 2 13.70% (3.13)  (1.38)  (3.01)

The pathway means recapitulate the Wambaugh et al.
(2014) heuristics model (with dietary pathway added)

The significant predictors (mean +- standard deviation
beyond zero) are in bold: SHEDS-HT Residential,

Office of Research and Development .
e of fesearch and Developmen Production Volume, and USEtox



SEPA Human Exposure Predictions
for 134,521 Chemicals

10°
E Pathway
o Nt r Dietary
E 10 [1 Dietary, Industrial
L]
= . Dietary, Residential
E B Dietary, Residential, Industrial
E # |ndustrial
n 10—1:1_
o A pesticide
h + Residential
=
o ¥ Residential, Industrial
[
= <> Residential, Pesticide
E _1[]—1?_
o N LInknown

10 10°
Chemical Rank
Office of Research and Development



SEPA Human Exposure Predictions
for 134,521 Chemicals

4]

10

1071 ¥
Lowest NHANES limit of
detection (LOD)

107" - roughly corresponds to
~10° mg/kg BW/day

Predicted Exposure (mag/kg bwiday)

=17

10

Chemical Rank ] ) )
95% confident that median population

Office of Research and Development ]
would be <LOD for thousands of chemicals
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n=91

# Samples
® 50
® 100
@ 150

Cone. (ug/l)
0.0016

0.0012
0.0008
0.0004 1.5
Fate and Transport Models
1 1.0-
I 1
o
USETox (n = RAIDAR HT-EXAIR 3 05
82) (n =74) (n=91) =
k5
Rosent;aolgg etal, Arnot et al., 2006 Barber et al., 2017 E 0.0

0.5-
.

Office of Research and Development

Ecological SEEM

Dataset Watersheds

Setzer et al., (in prep)

RZ~0.33
HUC = hydrological unit
. "'“" Analysis led by
p ; ; Parichehr
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* Models incorporate Knowledge, Assumptions and Data

Where Do We Go From

Here?

* The key is to know which model to use and when

* Rough exposure assessments may be potentially useful if the uncertainty can be
quantified and is acceptable (i.e., “fit for purpose”)

Challenges:
* Using existing chemical data to predict
pathways

* Need better training data for
random forest

e (How do you know something
isn’t an industrial chemical?)

* Eventually we have got to go beyond
NHANES (~100 chemicals)

* Non-targeted analysis of blood

may eventually be possible

JEZEIEL Office of Research and Development
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