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INTRODUCTION
Chemical structures and their properties are

important for determining their potential

toxicological effects, toxicokinetics, and route(s) of

exposure. These data are needed to prioritize

thousands of environmental chemicals, but are

often lacking. In order to fill data gaps, robust

quantitative structure-activity relationship (QSAR)

and quantitative-structure property relationship

(QSPR) models are routinely used in risk assessment

for both well-known and new chemicals. However,

all QSAR and QSPR models are limited in part by

the training-set of data available for model

development. In order to both calibrate and inform

the scope of currently available QSPR models,

physicochemical measurements were attempted for

200 chemicals selected for a mix of both those with

previously measured physicochemical properties as

well as chemicals with moieties that were expected

to be challenging to existing models from the U.S.

EPA DSSTox database. Among the properties

measured were octanol:water partitioning

coefficient (Kow), vapor pressure (VP), water

solubility (WS), Henry’s law constant (HLC), and acid

dissociation constant (pKa).
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The purpose of the present work was to:

A. Determine an optimal chemical dataset to be

submitted for measurements.

B. Compare these measurements with

1) previous measurements, if available, and

2) predicted values from various models.

C. Determine the impact of new measurements on 

the models that are sensitive to them (i.e., 

volume of distribution (VD)).

D. Gauge the reproducibility of physicochemical 

property measurement methods.

E. Fill data gaps in measurement data (i.e., pKa).

F. Calibrate predictive models. 

OBJECT IVES

Figure 1 illustrates a structured workflow that was designed for the purpose of

filtering chemicals in the DSSTox database.

In order to prepare a uniform list of 200 chemicals for each property

measurement, the final test chemical set consisted of: ~ 20% with previous Kow,

HLC, and WS measurements and ~ 15% with previous VP measurements. The

numbers of chemicals successfully measured for each property were: 176

(Kow), 168 (VP), 129 (WS), 110 (HLC), and 100 (pKa).

Kow Measurements vs Previous Measurements
As illustrated in Figure 3, an R2 of 0.77 is achieved when the newly measured
Kow values are linearly regressed on previously measured values reported in
EPI Suite. 176 out of 200 chemicals were returned with experimental values,
while all 200 have previously measured values in EPI Suite (compiled in the
PhysProp database). As red dotted lines indicate LOD for methods utilized,
some measurements were still reported outside of the range: 0 < Kow < 6.

As illustrated in Figure 4, relatively similar R2 values are achieved (~0.6) when
SWRI Kow measurements are regressed on predictions from ACD Labs, EPI
Suite, NICEATM, and OPERA databases. While 176 chemicals were returned
with the new measurements, there were predictions for nearly or all 200
chemicals from all databases.

Figure 5. Impact of new Kow measurements of VD.

Figure 4. Comparative histograms for Kow: A. Plot of new measurements (SWRI) vs
EPI Suite measurements and B. Comparison of ranges for predicted values (dotted
lines indicate limits of detection).

While one major aspect of obtaining new

measurements for important physicochemical

properties is the opportunity to fill data gaps, there

are many other benefits. There are opportunities to

calibrate existing PK models such as for VD as well as

to determine whether new measurement

techniques ought to be developed for chemicals

belonging to a distinct space that consistently fail.
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Figure 1. Flowchart describing analysis pipeline for picking chemicals.

Figure 3. Comparative histograms for measured Kow: A. Plot of new measurements 
(SWRI) vs EPI Suite measurements and B. Comparison of ranges for measured values 
(dotted lines indicate limits of detection).

Physicochemical properties are among the various parameters necessary for

describing the pharmacokinetics (PK) of chemicals of interest such as the

volume of distribution (VD). VD is the apparent volume that would be needed to

contain the observed plasma concentration of an administered compound. Kow

is used to predict VD and they are shown to be linearly correlated. Figure 5 is a

comparison of measured versus predicted values of volume of distribution.

Volume of Distribution

Structural Signatures Indicative of Failure

Figure 2. Comparative histograms for the sum of structural signatures: A. 23 Kow
measurement failures and B. 176 successful measurements.

Figure 2 illustrates the structural similarity between chemicals for which Kow

measurements were successful (176) and those that were unsuccessful (23)
using ToxPrint chemotypes from USEPA DSSTox. Out of 595 structural
signatures, 66 signatures represented the chemical space of the 23 failed
compounds. Only 25 signatures had a sum of greater than one (i.e., at least 2 or
more compounds contained the same structural component. Major differences
in representation of certain signatures may serve as a qualitative method for
gauging trends in measurement efficacy based on structural features.
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