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• httk (high-throughput toxicokinetics) is an R package (https://cran.r-project.org/web/packages/httk/index.html) for solving toxicokinetic models and 
predicting model outputs and parameters such as steady state concentration, maximum concentration, elimination rate, area under the curve 
(AUC), clearance, partition coefficients, and volume of distribution.

• Generic model structures are tailored to specific chemicals using physcio-chemical descriptors and the results of in vitro experiments. The in vitro 
experiments characterize intrinsic hepatic clearance and plasma protein binding (Fub) of the parent compound.

• Partition coefficients were calculated with a modification of the Schmitt 2008 model whose general form is shown in the figure: 

1 and 2 compartment vs PBTK

• Adding the additional complexity of realistic blood volumes and separating the rest-of-body compartment into richly and 
poorly perfused compartments had little affect on the model predictions.  The most significant change was the increase in 
peak concentration with the richly/poorly perfused correction.

• The tissue of interest, ionization, and lipophilicity displayed distinct partitioning classes.

• The use of a PBTK model is generally equivalent to one- and two-compartment models.  The two-compartment model was 
generally more similar to the PBTK, but the 1 compartment model more closely corresponded to the PBTK for compounds 
with slower elimination (< 0.5 /h).  For compounds with greater elimination, the 1 compartment model predicted an overly 
rapid elimination and thus lower steady state as well as a very high Cmax relative to the PBTK.    

• We recognize these models may require the addition of diffusion-limited, transporter-mediated, and saturable processes as 
well as further comparison using a greater diversity of dosing methods and compounds.

• Rapidly parameterized generic PBTK models allow in vitro to in vivo extrapolation (IVIVE) for chemicals tested for 
bioactivity via high-throughput screening and enable exposure inferences from blood/serum biomonitoring data.

• Model accuracy and assumptions were evaluated against in vivo data to determine appropriate context for use, given 
tissue, chemical properties, and desired accuracy.

• We used a simulation study to evaluate the impact of tissue lumping and negligible blood volume and compared generic 
perfusion-limited PBTK model predictions to one- and two-compartment models.

• 427 compounds were simulated with a PBTK model using oral dosing to evaluate model assumptions, and in a separate 
analysis,1446 in vivo measurements were used to evaluate partition coefficients and volume of distribution.
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Figure from Peyret 2010
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Chemical-specific TK models can be created rapidly 
using in vitro assays and computational approaches. 
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These modifications include changes to membrane affinity prediction and in vitro Fub.

• A future release of httk, version 1.6, will contain the changes in partitioning used here.

• The volume of distribution is calculated by summing the partition coefficients, multiplied by their volumes:

• The 2 compartment model more accurately replicated the PBTK 
model than the 1 compartment model.

• A two compartment model was created that was equivalent to a one 
compartment model with a separate liver compartment with 
additional kidney clearance.

• Peak and steady state concentrations, elimination, and distribution 
phase duration for the 2 compartment model were observed to be 
mostly within a factor of 2 of the PBTK model for all 427 compounds.

httk simulates single and multiple dosing 
schemes.  This plot show 3 doses per day of 1 
mg/kg/day of Bisphenol-A in a human.

Rat partition coefficients predicted with new 
membrane affinity predictor shown above with 
improvement shown in orders of magnitude.

Human volume of distribution predictions, 
shown on the left, were predicted with 
membrane affinity and Fub corrections and a 
further calibration, shown above.  
Improvement (see color legend) is defined as 
the decrease in the absolute value of the 
error, measured in orders of magnitude, after 
regression calibrations.

Partition coefficient error is tissue 
specific.  Tissues rich in neutral lipid 
such as brain and adipose generally 
had larger predictions than 
measurements.  Predicted rat Kp in the 
figure on the right were regressed on in 
vivo data after a modification of the 
model of Schmitt 2008.

856 corrected and calibrated human partition coefficient 
predictions form three general clusters of low, medium, 
and high partitioning.  From low to high, these are 
hydrophilic acids, lipophilic neutrals, and lipophilic bases.

Peak concentration was the largest 
difference between the 2 compartment and 
pbtk models.

The 2 compartment model predicted steady 
state for rapidly cleared compounds significantly 
better than the 1 compartment model.

• Unnecessary to separate richly and 
poorly perfused tissues.

• Assuming negligible blood volume 
and lumping together richly and 
poorly perfused tissues was shown 
to have little affect on the model 
outputs.

• Spleen, brain, and heart were 
considered richly perfused while 
adipose, bone, muscle, and skin 
were considered poorly perfused.

• We considered peak and 
steady state concentrations, 
elimination, and distribution 
phase duration.

• The peak concentration after 
separating the rest-of-body 
compartment into separate 
richly and poorly perfused 
compartments was the largest 
difference, all values still well 
within a factor of 2.

• QSAR for fraction of chemical unbound to plasma protein (Fub) built with in vitro human plasma protein binding assays 
(pharmaceuticals and ToxCast chemicals) is a generalized model ideal for toxicokinetic studies.

• Component QSAR models contain 10-15 2D descriptors, with metrics for hydrophobicity, aqueous solubility and charge 
highly ranked in each.

• Bounded box and principal component analysis outline an applicability domain (AD). 3D reliability estimate based on 
similarity to training set, deviation between individual predictions, and Fub prediction value.

• Excellent predictions in neutrals and acids, the charged state most commonly found in ToxCast.

• Fub predictions for ToxCast chemicals are better than those for pharmaceuticals. ToxCast chemicals largely within the AD.
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Bayesian Information 
Criterion (BIC) curve 
shows 10-15 descriptors 
ideal balance of accuracy 
and simplicity.

Learning curves show 
>300 pharmaceutical 
training set can predict 
Fub for ToxCast well.

Pharmaceuticals ToxCast

Method MAE RMSE MAE RMSE

kNN 0.164 0.242 0.136 0.221

SVM 0.177 0.251 0.146 0.216

RF 0.157 0.231 0.119 0.211

Con 0.155 0.225 0.122 0.196

Fub QSAR prediction quality metrics
Training
Drug Test
ToxCast I
ToxCast II

Principal component 
analysis shows 
overlap in key 
chemical space of 
pharmaceuticals and 
ToxCast chemicals.
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