1	
2	
3	
4	
5	
6	
7	Exhaust Emission Rates for Light-Duty On-road Vehicles in
8	MOVES201X
9	
10	
11	
12	
13	
14	
15	XX, 201X
16	
17	
18	USEPA Office of Transportation and Air Quality,
19	Assessment and Standards Division
20	
21	
22	
23	
24	
25	Disclaimer
26	
27 28 29 30 31	This technical report does not necessarily represent final EPA decisions or positions. It is intended to present technical analysis of issues using data that are currently available. The purpose of the release of such reports is to facilitate the exchange of technical information and to inform the public of technical developments which may form the basis for a final EPA decision, position, or regulatory action.
32	

1	Table of Contents	
2		
3 4	1 Gaseous Exhaust Emissions from Light-Duty Gasoline Vehicles (THC, CO, NO _x) Introduction	6
5	1.1 MOVES Background	6
6	1.1.1 Light-Duty Vehicles	6
7	1.1.2 Differences between MOVES and MOBILE	7
8	1.1.3 Overview	11
9	1.2 Emissions Sources (sourceBinID) and Processes (polProcessID)	12
10	1.2.1 The emissionRateByAge Table.	15
11	1.2.1.1 Age Groups (ageGroupID)	15
12	1.3 Exhaust Emissions for Running Operation	17
13	1.3.1 Operating Modes (opModeID)	17
14	1.3.2 Scope	19
15	1.3.3 Emission-Rate development: Subgroup 1 (Model years through 2000)	19
16	1.3.3.1 Data Sources	19
17	1.3.3.1.1 Vehicle Descriptors	19
18	1.3.3.1.1.1 Track Road-Load Coefficients: Light-Duty Vehicles	20
19	1.3.3.1.2 Test Descriptors	21
20	1.3.3.1.3 Candidate Data Sources	
21	1.3.3.2 Data Processing and Quality-assurance	
22	1.3.3.3 Sample-design reconstruction (Phoenix only)	
23	1.3.3.4 Source selection	
24	1.3.3.5 Methods	
25	1.3.3.5.1 Data-Driven Rates	
26	1.3.3.5.1.1 Rates: Calculation of weighted means	
27	1.3.3.5.1.2 Estimation of Uncertainties for Cell Means:	
28	1.3.3.5.2 Model-generated Rates (hole-filling)	
29	1.3.3.5.2.1 Rates	
30	1.3.3.5.2.1.1 Coast/Cruise/Acceleration	
31	1.3.3.5.2.1.2 Braking/Deceleration	34

1	1.3.3.5.3 Table Construction	36
2	1.3.3.6 Verification and Adjustment for High-Power Operating modes	37
3	1.3.3.7 Estimating Rates for non-I/M Areas	47
4	1.3.3.8 Stabilization of Emissions with Age	58
5	1.3.3.8.1 non-I/M Reference Rates	63
6	1.3.4 Emission-Rate Development: Subgroup 2 (MY 2001 and later)	65
7	1.3.4.1 Data Sources	65
8	1.3.4.1.1 Vehicle Descriptors	65
9	1.3.4.2 Estimating I/M Reference Rates	65
10	1.3.4.2.1 Averaging IUVP Results	66
11	1.3.4.2.2 Develop Phase-In Assumptions	71
12	1.3.4.2.3 Merge FTP results and phase-in Assumptions	75
13	1.3.4.2.4 Estimating Emissions by Operating Mode	81
14	1.3.4.2.4.1 Running Emissions	81
15	1.3.4.2.5 Apply Deterioration	86
16	1.3.4.2.5.1 Recalculate the logarithmic mean	86
17	1.3.4.2.5.2 Apply a logarithmic Age slope	86
18	1.3.4.2.5.3 Apply the reverse transformation	89
19	1.3.4.2.6 Estimate non-I/M References	90
20	1.4 Exhaust Emissions for Start Operation	91
21	1.4.1 Estimation of Emission Rates for Cold Starts	91
22	1.4.1.1 Subgroup 1: Vehicles manufactured in model year 1995 and earlier	91
23	1.4.1.1.1 Data Sources	91
24	1.4.1.1.2 Defining Start Emissions	92
25	1.4.1.2 Subgroup 2: Vehicles manufactured in MY1996 and later	93
26	1.4.2 Estimation of Emission Rates for Hot to Warm Starts	94
27	1.4.2.1 Subgroup 1: Model Years 2003 and earlier	94
28	1.4.2.1.1 Relationship between Soak Time and Start Emissions	94
29	1.4.2.2 Subgroup 2: Model Years 2004 and Later	96
30	1.4.3 Applying Deterioration to Starts	105
31	1.4.3.1 Assessing Start Deterioration in relation to Running Deterioration	
32	1.4.3.2 Translation from Mileage to Age Basis	114
33	1.4.3.3 Application of Relative Multiplicative Deterioration	116

1	1.5 Inc	corporating Tier 3 Emissions Standards	123
2	1.5.1	Averaging FTP Results (Step 1)	124
3	1.5.2	Develop Phase-In Assumptions (Step 2)	125
4	1.5.3	Merge Cycle Results and Phase-In Assumptions (Step 3)	130
5	1.5.4	Estimating Emissions by Operating Mode (Step 4)	134
6	1.5.5	Apply Deterioration (Step 5)	139
7	1.5.6	Recalculate the logarithmic mean	141
8	1.5.7	Apply a logarithmic Age slope	141
9	1.5.8	Apply the reverse transformation	142
10	1.5.9	Estimate non-I/M References (Step 6)	142
11	1.5.10	Start Emissions	142
12	1.6 De	evelopment of Emission Rates representing California Standards	142
13	1.6.1	Averaging IUVP Results	144
14	1.6.2	Develop Phase-In assumptions	144
15	1.6.3	Merge FTP Results and Phase-In assumptions	145
16	1.6.4	Scaling CA/177 rates to Federal Rates	148
17	1.6.5	Availability	149
18	1.6.6	Early Adoption of National LEV Standards	150
19	1.7 Re	plication of Rates	151
20	2 Particul	ate-Matter Emissions from Light-Duty Vehicles	152
21	2.1 Pa	rticulate-Matter Emission Rates for Model Year 2004 and Earlier Vehicles	152
22	2.1.1	Particulate Measurement in the Kansas City Study	152
23	2.1.2	New Vehicle or Zero Mile Level (ZML) Emission Rates	156
24	2.1.2	.1 Longitudinal Studies	157
25	2.1.2	.2 New Vehicle, or ZML Emission Rates and Cycle Effects	158
26	2.1.2	.3 Aging or Deterioration in Emission Rates	163
27	2.1.3	Estimating Elemental Carbon Fractions	166
28	2.1.4	Modal Running Emission Rates	169
29	2.1.5	Modal Start Emission Rates	172
30	2.2 Pa	rticulate-Matter Emission Rates for Model Year 2004 and Later Vehicles	173
31	2.2.1	Introduction	173
32	2.2.1	.1 Dataset Description	173
33	2.2.1	.2 Fuel Considerations	174

1	2.2.2 Calo	culating FTP and LA92 Cycle Rates Using MOVES Emission Rates	176
2	2.2.3 Esti	Estimating Start Emissions for Particulate Matter	
3	2.2.3.1	Start Emissions for Vehicles with Port Fuel Injection (PFI)	177
4	2.2.3.2	Start Emissions for Vehicles with Gasoline Direct Injection (GDI)	178
5	2.2.4 Esti	mating Running Emissions for Particulate Matter (PM)	179
6	2.2.4.1	Running Emissions for Vehicles with Port Fuel Injection (PFI)	179
7	2.2.4.2	Running Emissions for Vehicles with Gasoline Direct Injection (GDI)	180
8	2.2.5 Dev	veloping Base Emission Rates for Model Year 2004 and Later	181
9	2.2.5.1	Additional Assumptions Used to Determine GDI Truck Scaling Factors	182
10	2.2.5.2	EC/NonECPM Fractions	183
11	2.2.6 Calo	culation of Fleet-Average PM Emission Rates in MOVES by Model Year	183
12	2.2.6.1	Vehicle Population Data for Model Years 2004 – 2016	184
13	2.2.6.2	Modeling Vehicle Populations for Model Years After 2016	184
14	2.2.6.3	Combining Rates by Model Year	185
15	2.2.7 Inco	orporating Tier 3 Emissions Standards for Particulate Emissions	187
16	2.2.7.1	Apply Phase-in Assumptions	188
17	2.2.7.2	Apply Scaling Fractions	189
18	2.2.7.3	Simulate the Extended Useful Life	191
19	2.2.8 Inco	orporating the LEV-III Standard for Particulate Matter	193
20 21	3 Gaseous an 194	d Particulate Emissions from Light-Duty Diesel Vehicles (THC, CO, NC) _x , PM)
22	4 Crankcase	Emissions	195
23	4.1 Backg	round	195
24	4.2 Model	ling Crankcase Emissions in MOVES	195
25	4.3 Light-	duty Gasoline Crankcase Emissions	195
26	4.4 Light-	duty Diesel Crankcase Emissions	196
27	5 Nitrogen O	xide Composition	198
28	5.1 Light-	Duty Gasoline Vehicles	198
29	5.2 Motor	cycles	198
30	5.3 Light-	duty Diesel Vehicles	198
31 32	* *	A. Revisions to the pre-2004 model year PM _{2.5} emission rates between and MOVES2014	200
33	7 References		201

1 Gaseous Exhaust Emissions from Light-Duty Gasoline Vehicles (THC,

2 CO, NO_x Introduction

3 1.1 MOVES Background

- 4 The material presented in this document is a component of a much larger effort, including the
- 5 estimation of emission rates for heavy-duty vehicles, estimation of evaporation emissions,
- 6 estimation of usage and activity patterns for vehicles, the compilation and storage of all types of
- 7 input data in the MOVES database, and the algorithms that combine and process input
- 8 information during model runs, translating inputs and modeling assumptions into inventory
- 9 estimates.

13

14

15

16 17

18

19

20

21

22

23

24

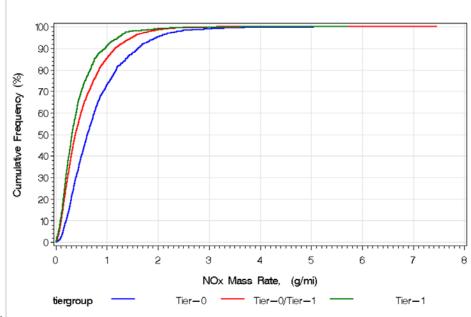
- 10 Readers not familiar with MOVES may find it useful to access additional documentation
- providing a broader view of MOVES, the rationale for its development as a replacement for
- 12 MOBILE6, and broad overviews of its design.
 - The "*Initial Proposal*" for MOVES describes the impetus behind the effort to design a new inventory model from the ground up, with the goal of developing a tool both more comprehensive and flexible than its predecessor.¹
 - A subsequent "*Draft Design and Implementation Plan*" describes the MOVES design and introduces the reader to concepts and terminology developed for the new model.²
 - Readers wishing to further understand the development of the modal design for running emissions can consult the "*Methodology for Developing Modal Emission Rates*," as well as the "*Shoot Out*" conducted among several candidate approaches.
 - This document focuses on development of inputs to the MOVES Database. Readers
 interested in further understanding the processes used by the model to process inputs into
 inventory estimates can consult the MOVES Software Design Reference Manual
 (SDRM).⁵
- A large volume of additional documentary and supporting materials can be obtained at
- http://www.epa.gov/otag/models/moves/moves-reports.htm. In general, the most recent and
- 27 relevant materials are at the top of the page, with older material located further down. However,
- as the previous references show, references posted throughout the page are still relevant to the
- 29 MOVES model and database in its most recent versions.

30 1.1.1 Light-Duty Vehicles

- 31 This chapter describes the technical development of emission rates for gaseous exhaust
- 32 pollutants for light-duty vehicles. These pollutants include total hydrocarbons (THC), carbon
- 33 monoxide (CO) and oxides of nitrogen (NO_X). The resulting model inputs are included in the
- 34 MySOL database supporting the MOVES model.
- 35 Light-duty vehicles are defined as cars and trucks with gross vehicle weight ratings (GVWR) of
- less than 8,500 lbs. For purposes of emissions standards "cars" are designated as "LDV" or
- 37 "passenger cars" (PC), and are distinguished from "trucks" which are further sub-classified as
- 38 "light light-duty trucks" (LLDT) and "heavy light-duty trucks" (HLDT), on the basis of GVWR
- ≤ 6000 lbs. and GVWR > 6000 lbs., respectively. The two broad classes, LLDT and HLDT, are
- 40 further subdivided into LDT1/LDT2, and LDT3/LDT4. As these subdivisions are highly specific
- and technical, we do not describe them here. Interested readers can find more information at

- 1 http://www.epa.gov/otaq/standards/weights.htm. As MOVES pools all truck classes for
- 2 purposes of inventory estimation, we will refer to "cars" and "trucks" throughout. The
- 3 development of motorcycle emission rates in MOVES are covered in a separate report.⁶
- 4 Exhaust emissions from light-duty vehicles have contributed substantially to urban air pollution,
- 5 and have received a great deal of scientific, political and regulatory attention over the past forty
- 6 years. The Clean Air Act (CAA), passed in 1970 (and amended in 1977 and 1990), set "National
- 7 Ambient Air-Quality Standards" (NAAQS) for HC, CO and NOx. Carbon monoxide is targeted
- 8 for its respiratory toxicity, and HC and NOx largely for their roles in production of ground-level
- 9 ozone, another pollutant targeted under the CAA. Regulations designed to reduce automobile
- 10 emissions to facilitate achievement of compliance with the NAAQS include Tier-1 standards
- introduced in the mid 1990's, followed by National Low-Emission Vehicle (NLEV) standards
- starting in 2001, Tier 2 standards starting in 2004, and Tier 3 standards starting in 2017.
- 13 Concurrently, the state of California and additional states electing to adopt "California" in lieu of
- "Federal" standards have implemented "LEV-I," "LEV-II" and "LEV-III" standards.
- 15 In addition to introducing more stringent tailpipe standards, requiring introduction of oxygenated
- 16 gasolines, and modifying test procedures, the 1990 CAA Amendments expanded requirements
- 17 for Inspection-and-Maintenance programs (I/M). The role played by I/M programs in many
- urban areas over the past twenty years means that accounting for the existence of such programs
- is a primary consideration in modeling tailpipe emissions from light-duty vehicles.
- 20 Through a combination of regulation and improved technology, gaseous tailpipe emissions from
- 21 light-duty vehicles have declined substantially over the past several decades. Important
- 22 milestones in engine and emissions control technology have included the introduction of fuel
- 23 injection (replacing carburetion), positive crankcase ventilation (PCV), exhaust gas recirculation
- 24 (EGR), catalytic converters, electronic engine controls, and on-board diagnostic systems (OBD).
- 25 Development of emission rates thus largely involves constructing a "numerical" account of this
- 26 history. However, a detailed account of these developments is beyond the scope of this
- 27 document which will focus on the development of emission rates as inputs to the MOVES
- database for the purposes of developing mobile-source emission inventories. However, this
- 29 history has been well described elsewhere, and we refer interested readers to the USEPA
- website and to the peer-reviewed literature. 8,9,10,11,12,13

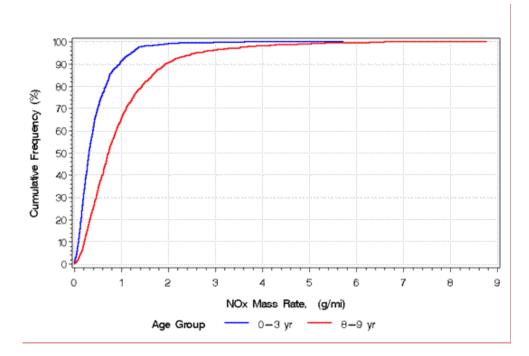
38


1.1.2 Differences between MOVES and MOBILE

- 32 At the outset, it is useful to highlight four important differences between MOVES and MOBILE.
- 33 (1) While intending to estimate average emissions across the entire vehicle fleet, MOVES does
- not distinguish between "normal" and "high emitters," (2) MOVES inverts MOBILE's approach
- 35 to inspection and maintenance, (3) MOVES is a "modal" model, whereas MOBILE is "non-
- 36 modal," and (4) emission rates developed for MOVES are expressed in time-specific, rather than
- distance specific terms, i.e., mass/time (g/hr), rather than mass/distance (g/mi, g/km).
- 1. A fundamental difference between MOVES and MOBILE is that MOVES does not classify
- 40 vehicles into "emitter classes." The MOBILE model(s) provided different sets of emission rates
- 41 for "normal" and "high" emitters. While arbitrary, this distinction made qualitative and practical
- sense because the emission rates were themselves averages of FTP test results.

We didn't attempt a similar approach in MOVES for several reasons, some conceptual, some practical. The main conceptual reason is that in review of data, we did not see clear evidence of distinct "high emitter" subpopulations, as might be evidenced by observation of bimodal distributions. Rather, review of emissions data seems to show highly skewed but continuous distributions, which we treat as log-normal for modeling purposes. Clearly, the vehicles in the upper percentiles of the distributions make disproportionate contributions to the inventory, assuming similar driving patterns to cleaner vehicles in the lower percentiles. Based on these observations, our approach has been to capture the mean of the entire distribution, including the "upper tail." We illustrate these concepts using two examples, based on aggregate cycle means from the Phoenix I/M program, measured on the IM147 cycle.

Figure 1-1 shows cumulative distributions of NO_x emissions for "young" cars, aged 0-3 years, representing two sets of emissions standards. The blue distribution represents "Tier 0" vehicles, manufactured prior to 1994; the green represents "Tier 1" vehicles, manufactured in 1996-97, and the red represents a mix of the two, during the Tier-1 phase-in period (1994-95). Note that the combination of reduced standards and improved technology pushes the entire distribution "leftward" or towards lower emission levels.


Figure 1-1. Cumulative distributions of running NO_x for cars, Age 0-3, measured on the IM147 cycle (Source:

Phoenix I/M program).

A similar example, Figure 1-2, shows NO_x distributions for Tier-1 vehicles (MY1996-97) at two different age levels, 0-3 and 8-9 years old, shown in blue and red, respectively. Qualitatively, the picture looks very similar to Figure 1-1, except that in this case we can see the effect of age in shifting the entire distribution "rightwards," towards higher emission levels. Note that the entire distribution shifts, including the lower percentiles, not only the "high emitters" in the upper

26 percentiles.

A pattern not necessarily apparent in the previous figure emerges if we view the same distributions on a logarithmic scale, as shown in Figure 1-3. In the logarithmic view, we can see that the distribution at 8-9 years is the same is that at 0-3 years, but shifted to the right; that is, the shapes (variances) of the two distributions are very similar, but the means are shifted. These figures illustrate the "logarithmic" or "multiplicative" scaling typical in emissions data. The utility of logarithms in modeling follows from the fact that multiplicative patterns representing actual changes can be represented and projected very conveniently as additive changes in logarithmic space. These patterns obtain whether the data are analyzed with respect to technology, age or power. The development of emission rates, as described in this chapter (and for PM in Chapter 2), relies heavily on these concepts. Figure 1-4 shows a similar picture to Figure 1-2, except for THC; what is notable is that the THC distributions are even more skewed than the NO_x distributions.

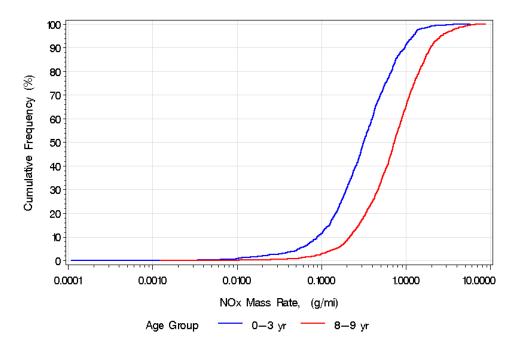
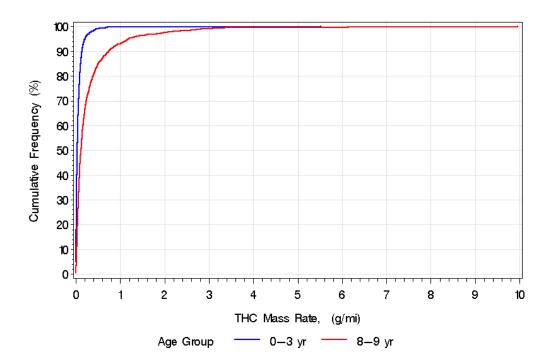



Figure 1-4. Cumulative distributions of running THC for Tier-1 cars, at two age levels, measured on the IM147 cycle (Source: Phoenix I/M program).

- 1 In addition to the conceptual reason just illustrated, there were practical reasons for not creating
- one or more "high-emitter" classes: (1) a vehicle or test showing high emissions for one
- 3 pollutant need not show high emissions for other pollutants, (2) high emissions may be a
- 4 transitory phenomenon in many cases, i.e., vehicles with high results for one set of
- 5 measurements may not show similar results if re-measured; in such cases it is very difficult to
- 6 determine whether the apparent change is due to an actual change in the vehicle or the
- 7 notoriously high variability of emissions measurements, (3) given that rate development for
- 8 MOVES operating modes is not coupled to the FTP (or any particular cycle), convenient and
- 9 non-arbitrary definitions of "high emitter" are not readily available, and (4) distinction of emitter
- 10 classes would require that the intensive process of rate development be repeated for each class,
- including the projection of emissions by age and power, and development of distinct adjustments
- 12 for temperature and fuel (performed separately). The detailed data required for these analyses
- and their projection into the future is not available.
- 14 2. A second important difference between MOVES and MOBILE is that MOVES inverts
- MOBILE's approach to inspection and maintenance. That is, the emission rates provided with
- MOBILE represented "non-I/M" conditions, and MOBILE represented I/M conditions by
- making adjustments during model runs. By contrast, the MOVES input table contains two sets
- of rates, representing "I/M reference" and "non-I/M" conditions, respectively. In development
- of these rates, "I/M conditions" were assigned as the default case, and rates representing "non-
- 20 I/M" conditions were developed in relation to rates representing "I/M conditions." During model
- 21 runs, MOVES represents particular I/M programs as a function of both sets of rates, modified by
- 22 adjustments calculated to represent the parameters of specific programs. These topics are
- 23 discussed in greater detail in 1.3.3.6.
- 24 3. A third major difference between MOVES and MOBILE is that MOVES is modal, whereas
- 25 MOBILE was not. This feature gives MOVES tremendous flexibility, allowing users to
- 26 represent any driving pattern, across a range of temporal and spatial scales. The modal emission
- 27 rates are applied consistently at the different analysis scales under which MOVES operates –
- 28 national, county and project.
- 4. Finally, emission rates in MOVES are expressed as "time-specific" rates (mass/time, g/hr), as
- opposed to "distance-specific" rates (g/mi), as were rates in MOBILE. With respect to model
- design, the purpose for this change was to introduce a measurement basis that would be
- 32 applicable to all emissions sources, processes, and operating modes, including those for which a
- distance-specific basis is not applicable. Examples include all emissions for nonroad equipment,
- which are expressed on a mass/work basis in the NONROAD model (g/hp-hr, g/kW-hr), and idle
- or "hotelling" emissions for all sources, which occur while the source is stationary.

1.1.3 Overview

- 37 Section 1 describes the structure of the MOVES emissionRateByAge table, as it applies to
- 38 gaseous-pollutant emissions from gasoline-fueled light-duty vehicles. The values in this table
- describe the "base rates" (meanBaseRate). These values represent mean emissions on the
- 40 MOVES reference fuel on a temperature range of 68-86 °F, and unadjusted for the effects of
- 41 temperature, humidity, air-conditioning and inspection-and-maintenance programs (I/M). The
- 42 adjustments for these factors, applied during MOVES runs, are described in a separate report. 14

- 1 The emissionRateByAge table includes rates representing start and running operation, defined as
- 2 distinct "processes" in MOVES. Rates representing "running operation" are described in Section
- 3 1.3, and those for "start operation" are described in section 1.4.
- 4 For running emissions, section 1.3.3 describes the development of emission rates for vehicles
- 5 manufactured prior to model year 2000. Sub-sections 1.3.3.1 and 1.3.3.2 describe the processes
- 6 of data selection and quality assurance. Rates were generated either directly from available data
- 7 (see 1.3.3.5.1) or by development and application of statistical "hole-filling" models (see
- 8 1.3.3.5.2). These rates were derived using data from the Phoenix I/M program and represent
- 9 rates characteristic of a program with features similar to those in the Phoenix program. ¹⁵ Because
- the analyses described in sub-sections 1.3.3 and 1.3.4 relied on data collected on IM240 and
- 11 IM147 cycles, we thought it appropriate to evaluate the extrapolation with power to high levels
- beyond those covered by the I/M cycles. The development and application of adjustments to
- rates in operating modes at high power is discussed in sub-section 1.3.3.5.
- 14 As mentioned, the rates described in 1.3.3.5 represent emission rates for vehicles under the
- requirements of an inspection-and-maintenance program, specifically the program in Phoenix,
- AZ, during calendar years 1995-2005. For this reason, we refer to these rates as "I/M reference
- 17 rates." With respect to the I/M reference rates, we describe the approach taken to estimating
- rates in non-I/M areas, designated as the "non-I/M reference rates", in 1.3.3.7. For runs
- 19 representing areas without an I/M program, MOVES uses the non-I/M reference rates. For runs
- 20 representing areas with I/M programs, MOVES adjusts the I/M reference rates to account for the
- 21 particular aspects of the program(s) represented. It is important to note that the I/M reference
- 22 rates assume full compliance with program requirements within the area. MOVES discounts
- estimated emissions for non-compliance during a model run, which is then represented in the
- 24 results.
- We have observed, as have other researchers, that emissions deterioration tends to follow
- 26 exponential, or log-linear trends over the first 8-9 years. However, after this point, the trends
- 27 enter a declining phase, during which increases in mean emissions continue at a reduced rate. For
- 28 the I/M reference rates, we assume that rates stabilize between 12 and 15 years of age. For the
- 29 non-I/M reference rates, we assume that they continue to increase at reduced rates through 20+
- years of age. The analyses guiding these assumptions are described in 1.3.3.8.
- For start emissions, we also applied different methods to different datasets to derive two sets of
- rates. For vehicles manufactured in 1995 and earlier, the process of rate development is
- described in 1.4.1.1. For vehicles manufactured in 1996 and later, the process of rate
- development is described in Section 1.4.1.2. We assume that emissions deterioration affects start
- as well as running emissions. Sub-section 0 describes how we estimate deterioration in start
- 36 emissions in relation to deterioration in running emissions.
- Note that energy consumption rates for light-duty cars, trucks and motorcycles are documented
- 38 in a separate report. 16

39 1.2 Emissions Sources (sourceBinID) and Processes (polProcessID)

- 40 In MOVES terminology, pollutants are emitted by "sources" via one or more "processes."
- Within processes, emissions may vary by operating mode, as well as by age Group. The relevant
- pollutants are the gaseous criteria pollutants: total hydrocarbons (THC), carbon monoxide (CO)
- and oxides of nitrogen (NO_x). The relevant processes are exhaust emissions emitted during

- 1 engine start and running processes, i.e., "exhaust start" and "exhaust running." Combinations of
- 2 pollutant and process relevant to this chapter are shown in Table 1-1. For start emissions, the
- 3 meanBaseRate is expressed in units of g/start, and for running emissions, the meanBaseRate is
- 4 expressed in units of g/hr, which MOVES terminology designates more specifically as "g/SHO,"
- 5 where SHO denotes "source-hours operating."
- 6 Note that this document describes only emission rates for exhaust hydrocarbons. Modeling of
- 7 emission rates for evaporative hydrocarbons is described in a separate report. ¹⁷
- 8 For these pollutants and processes emissions sources include light-duty vehicles (cars and
- 9 trucks). Note that the engine-size and weight-class attributes are not used to classify vehicles.
- For light-duty vehicles, these parameters are assumed not to influence emissions, as these
- vehicles are required to meet applicable standards irrespective of size and weight.
- 12 In the emissionRateByAge table, the emissions source is described by a label known as the
- 13 "sourceBinID". This identifier is constructed as a "pattern variable" incorporating the attributes
- shown in Table 1-2. Assignment of the attributes just described allows assignment of the source-
- bin identifier. The identifier is a 19-digit numeric label, of the form "1fftteeyysssswwww00,"
- where each component is defined as follows:

- 18 1 is the literal value "1," which serves as a leading value to set the magnitude of the entire label,
- 20 ff represents the fueltypeID,
- 21 *tt* represents the engTechID,
- 22 ee represents the regClassID,
- 23 vy represents the shortModYrGrpID,
- 24 ssss represents the engSizeID,
- 25 wwww represents the weightClassID, and
- 26 00 is the literal value "00," which serves to provide two trailing zeroes at the end of the label.
- 27 The individual attributes are assembled in the proper sequence by constructing the sourceBinID
- as a pattern variable, where

$$sourcebinID = 1 \times 10^{18}$$

$$+ fuelTypeID \times 10^{16}$$

$$+ engTechID \times 10^{14}$$

$$+ regClassID \times 10^{12}$$

$$+ shortModYrGroupID \times 10^{10}$$

$$+ engSizeID \times 10^{6}$$

$$+ weightClassID \times 10^{2}$$

$$Equation 1-1$$

As an example, Table 1-3 shows the construction of sourceBin labels for light-duty gasoline vehicles, manufactured in model years 1998 and 2010.

3

Table 1-1. Combinations of pollutants and processes for gaseous pollutant emissions.

pollutantName	pollutantID	processName	processID	polProcessID
НС	1	Running exhaust	1	101
		Start exhaust	2	102
СО	2	Running exhaust	1	201
		Start exhaust	2	202
NO _x	3	Running exhaust	1	301
		Start exhaust	2	302

5 6

Table 1-2. Construction of sourceBins for exhaust emissions for light-duty vehicles

Parameter	MOVES Database Attribute ¹	Values			
Fuel type	fuelTypeID	Gasoline = 01			
		Diesel = 02			
		E85 = 05			
Engine Technology	engtechid	01= "Conventional internal			
		Combustion"			
Regulatory Class	regClassID	20 = "Car" (LDV)			
		30 = "Truck" (LDT)			
Model-Year group	shortModYrGroupID	Varies ²			
Engine Size Class	engSizeID	<not used=""></not>			
Vehicle Test Weight	weightClassID	<not used=""></not>			
as used in the database table "emissionRateByAge."					

² as defined in the database table "modelYearGroup."

fuelTypeID	engTechID	regClassID	shortModYrGroupID	sourceBinID
1 (Gasoline)	1 (conventional)	20 (Car)	98 (MY 1998)	1 01 01 20 98 0000 0000 00
1	1	30 (Truck)	30 (MY 2010)	1 01 01 30 98 0000 0000 00
1	1	20 (Car)	98 (MY 1998)	1 01 01 20 30 0000 0000 00
1	1	30 (Truck)	30 (MY 2010)	1 01 01 30 30 0000 0000 00

4

14

20

1

1.2.1 The emissionRateByAge Table.

- 5 The rates described in this document are stored in the MOVES emissionRateByAge table. This
- 6 table includes five fields, as shown in Table 1-4. Consistent with the MOVES modal approach,
- 7 the table contains mean base emission rates (meanBaseRate) and associated estimates of
- 8 uncertainty in these means for motor vehicles classified as "emissions sources" (sourceBinID),
- 9 and by "operating mode" (opModeID). The table includes rates for vehicles inside and outside of
- 10 Inspection-and-Maintenance Areas. The uncertainty estimates are expressed as coefficients of
- variation for the mean (meanBaseRateCV); this term is synonymous with the "relative standard
- error (RSE). In this section, we will describe the processes of data classification by source bin
- and operating mode, calculation of mean emission rates, and statistical evaluation of the results.

1.2.1.1 Age Groups (ageGroupID)

- 15 To account for emissions deterioration, MOVES estimates emission rates for vehicles in a series
- of age ranges, identified as age groups (ageGroupID). Seven groups are used, as follows: 0-3,
- 17 4-5, 6-7, 8-9, 10-14, 15-19, and 20+ years. The values of the attribute ageGroupID for these
- 18 classes are 3, 405, 607, 809, 1014, 1519, and 2099, respectively. These groups assume that the
- most rapid change in emissions as vehicles age occurs between 4 and 9 years.

Table 1-4. Description of the EmissionRateByAge table.

1 abic 1-4.	Table 1-4. Description of the EmissionRateByAge table.				
Field	Symbol	Description			
SourceBinID		Source Bin identifier. See Table 1-2 and Table 1-3 and Equation 1-1.			
PolProcessID		Combines pollutant and process. See Table 1-1.			
opModeID		Operating mode: defined separately for running and start emissions. See Table 1-5.			
ageGroupID		Indicates age range for specific emission rates. See 1.2.1.1.			
meanBaseRate	$\overline{E}_{ m cell}$	Mean emission rates in areas not influenced by inspection and maintenance programs.			
meanBaseRateCV	$\mathrm{CV}_{\overline{E}}$	Coefficient of variation of the cell mean (relative standard error, RSE), for the meanBaseRate.			
meanBaseRateIM		Mean emission rate in areas subject to an I/M program with features similar to the Phoenix program .			
meanBaseRateIM CV		Coefficient of variation of the cell mean (relative standard error, RSE), for the meanBaseRateIM.			
dataSourceID		Numeric label indicating the data source(s) and method(s) used to develop specific rates.			

1.3 Exhaust Emissions for Running Operation

- 2 Running operation is defined as operation of internal-combustion engines after the engine and
- 3 emission control systems have stabilized at operating temperature, i.e., "hot-stabilized"
- 4 operation.

1

5 1.3.1 Operating Modes (opModeID)

- 6 For running emissions, the key concept underlying the definition of operating modes is "vehicle-
- 7 specific power" (VSP, P_V). This parameter represents the tractive power exerted by a vehicle to
- 8 move itself and its cargo or passengers. 18 It is estimated in terms of a vehicle's speed and mass,
- 9 as shown in Equation 1-2

$$P_{V,t} = \frac{Av_t + Bv_t^2 + Cv_t^3 + mv_t(a_t + g \cdot \sin(\theta_t))}{m}$$
 Equation 1-2

- In this form, VSP ($P_{V,t}$, kW/Mg) is estimated in terms of vehicles':
- speed at time t (v_t , m/sec), where t is in seconds
- vehicle acceleration a_t , defined as $v_t v_{t-1}$, (m/sec²)
- road grade, where $sin(\theta_t)$ = fractional road grade at time t, and g is the acceleration due to gravity (9.8 m/se^{c2}), ¹ mass m (Mg) (usually referred to as "weight,")
 - track-road load coefficients *A*, *B* and *C*, representing rolling resistance, rotational resistance and aerodynamic drag, in units of kW-sec/m, kW-sec²/m² and kW-sec³/m³, respectively.³
- For purposes of the data used in this analysis, the grade is assumed to be zero because the
- 19 vehicleswere measured on chassis dynamometers. Note that during model operation, MOVES
- 20 accounts for grade in project-scale when characterizing vehicle activity. For a description of this
- 21 process, see the "Vehicle Population and Activity" report. 19
- 22 On the basis of VSP, speed and acceleration, a total of 23 operating modes are defined for the
- running-exhaust process (Table 1-5). Aside from deceleration/braking, which is defined in terms
- of acceleration, and idle, which is defined in terms of speed alone, the remaining 21 modes are
- defined in terms of VSP within broad speed classes. Two of the modes represent "coasting,"
- where VSP < 0, and the remainder represent "cruise/acceleration," with VSP ranging from 0 to
- 27 over 30 kW/Mg. For reference, each mode is identified by a numeric label, the "opModeID."
- 28 The deceleration/braking definition will overlap with some of the other operating modes. In these
- 29 cases, the deceleration/braking categorization takes precedence over other definitions.

30

15

16 17

¹ Note that the data used in developing the emission rates was measured on chassis dynamometers, hence the grade term was neglected in the calculation.

Operating Mode	Operating Mode Description	WOVES operating mod Vehicle-Specific Power (VSPt, kW/Mg)	Vehicle Speed (v _t ,mi/hr)	Vehicle Acceleration (at, mi/hrsec) ²
0	Deceleration/Braking			$a_t \le -2.0 \text{ OR}$ $(a_t < -1.0 \text{ AND}$ $a_{t-1} < -1.0 \text{ AND}$ $a_{t-2} < -1.0)$
1	Idle		$-1.0 \le v_t < 1.0$	
11	Coast	VSP _t < 0	$1 \leq v_t < 25$	
12	Cruise/Acceleration	$0 \leq VSP_t < 3$	$1 \leq v_t < 25$	
13	Cruise/Acceleration	$3 \leq VSP_t < 6$	$1 \leq v_t < 25$	
14	Cruise/Acceleration	$6 \leq VSP_t < 9$	$1 \leq v_t < 25$	
15	Cruise/Acceleration	9 \leq VSP _t $<$ 12	$1 \leq v_t < 25$	
16	Cruise/Acceleration	$12 \le VSP_t$	$1 \leq v_t < 25$	
21	Coast	$VSP_t < 0$	$25 \le v_t < 50$	
22	Cruise/Acceleration	$0 \leq VSP_t < 3$	$25 \le v_t < 50$	
23	Cruise/Acceleration	$3 \leq VSP_t < 6$	$25 \le v_t < 50$	
24	Cruise/Acceleration	$6 \leq VSP_t < 9$	$25 \le v_t < 50$	
25	Cruise/Acceleration	9 \leq VSP _t $<$ 12	$25 \le v_t < 50$	
27	Cruise/Acceleration	$12 \le VSP < 18$	$25 \le v_t < 50$	
28	Cruise/Acceleration	$18 \le VSP < 24$	$25 \le v_t < 50$	
29	Cruise/Acceleration	$24 \le VSP < 30$	$25 \le v_t < 50$	
30	Cruise/Acceleration	30 ≤ VSP	$25 \le v_t < 50$	
33	Cruise/Acceleration	VSP₁< 6	$50 \le v_t$	
35	Cruise/Acceleration	$6 \leq VSP_t < 12$	$50 \le v_t$	
37	Cruise/Acceleration	12 ≤ VSP <18	$50 \le v_t$	
38	Cruise/Acceleration	$18 \le VSP < 24$	$50 \le v_t$	
39	Cruise/Acceleration	$24 \le VSP < 30$	$50 \le v_t$	
40	Cruise/Acceleration	30 ≤ VSP	$50 \le v_t$	

3

 $^{^2}$ In developing emission rates, the grade term was neglected. However, in calculation of opeating mode distributions, MOVES may account for grade. See accompanying text. Note also that acceleration used in defining this operating mode was expressed in mi/hr-sec, *not* m/sec 2 , as in the VSP equation.

1	1.3.2 Scope					
2 3 4 5 6 7 8 9 10 11 12 13 14	In estimation of energy consumption for MOVES2004, it was possible to combine data from various sources without regard for the residence locations for vehicles measured. In contrast, when turning attention to the regulated gaseous pollutants, it is essential to know with some degree of confidence whether vehicles had been subject to inspection-and-maintenance (I/M) requirements at or previous to the time of measurement. After reviewing data sources, it became clear that the volumes of data collected within I/M areas vastly exceeded those collected in non-I/M areas. We also concluded that I/M programs themselves could provide large and valuable sources of data. In consideration of the demanding analytic tasks posed by the ambitious MOVES design, we elected to estimate rates for vehicles in I/M areas first, as the "base-line" or "default" condition. Following construction of a set of rates representing I/M "reference" conditions, the plan was to estimate rates for non-I/M areas relative to those in I/M areas. This approach is an inversion of that used in MOBILE6, in which "non-I/M" is the "default condition" relative to which "I/M" emissions are calculated during a model run.					
15 16 17	In addition, the rates described below represent emissions on the FTP temperature range $(68 - 80)$ to provide a baseline against which temperature adjustments would be applied during model runs.					
18 19	1.3.3 Emission-Rate development: Subgroup 1 (Model years through 2000) 1.3.3.1 Data Sources					
20 21	For emissions data to be eligible for use in MOVES development, several requirements were mposed:					
22 23	 To derive rates for operating modes, it was essential to acquire data measured on transient tests. 					
24 25	• Data had to be measured at a frequency of approximately 1 Hz, e.g., continuous or "second-by-second" measurements.					
26 27	• To make allowance for application of temperature adjustments (developed separately), it was necessary to know the ambient temperature at the time of test.					
28 29	• Vehicles were subject to I/M program requirements at the time of measurement.					
30	1.3.3.1.1 Vehicle Descriptors					
31 32	In addition to the requirements listed above, complete descriptive information for vehicles was required. Vehicle parameters required for incorporation into MOVES are shown in Table 1-6.					

Table 1-6. Required vehicle parameters.

Parameter	Units	Purpose
VIN		Verify MY or other parameters
Fuel type		
Make		
Model		
Model year		Assign sourceBinID, calculate age-at-test
Vehicle class		Assign sourceBinID
GVWR	lb	Distinguish trucks from cars (LDV)
Track road-load power	hp	Calculate track road-load coefficients A, B and C

3

4 1.3.3.1.1.1 Track Road-Load Coefficients: Light-Duty Vehicles

For light-duty vehicles, we calculated the track load coefficients from the "track road load power at 50 mph" (TRLP, hp), based on Equation 1-3.²⁰

7

$$A = PF_A \cdot \left(\frac{\text{TRLHP} \cdot c_1}{v_{50} \cdot c_2}\right)$$

$$B = PF_B \cdot \left(\frac{\text{TRLHP} \cdot c_1}{\left(v_{50} \cdot c_2\right)^2}\right)$$

$$C = PF_C \cdot \left(\frac{\text{TRLHP} \cdot c_1}{\left(v_{50} \cdot c_2\right)^3}\right)$$
Equation 1-3

8

9 where:

10 $PF_A = default power fraction for coefficient A at 50 mi/hr (0.35),$

11 PF_B = default power fraction for coefficient B at 50 mi/hr (0.10),

12 PF_C = default power fraction for coefficient C at 50 mi/hr (0.55),

13 $c_1 = a$ constant, converting TRLP from hp to kW (0.74570 kW/hp),

 $v_{50} = a \text{ constant vehicle velocity (50 mi/hr)},$

15 $c_2 = a$ constant, converting mi/hr to m/sec (0.447 m·hr/mi·sec)).

- 17 In the process of performing these calculations, we converted from English to metric units, in
- order to obtain values of the track road-load coefficients in SI units, as listed above. Values of
- 19 TRLP were obtained from the Sierra I/M Look-up Table. 21

1.3.3.1.2 **Test Descriptors**

In addition, a set of descriptive information was required for sets of emissions measurements on specific vehicles. Essential items for use in rate development are listed in Table 1-7.

4 5

1

2

3

Table 1-7. Required test parameters.

Parameter	Units	Purpose
Date		Determine vehicle age at test
Time of day		Establish sequence of replicates
Ambient temperature	°F	Identify tests on target temperature range
Test Number		Identify 1st and subsequent replicates
Test duration	sec	Verify full-duration of tests
Test result	pass/fail	Assign tests correctly to pass or fail categories
Test weight	lb	Calculate vehicle-specific power

6

7

8

9

10

11 12

13

14

15

1.3.3.1.3 Candidate Data Sources

In addition to the parameters listed in Table 1-6 and Table 1-7, datasets with historic depth and large sample sizes were highly desirable, to characterize the high variability typical of exhaust emissions as well as trends with vehicle age.

At the outset, a large volume of emissions data was available, representing over 500,000 vehicles when taken together (Table 1-8). In some cases they could be combined as broadly comparable pairs representing I/M and non-I/M conditions. While not all available data could receive detailed attention, due to limitations in time and resources, a selection of likely candidates was subjected to a high degree of scrutiny and quality-assurance, after which some were excluded from further consideration for specific reasons.

16 17

18

Table 1-8. Datasets available for use in estimating running emissions from cars and trucks.

Dynamometer	
I/M	non-I/M
AZ (Phoenix)	
IL (Chicago)	
MO (St. Louis)	
NY (New York)	

Remote-Sensing			
I/M	non-I/M		
AZ (Phoenix)			
IL (Chicago)			
MO (St. Louis)			
Maryland/N Virginia	VA (Richmond)		
GA (Atlanta)	GA (Augusta/Macon)		
	NE (Omaha)		
	OK (Tulsa)		

19

20 Several remote-sensing datasets received consideration. However, we elected not to use remote-21

sensing data directly to estimate rates, for several reasons: (1) For the most part, the remote-

22 sensing datasets on hand had very restricted model-year by age coverage (historic depth), which

1 severely limited their usefulness in assigning deterioration. (2) The measurement of 2 hydrocarbons by remote sensing is highly uncertain. The instruments are known to underestimate 3 the concentrations of many hydrocarbon species relative to other techniques, such as flame-4 ionization detectors. In inventory estimation, a multiplicative adjustment of 2.0-2.2 is often applied to allow comparison to HC measurements by other methods. ²² (3) In MOVES, emissions 5 are expressed in terms of mass rates (mass/time). While fuel-specific rates (mass emissions/mass 6 fuel) can be estimated readily from remote-sensing data, ²³ mass rates cannot be calculated 7 8 without an independently estimated CO₂ mass rate. It followed that remote-sensing would not 9 provide rates for any MY×Age combinations where dynamometer data were not available. In 10 these cases, remote-sensing would be dependent on and to some extent redundant with dynamometer data. (4) Because remote-sensing measurements are typically sited to catch 11 12 vehicles operating under light to moderate acceleration, results can describe emissions only 13 selected cruise/acceleration operating modes. However, remote-sensing cannot provide 14 measurements for coasting, deceleration/braking or idle modes. For these reasons we reserved 15 the remote-sensing for additional roles, such as verification of results obtained from 16 dynamometer data.

Table 1-9. Characteristics of candidate datasets.

Criterion	Chicago	Phoenix	NYIPA	St. Louis
Type	Enhanced	Enhanced	Basic/Enhanced	Enhanced
Network	Centralized	Centralized	De-centralized	Centralized
Exempt MY	4 most recent	4 most recent	2 most recent	2 most recent
Collects random sample?	YES	YES	n/a	NO
Program Tests	Idle, IM240, OBD- II	Idle/SS, IM240, IM147, OBD-II	IM240	IM240
Fast-pass/Fast-fail?	YES	YES	n/a	YES
Test type (for random sample)	IM240	IM240, IM147	IM240	n/a
Available CY	2000-2004	1995-1999 2002-2005	1999-2002	2002-2005
Size (no. tests)	8,900	62,500	8,100	2,200,000

18 19

20

22

17

Dynamometer datasets that received serious consideration are described below and summarized in Table 1-9.

21 Metropolitan Chicago. We acquired data collected over four calendar years (2000-04) in

Chicago's centralized enhanced program. In addition to routine program tests, the program

23 performed IM240 tests on two random vehicle samples. One is the "back-to-back" random

24 sample. This sample is relatively small ($n \sim 9,000$ tests), but valuable because each selected

25 vehicle received two full-duration IM240 tests in rapid succession, obviating concerns about

26 conditioning prior to conduction of IM240 tests. A second is the "full-duration" random sample,

27 in which selected vehicles received a single full-duration IM240. This sample is much larger (n > 1)

28 800,000) but less valuable due to the lack of replication. Despite its size, the full-duration 29

sample has no more historic depth than the back-to-back sample, and thus sheds little additional

30 light on age trends in emissions. Both samples were presumably simple random samples, 31

indicating that in the use of the data, users must assume that the samples are self-weighting with

32 respect to characteristics such as high emissions, passing/failing test results, etc.

- 1 St. Louis. Another large program dataset is available from the program in St. Louis. While a
- 2 large sample of program tests is available, this program differed from the others in that no
- 3 random evaluation sample was available. Because vehicles were allowed to "fast-pass" their
- 4 routine tests, results contained many partial duration tests (31 240 seconds). At the same time,
- 5 the lack of replication raised concerns about conditioning. Partial duration was a concern in itself
- 6 in that the representation of passing vehicles declined with increasing test duration, and also
- 7 because it compounded the issue of conditioning. In addition, while OBD-equipped vehicles
- 8 failing a scan received IM240s, those passing their scans did not. Because addressing the
- 9 interwoven issues of inadequate conditioning, "fast-pass bias" and "OBD-screening bias" proved
- intractable, we excluded this dataset from further consideration.
- 11 *Phoenix*. At the outset, the random samples from the Phoenix program appeared attractive in
- that they had over twice the historic depth of any other dataset, with model-year \times age coverage
- spanning 11 calendar years. Usage of these samples is somewhat complicated by the fact that no
- random samples were collected for two years (2000-01) and by the fact that the sample design
- employed changed in the middle of the ten-year period. During the first four years, a simple "2%"
- random sample" was employed. During the last four years, a stratified design was introduced
- which sampled passing and failing vehicles independently and at different rates. In the stratified
- sample, failures were over-sampled relative to passing vehicles. Thus, using these data to
- 19 estimate representative rates and to combine them with the 2% sample, assumed to be self-
- weighting, required reconstruction of the actual stratified sampling rates, as described below.
- 21 New York Instrumentation/Protocol Assessment (NYIPA). This dataset differs from the others in
- 22 that while it was collected within an I/M area in New York City, it is not an I/M program dataset
- as such. It is, rather, a large-scale research program designed to establish correlation between the
- 24 IM240 and an alternative transient test. It is not entirely clear whether it can be considered a
- 25 random sample, in part because estimation of representative averages was not a primary goal of
- the study. All data that we accessed and used was measured on full-duration IM240s during a
- 27 four-year period. There was a high degree of replication in the conduction of tests, allowing
- 28 fully-conditioned operation to be isolated by exclusion of the initial test in a series of replicates.
- While these data played a prominent role in development of energy consumption rates for
- 30 MOVES2004, the four-year duration of the program limits its usefulness in analysis of age
- 31 trends for gaseous pollutants.

1.3.3.2 Data Processing and Quality-assurance

- We performed several quality-assurance steps to avoid known biases and issues in using I/M data
- 35 to estimate mean emissions. One source of error, "inadequate conditioning" can occur when
- yehicles idle for long periods while waiting in line. To ensure that measurements used reflected
- fully-conditioned vehicles we excluded either portions of tests or entire tests, depending on test
- 38 type and the availability of replicates. If back-to-back replication was performed, we discarded
- 39 the first test in a series of replicates. If replication was not performed, we excluded the first 120
- 40 seconds of tests (for IM240s only).
- 41 Another problem occurs when calculation of fuel economy for tests yields values implausible
- 42 enough to indicate that measurements of one or more exhaust constituents are invalid (e.g., 300
- 43 mpg). To identify and exclude such tests, we identified tests with outlying measurements for
- 44 fuel economy, after grouping vehicles by vehicle make, model-year and displacement.

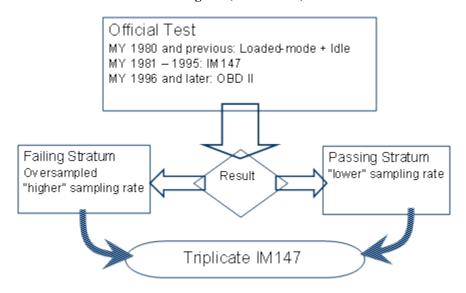
- 1 An issue in some continuous or second-by-second datasets is that cases occur in which the
- 2 emissions time-series appears to be "frozen" or saturated at some level, not responding to
- 3 changes in power. We found that the occurrence of such problems was more or less evenly
- 4 distributed among the fleet regardless of age or model year, and that severe instances were rare.
- 5 We excluded tests in which 25% or more of the measurements were "frozen."
- 6 For a modal analysis assuming that emissions respond to power on short time scales, it is critical
- 7 that the emissions time-series be aligned to the power time-series. Consequently, we examined
- 8 alignment for all tests. As necessary, we re-aligned emissions time series to those for VSP by
- 9 maximizing correlation coefficients, using parametric Pearson coefficients for CO₂ and NO_x, and
- 10 non-parametric Spearman coefficients for CO and THC. For these two species, the trends with
- 11 respect to VSP were not linear, nor were distributions of emissions close to normal at any VSP
- level. Consequently, we concluded that the Spearman coefficients, as measures of association,
- rather than linear correlation, performed as well or better than Pearson coefficients for CO and
- 14 THC.

15 1.3.3.3 Sample-design reconstruction (Phoenix only)

- 16 For data collected in Phoenix during CY 2002-05, we constructed sampling weights to allow use
- of the tests to develop representative means. The program implemented a stratified sampling
- strategy, in which failing vehicles were sampled at higher rates than passing vehicles.
- 19 It is thus necessary to reconstruct the sample design to appropriately weight failing and passing
- vehicles in subsequent analyses. After selection into the random sample, vehicles were assigned
- 21 to the "failing" or "passing" strata based on the result of their routine program test, with the
- specific test depending on model year, as shown in Figure 1-5. Within both strata, sample
- vehicles then received three replicate IM147 tests.
- 24 Based on test records, reconstructing sampling rates simply involved dividing the numbers of
- sampled vehicles by the total numbers of vehicles tested, by model year and calendar year, for
- failing (f) and passing (p) strata, as shown in Equation 1-4.

$$f_{\rm f,MY,CY} = \frac{n_{\rm f,MY,CY}}{N_{\rm f,MY,CY}} \qquad f_{\rm p,MY,CY} = \frac{n_{\rm p,MY,CY}}{N_{\rm p,MY,CY}} \qquad \qquad \text{Equation 1-4}$$

28


- 29 Corresponding sampling weights indicate the numbers of vehicles in the general fleet represented
- 30 by each sample vehicle. They were derived as the reciprocals of the sampling fractions, as shown
- 31 in Equation 1-5.

32

$$w_{\rm f,MY,CY} = \frac{1}{f_{\rm f,MY,CY}}$$
 $w_{\rm p,MY,CY} = \frac{1}{f_{\rm p,MY,CY}}$ Equation 1-5

Figure 1-5. Stratified sampling as applied in selection of the random evaluation sample in the Phoenix I/M Program (CY 2002-05).

5

6

1.3.3.4 Source selection

- 7 After excluding the St. Louis dataset, and comparing the Phoenix, Chicago and NY datasets, we
- 8 elected to rely on the Phoenix dataset for purposes of rate estimation and to use the other
- 9 datasets, including selected remote-sensing data, for purposes of comparison. This course was
- 10 chosen for several reasons.
- 11 For our purposes, the greater historic depth of the Phoenix data was a tremendous advantage. It
- was the only set deep enough to allow direct and independent assessment of deterioration. The
- 13 limited depth of the other datasets would have meant that the subset of calendar years that could
- be covered by pooled data would have been relatively limited. Only a single calendar year,
- 15 2002, is covered by all three datasets. Several years would be covered by two out of three.
- 16 Calendar 1999 is covered by Phoenix and NY; 2000 and 2001 would have been covered by NY
- and Chicago, and 2003 and 2004 by Chicago and Phoenix. The remaining years, 1996-98 and
- 18 2005 could have been covered only by Phoenix in any case.
- In addition, pooling the three datasets would have raised several difficult technical issues that
- 20 may not be apparent at first glance. Table 1-9 shows that the datasets were of greatly differing
- sizes. Thus, if the datasets were pooled without some type of relative weighting, Phoenix would
- 22 have exerted much stronger influence than the others in most shared calendar years. To rectify
- disparities in influence by assigning the different datasets similar or proportional influence would
- 24 have required development of some sort of a weighting scheme, but a rational basis for such
- 25 relative weighting is not immediately apparent.
- 26 The question of pooling is further complicated by the fact that use of the Phoenix data collected
- in CY 2002 to 2005 requires use of sampling weights for passing and failing tests (as described)
- above), whereas the Chicago and NYIPA datasets are assumed to be self-weighting. Again, no

- 1 rational basis for incorporating weighted and self-weighted tests from various programs in the
- 2 same CY was immediately apparent.
- 3 Finally, the selection of the Phoenix data provided a relatively consistent basis for specification
- 4 of a "reference fuel," and development of associated fuel adjustments. Error! Bookmark not d
- 5 efined.

6 **1.3.3.5 Methods**

7 1.3.3.5.1 Data-Driven Rates

- 8 Where data was present, the approach was simple. We calculated means and other summary
- 9 statistics for each combination of sourceBinID, ageGroup and operating mode (i.e., table cell).
- We classified the data by regulatory class (LDV="cars", LDT="trucks"), model-year group, age
- group and operating mode (Table 1-5). The model-year groups used are shown in Table 1-10,
- along with corresponding samples of passing and failing tests.

13 14

Table 1-10. Test sample sizes for the Phoenix random evaluation sample (n = no. tests).

Model-year group ¹	Cars		Trucks	
	fail ²	pass	fail	pass
1981-82	562	539	340	495
1983-85	1,776	2,078	1,124	1,606
1980-89	3,542	6,420	1,745	3,698
1990-93	2,897	8,457	1,152	4,629
1994-95	997	4,422	703	3,668
1996-98	1,330	3,773		
1996			526	1,196
1997-98			858	2,320
1999-2000	176	753	136	624
Total	11,285	26,478	6,589	18,254
1				

¹ Note that these are the model-year groups used for analysis; NOT the model-year groups used in the MOVES database.

15

- We calculated means and other summary statistics for each combination of sourceBinID,
- ageGroupID and opModeID. For simplicity, we will refer to a specific combination of
- sourceBinID, and opModeID as a "cell," to be denoted by label 'h'.

1.3.3.5.1.1 Rates: Calculation of weighted means

The emission rate (meanBaseRate) in each cell is a (E_h) simple weighted mean

21

² Note that 'failure' can indicate failure for CO, HC or NO_x, as applicable.

$$E_h = \frac{\sum_{i=1}^{n_{\text{test}}} w_i R_{i,t}}{\sum_{i=1}^{n_{\text{test}}} w_i}$$
 Equation 1-6

- where w_i is a sampling weight for each vehicle in the cell, as described above, and $R_{i,t}$ is the
- 3 "second-by-second" emission rate in the cell for a given vehicle at a given second t.

4 1.3.3.5.1.2 Estimation of Uncertainties for Cell Means:

- 5 A new feature of MOVES is its ability to estimate uncertainty in emissions projections. In the
- 6 emissionRateByAge table, uncertainties for individual rates are stored in the
- 7 "meanBaseRateCV" fields (Table 1-4). To estimate sampling error for each cell, we calculated
- 8 standard-errors by weighted variance components. In estimating variances for cell means, we
- 9 treated the data within cells as effective cluster samples, rather than simple random samples. This
- approach reflects the structure of the data, which is composed of sets of multiple measurements
- 11 collected on individual vehicles. Thus, measurements on a specific vehicle are less independent
- of other measurements on the same vehicle than of measurements on other vehicles.
- Accordingly, means and variances for individual vehicle tests were calculated to allow derivation
- of between-test and within-test variance components. These components were used in turn to
- calculate the variance of the mean for each cell, using the appropriate degrees of freedom to
- reflect between-test variability.²⁴ To enable estimation of variances under this approach, we
- 17 calculated a set of summary statistics, as listed below:
- 18 Test mean (\overline{E}_i) : the arithmetic mean of all measurements in a given test on a specific vehicle in a
- 19 given cell.
- 20 Test sample size (n_h) , the number of individual tests represented in a cell.
- 21 Measurement sample size (n_i) : the number of measurements in a cell representing an individual
- test on an individual vehicle.
- Cell sample size $(n_{h,i})$: the total number of individual measurements on all vehicles in a cell,
- 24 where each count represents a measurement collected at an approximate frequency of 1.0 Hz,
- 25 (i.e., "second-by-second").
- 26 Test variance (s_i^2): the variance of measurements for each test represented in a cell, calculated
- as the average squared deviation of measurements for a test about the mean for that test. Thus,
- we calculated a separate test variance for each test in each cell.
- Weighted Between-Test variance component (s_b^2): the component of total variance due to
- variability among tests in a cell, or stated differently, the weighted variance of the test means
- 31 about the cell mean, calculated as

$$s_{\rm b}^2 = \frac{\sum_{i=1}^{n_i} w_i \left(\overline{E}_i - \overline{E}_h\right)^2}{\sum_{i=1}^{n_i} w_i - 1}$$
 Equation 1-7

- 2 Weighted Within-Test Variance Component (s_w^2): the variance component due to variability
- 3 within tests, or the variance of measurements within individual tests $(R_{i,t})$ about their respective
- 4 test means, calculated in terms of the test variances, weighted and summed over all tests in the
- 5 cell:

$$s_{w}^{2} = \frac{\sum_{i=1}^{n_{h}} w_{i} (n_{i} - 1) s_{i}^{2}}{\left(\sum_{i=1}^{n_{h}} w_{i}\right) (n_{h,i} - n_{h})}$$
Equation 1-8

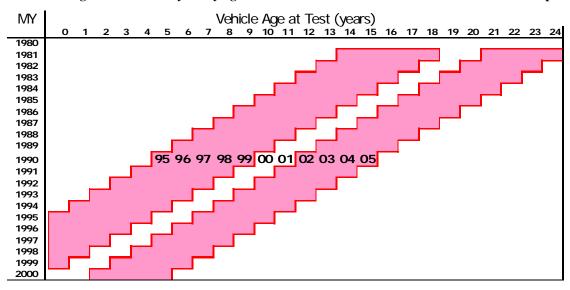
- 6 Variance of the cell mean $(s_{\overline{E}}^2)$: this parameter represents the uncertainty in the cell mean, and is
- 7 calculated as the sum of the between-vehicle and within-test variance components, with each
- 8 divided by the appropriate degrees of freedom.

$$s_{E_h}^2 = \frac{s_b^2}{n_h} + \frac{s_w^2}{n_{h,i}}$$
 Equation 1-9

- 9 Coefficient-of-Variation of the Mean (CV_{Eh}): this parameter gives a relative measure of the
- 10 uncertainty in the cell mean, allowing comparisons among cells. It is calculated as the ratio of the
- 11 cell standard error to the associated cell mean

$$\mathrm{CV}_{E_h} = \frac{\sqrt{S_{E_h}^2}}{E_h}$$
 Equation 1-10

Note that the term CV_{Eh} is synonymous with the term "relative standard error" (RSE).


13

1.3.3.5.2 Model-generated Rates (hole-filling)

- 14 Following averaging of the data, it was necessary to impute rates for cells for which no data was
- available, i.e., "holes." With respect to vehicle age, empty cells occur for age Groups not
- 16 covered by available data (Figure 1-6). In the figure, "age holes" are represented by un-shaded
- areas. Filling in these un-shaded areas required "back-casting" emissions for younger vehicles
- 18 for older model years, as well as "forecasting" deterioration of aging vehicles for more recent
- model years. Empty cells occur as well in high-power operating modes not covered by the
- 20 IM147 or IM240, meaning operating modes with power greater than about 24 kW/Mg.

Figure 1-6. Model-year by age structure of the Phoenix I/M random evaluation sample.

5

1.3.3.5.2.1 Rates

- 6 To estimate rates in empty cells (holes), we constructed statistical models of emissions data to
- 7 extrapolate trends in VSP and age. For this purpose, we generated a series of models based on
- 8 the MOVES operating-mode/ageGroup structure. Note that the extrapolated values were
- 9 modified on a case-by-case basis.
- 10 As a preliminary step, data were averaged for each test within a set of classes for VSP and speed.
- We averaged emissions by model-year-group, regClass, age, VSP class, speed class and test.
- 12 Classes for VSP followed intervals of 3.0 kW/Mg (e.g., 0-3, 3-6, ... 27-30, 30+). Speed classes
- followed those used for the MOVES operating modes (e.g., 1-25 mph, 25-50 mph, 50+ mph).
- The resulting dataset had a single mean for each test in each 6-way cell. The purpose for this
- averaging was to give the resulting statistical model an appropriate number of degrees of
- 16 freedom for each of the class variables, i.e., the d.f. would be determined by the number of tests
- 17 rather than the number of individual "second-by-second" measurements. Note that the matrix
- used for this purpose was finer than that represented in Table 1-5.
- We fit separate models in three groups of operating modes. For all operating modes except
- brake/deceleration and idle, we fit one model incorporating VSP. We call this group
- 21 "coast/cruise/acceleration." For braking/deceleration and idle, we fit two additional models not
- incorporating VSP, as these modes are not defined in other terms (Table 1-5). Overall, we fit
- three models for each combination of cars and trucks, for the model-year groups shown in Table
- 24 1-10, giving a total of 60 models.
- Before fitting a model, we drew a sample of vehicle tests in each model-year group (n = 1,200 to
- 26 3,500, see Table 1-11). This sampling was performed to fit models on smaller volumes of data
- 27 that a standard desktop computer could handle at the time. The sample was stratified by test
- 28 result (pass, fail) and age, with allocation proportional to that in the sample pool. Within each

1 result age stratum, tests were drawn using simple random sampling, and sampling frequencies

2 and weights, f_{strat} and w_{strat} , calculated as

3

$$f_{
m strat} = rac{n_{
m strat}}{N_{
m strat}}$$
, $w_{
m strat} = rac{1}{f_{
m strat}} = rac{N_{
m strat}}{n_{
m strat}}$ Equation 1-11

4 where n_{strat} and N_{strat} are the number of tests selected from a stratum and total number of tests in

5 the stratum, respectively. Then, for each test selected, a final weight was calculated as the

6 product of the stratum weight and the initial sampling weight ($w_{\text{result},MY,CY}$), as shown in Equation

7 1-5.

$$W_{\text{final}} = W_{\text{result, MY, CY}} W_{\text{strat}}$$

Equation 1-12

8

9 10

Table 1-11. Sample sizes for statistical modeling, by regulatory class and test result.

Model-year	LDV		LDT	
group				
	fail	pass	fail	pass
1981-82	645	554	476	723
1983-85	569	631	508	691
1980-89	375	828	343	856
1990-93	260	944	209	991
1994-95	406	1,995	378	2,021
1996-98	663	1,738		
1996			346	854
1997-8			671	1,730

11

12 Each model included two sub-models, one to estimate means and one to estimate variances, as

described below.

14 1.3.3.5.2.1.1 Coast/Cruise/Acceleration

15 Means model

16 For the means sub-model, the dependent variable was the natural logarithm of emissions

17

$$\ln E_h = \beta_0 + \beta_1 P_V + \beta_2 P_V^2 + \beta_3 P_V^3 + \beta_4 a + \beta_5 s + \beta_6 P_V s + \gamma_7 t_i + \varepsilon$$
 Equation 1-13

18 19

where:

20

• $lnE_h = natural-logarithm transform of emissions (in cell h),$

- 1 P_V , P_V^2 , P_V^3 = first-, second- and third-order terms for vehicle-specific power 2 (VSP, kW/Mg),
- a = vehicle age at time of test (years),
- s = speed class (1 25 mph, 25 50 mph and 50 + mph),
- \bullet t = test identifier (random factor)
- ε = random or residual error
- β = regression coefficients for the intercept and fixed factors P_V , a and s.
- 8 γ = regression coefficients for the random factor *test*.
- 9 The model includes first-, second- and third-order terms in P_V to describe curvature in the power
- trend, e.g., enrichment for CO and the corresponding decline in NO_x at high power. The age
- term gives an In-linear trend in age. The speed-class term allows for a modified intercept in each
- 12 speed class, whereas the power/speed-class interaction allows slightly different power slopes in
- each speed class. The random factor term for test fits a random intercept for each test, which
- does not strongly affect the mean estimates but does affect the estimation of uncertainties in the
- 15 coefficients.
- After fitting models, we performed basic diagnostics. We plotted residuals against the two
- 17 continuous predictors, VSP and age. We checked the normality of residuals across the range of
- VSP and age, and we plotted predicted vs. actual values.
- 19 Variances model
- The purpose of this sub-model was to model the variance of lnE_h , i.e., the logarithmic variance
- s_l^2 , in terms VSP and age. To obtain a dataset of replicate variance estimates, we drew sets of
- 22 replicate test samples. Each replicate was stratified in the same manner as the larger samples
- 23 (Table 1-11). To get replicate variances, we calculated ln-variance for each replicate within the
- VSP/age matrix described above.
- 25 Models were fit on set of replicate variances thus obtained. The dependent variable was
- 26 logarithmic variance

$$s_1^2 = \alpha_0 + \alpha_1 a + \alpha_2 P_V + \alpha_3 P_V a + \varepsilon$$
 Equation 1-14

- where P_V and α are VSP and age, as above, and α are regression coefficients. After fitting we
- 28 examined similar diagnostics as for the means model.
- 29 *1.3.3.5.2.1.1.1 Model application*
- 30 Application of the model involved several steps. The first step was to construct a cell matrix
- 31 including all emission rates to be calculated, as shown in Table 1-12.

Table 1-12. Construction of emission-rate matrix for light-duty gasoline vehicles.

	Count	Category	MOVES Database attribute	
	1	Fuel (gasoline)	fuelTypeID = 01	
×	2	Regulatory Classes (LDV, LDT)	regClassID = 20, 30	
×	10	Model-year groups	As in Table 1-11	
×	21	Operating modes	opModeID = 11-16, 21-30, 33-40	
×	7	Age Groups	ageGroupID = 3, 405, 607, 809, 1014, 1519, 2099	
×	3	Pollutant processes (running HC, CO, NO _x)	polProcessID = 101, 201, 301	
=	9,660	TOTAL cells		

2

4

3 Next, we constructed a vector of coefficients for the means sub-model (β) and merged it into the

cell matrix.

$$\beta = \left[\beta_0 \ \beta_1 \ \beta_2 \ \beta_3 \ \beta_4 \ \beta_{5(0-25)} \ \beta_{5(25-50)} \ \beta_{5(50+)} \ \beta_6 \right]$$
 Equation 1-15

5 Then, for each table cell, we constructed a vector of predictors (\mathbf{X}_h). Equation 1-16 shows an

example for an operating mode in the 1-25 mph speed class, e.g., the value for the 1-25 mph 6

7 class is 1 and the values for the 25-50 and 50+ speed classes are 0. To supply values for VSP

 $(P_{\rm V})$ and age group (a), cell midpoints were calculated and applied as shown in Table 1-13.

$$\mathbf{X}_{h} = \begin{bmatrix} 1 & P_{V} & P_{V}^{2} & P_{V}^{3} & a & 1 & 0 & 0 & P_{V} \end{bmatrix}$$
 Equation 1-16

9

Table 1-13. Values of VSP used to apply statistical models.

Table 1-13. Values of VSP used to apply statistical models.			
opModeID	Range	Midpoint	
11, 21	< 0	-2.0	
12, 22	0 - 3	-2.5	
13, 23	3 - 6	4.5	
14, 24	6 - 9	7.5	
15, 25	9 - 12	10.5	
16	12 +	14.5	
27,37	12 - 18	15.0	
28,38	18 - 24	21.0	
29,39	24 - 30	27.0	
30	30 +	34.0	
40	30 +	34.0	
33	< 6	0.5	
35	6 - 12	9.0	

- 2 The final step was to multiply coefficient and predictor vectors, which gives an estimated
- 3 logarithmic mean $(\ln E_h)$ for each cell h.

$$ln E_h = \mathbf{X}_h \mathbf{\beta} \qquad \qquad \mathbf{Equation 1-17}$$

- 4 The application of the variances model is similar, except that the vectors have four rather than
- 5 nine terms

$$\mathbf{\alpha} = \left[\begin{array}{ccc} \alpha_0 & \alpha_1 & \alpha_2 & \alpha_3 \end{array} \right]$$
 Equation 1-18
$$\mathbf{X}_h = \left[\begin{array}{ccc} 1 & P_{\mathrm{V}} & a & P_{\mathrm{V}}a \end{array} \right]$$
 Equation 1-19

6 Thus, the modeled logarithmic variance in each cell is given by

$$s_{l,h}^2 = \mathbf{X}_h \mathbf{\alpha}$$
 Equation 1-20

- In some model-year groups, it was not always possible to develop plausible estimates for the age
- 8 slope β_4 , because the data did not cover a wide enough range of calendar years. For example, in
- 9 the 99-00 model-year group, the available data represented young vehicles without sufficient
- 10 coverage of older vehicles. We considered it reasonable to adapt the age slope for the 96-98
- model-year group for cars, and the 1997-98 model-year group for trucks.

- In the groups 83-85 and 81-82, the data covered vehicles at ages of 10 years and older but not at
- 2 younger ages. Simply deriving slopes from the available data would have given values that were
- 3 much too low, resulting in very high emissions for young vehicles. In these cases we considered
- 4 it more reasonable to adopt an age slope from a subsequent model year group. When making this
- 5 assumption, it is necessary to recalculate the intercept, based on the assumed slope and the
- 6 earliest available data point.
- 7 Intercepts, denoted as β_0^* , were recalculated by rearranging Equation 1-13 to evaluate the model
- 8 in operating mode 24, using the age slope from the previous model-year group (β_4 *) and an
- 9 estimate of ln-emissions from the available dataset at the earliest available age ($\ln E_{a^*}$) at age a^* .
- 10 In operating mode 24, the midpoint of the VSP range (6-9) is 7.5 kW/Mg and the speed class is
- 11 25-50 mph.

$$\beta_0^* = \ln E_{a^*} - 7.5\beta_1 - 7.5^2\beta_2 - 7.5^3\beta_3 - \beta_4^*a^* - \beta_{5(25-50)} - 7.5\beta_6$$
 Equation 1-21

- On a case by case basis, age slopes were adopted from earlier or later model-year groups. In a
- similar way, In-variance models or estimates could be adopted from earlier or later model years.
- 14 1.3.3.5.2.1.2 Braking/Deceleration
- 15 1.3.3.5.2.1.2.1 Means model
- We derived models similar to those used for coast/cruise/acceleration. For these operating
- modes, however, the models were much simpler, in that they did not include VSP or the speed
- classes used to define the coast/cruise/accel operating modes. Thus, emissions were predicted
- solely in terms of age, although random intercepts were fit for each test as before:

$$\ln E_h = \beta_0 + \beta_1 a + \gamma_7 t_i + \varepsilon$$
 Equation 1-22

- 20 1.3.3.5.2.1.2.2 Variances model
- In addition, we fit variances models for these operating modes, which were also simple functions
- of age.

$$s_l^2 = \alpha_0 + \alpha_1 a + \varepsilon$$
 Equation 1-23

- 24 1.3.3.5.2.1.2.3 Model application
- In these operating modes, rates were to be modeled for a total of 840 cells. This total is
- calculated as in Table 1-12, except that the number of operating modes is 2, rather than 21. We
- set up coefficient and predictor vectors, as before.
- For the means and variances sub-models the vectors are

$$\beta = \left[\beta_0 \beta_1 \right]$$
 Equation 1-24

30 and

$$\mathbf{X}_h = \begin{bmatrix} 1 & a \end{bmatrix}$$
 Equation 1-25

- 1 respectively.
- 2 For the variances model the coefficients vector is

$$\alpha = [\alpha_0 \ \alpha_1]$$
 Equation 1-26

- 3 and the predictor vector is identical to that for the means model.
- 4 As with coast/cruise/accel modes, we considered it reasonable in some model-year groups to
- 5 adopt a slope or ln-variance from a previous or later model-year group. In model-year groups
- 6 where the purpose was to backcast rates for younger vehicles, rather than forecast rates for aging
- 7 vehicles, it was again necessary to recalculate the intercept based on a borrowed age slope and an
- 8 estimate of $\ln E_h$ calculated from the sample data for the youngest available age class. In this
- 9 case, Equation 1-27 is a rearrangement of Equation 1-22.

$$\beta_0^* = \ln E_{a^*} - \beta_A a^*$$
 Equation 1-27

After these steps, the imputed values of lnE_h were calculated, as in Equation 1-19.

12 1.3.3.5.2.2 Estimation of Model Uncertainties

- We estimated the uncertainty for each estimated lnE_h in each cell. During each model run, we
- saved the covariance matrix of the model coefficients (s_{θ}^2). This matrix contains covariances of
- each of the nine coefficients in relation to the others, with the diagonal containing variances for
- each coefficient.

17

11

- Using the parameter vectors \mathbf{X}_h and the covariance matrix s_{β}^2 , the standard of error of estimation
- 20 for each cell was calculated as

$$s_{\ln E_h}^2 = \mathbf{X}_h' \mathbf{s}_{\beta}^2 \mathbf{X}_h$$
 Equation 1-29

- 21 The standard error of estimation in each cell represents the uncertainty of the mean estimate in
- 22 the cell, based on the particular values of the predictors defining the cell. 25 The pre- and post-

- 1 multiplication of the covariance matrix by the parameter vectors represents the propagation of
- 2 uncertainties, in which the parameters represent partial derivatives of each coefficient with
- 3 respect to all others and the co-variances represent the uncertainties in each coefficient in relation
- 4 to itself and the others.

5 1.3.3.5.2.3 Reverse transformation

- 6 To obtain an estimated emission rate E_h in each cell, the modeled means and variances are
- 7 exponentiated as follows

$$E_h = e^{\ln E_h} e^{0.5 s_{l,h}^2}$$
 Equation 1-30

- 8 The two exponential terms use the results of the means and variances sub-models, respectively.
- 9 The left-hand "means" term represents the geometric mean, or the center of the implied log-
- 10 normal distribution, whereas the right-hand "variance" term reflects the influence of the "high-
- emitting" vehicles representing the tail of the distribution.
- 12 The estimate of ln-variance could be obtained in several different ways. The first and preferred
- option was to use the modeled variance as described above. A second option was to use an
- estimate of variance calculated from the available sample of ln-transformed data. A third option,
- also based on available data, was an estimate calculated from averaged emissions data and the
- mean and variance of ln-transformed emissions data. This process involves reversing Equation
- 1-30 to solve for s_l^2 . If the mean of emissions data is x_a and mean of ln-transformed data is x_l ,
- then the logarithmic variance can be estimated as

$$s_l^2 = 2\ln\left(\frac{\overline{x}_a}{e^{x_l}}\right)$$
 Equation 1-31

- 19 In practice one of these options was selected based on which most successfully provided model
- 20 estimates that matched corresponding means calculated from the data sample.
- The uncertainties mentioned above represent uncertainties in lnE_h . Corresponding standard errors
- for the reverse-transformed emission rate E_h were estimated numerically by means of a Monte-
- Carlo process. At the outset, we generated a pseudo-random set of 100 variates of lnE_h , based on
- 24 a normal distribution with a mean of 0.0 and variance equal to $s_{ln}E^2$. We applied Equation 1-30
- 25 to reverse-transform each variate, and then calculated the variance of the reverse-transformed
- variates. This result represented the variance-of-the-mean for $E_h(s_{E_h}^2)$, as in Equation 1-9.
- Finally, we calculated the CV-of-the-mean (CV_{Eh}) for each modeled emission rate, as in
- 28 Equation 1-10.

- 30 *1.3.3.5.3 Table Construction*
- 31 After compilation of the modeling results, the subset of results obtained directly from the data
- 32 (Equation 1-6 to Equation 1-10), shaded area in Figure 1-6) and the complete set generated
- through modeling (Equation 1-13 to Equation 1-31) were merged. A final value was selected
- for use in the model data table. The value generated from data was retained if two criteria were
- met: (1) a subsample of three or more individual vehicles must be represented in a given cell (n_h
- 36 \geq 3), and (2) the CV_{Eh} (relative standard error, RSE) of the data-driven E_h must be less than 50%

1 ($CV_{E_h} < 0.50$). Failing these criteria, the model-generated value was substituted. For purposes of

2 illustration, results of both methods are presented separately.

3 At this point, we mapped the analytic model-year groups onto the set of model-year groups used

4 in the MOVES database. The groups used in the database are designed to mesh with heavy-duty

5 standards and technologies, as well as those for light-duty vehicles. To achieve the mapping, we

6 replicated records as necessary, in cases where the analytic group was broader than the database

group. Both sets of groups are shown in Table 1-14.

8

7

Table 1-14. Mapping "analytic" model-year groups onto MOVES-database model-year groups

"Analytic"		"MOVES database"	modelYearGroupID	shortModYrGroupID
Cars	Trucks			
1981-82	1981-82	1980 and previous	19601980	1
1981-82	1981-82	1981-82	19811982	61
1983-85	1983-85	1983-84	19831984	62
1983-85	1983-85	1985	1985	85
1986-89	1986-89	1986-87	19861987	63
1986-89	1986-89	1988-89	19881989	64
1990-93	1990-93	1990	1990	90
1990-93	1990-93	1991-1993	19911993	65
1994-95	1994-95	1994	1994	94
1994-95	1994-95	1995	1995	95
1996-98	1996	1996	1996	96
1996-98	1997-98	1997	1997	97
1996-98	1997-98	1998	1998	98
1996-98	1997-98	1999	1999	99
1996-98	1997-98	2000	2000	20

10

11

17

19

20

1.3.3.6 Verification and Adjustment for High-Power Operating modes

12 The rates described were derived from data measured on IM240 or IM147 cycles, which are

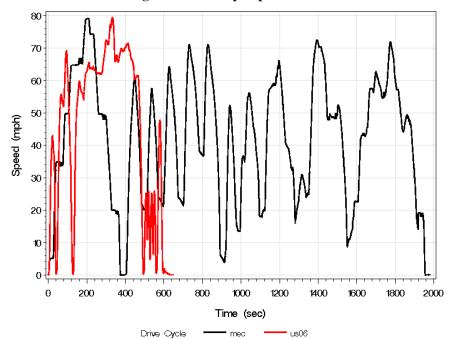
13 limited in terms of the ranges of speed and vehicle-specific power that they cover. Specifically,

these cycles range up to about 50 mph and 24 kW/Mg for speed and VSP, respectively. Some

15 coverage does exist outside these limits but can be sporadic and highly variable. The operating

modes outside the I/M window include modes 28,29,30, 38, 39 and 40, which we'll refer to as

the 'high-power' operating modes. For these modes, the statistical models described above were

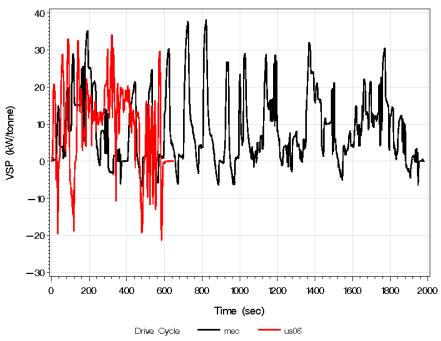

used to extrapolate up to about 34 kW/Mg.

Based on initial review and comment on this aspect of the analysis, we thought it advisable to

give additional scrutiny to the high power extrapolation. To obtain a framework for reference,

we examined a set independently measured data, collected on drive cycles more aggressive than the IM cycles, namely, the US06 and the "Modal Emissions Cycle" or "MEC." Much of the data was collected in the course of the National Cooperative Highway Research Program (NCHRP)²⁶ and the remainder on selected EPA programs, all stored in OTAQ's Mobile-Source Observation Database (MSOD). Unlike the US06, which was designed specifically to capture speed and acceleration not captured by the FTP, the MEC is an "engineered" cycle, designed not to represent specific driving patterns, as does the FTP, but rather to exercise vehicles through the ranges of speed, acceleration and power comprising the performance of most light-duty vehicles. Several variants of the MEC were developed to provide a database to inform the development of the Comprehensive Modal Emissions Model (CMEM).²⁶ Driving traces for the US06 and MEC cycles are shown in Figure 1-7 and Figure 1-8. Both cycles range in speed up to over 70 mph and in VSP up to and exceeding 30 kW/Mg.

Figure 1-7. Example speed traces for the US06 and MEC cycles.



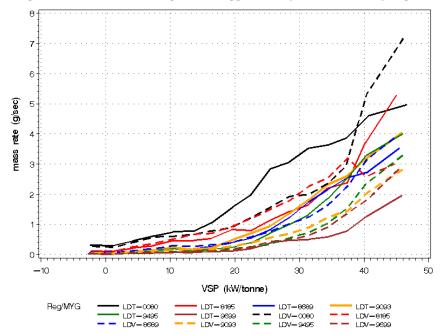

Table 1-15 summarizes the numbers of available tests by regulatory class, model-year group and drive cycle, with numbers of tests differing in each model-year group. Samples were somewhat larger for cars for both cycles, which represented a broad range of model-years.

Table 1-15. Sample sizes for US06 and MEC cycles (No. tests).

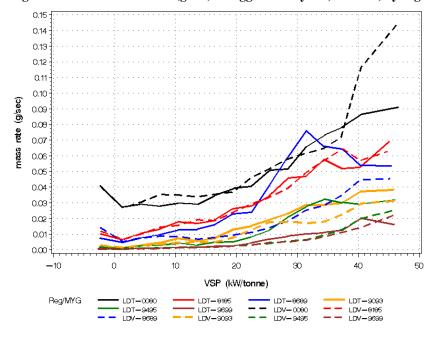
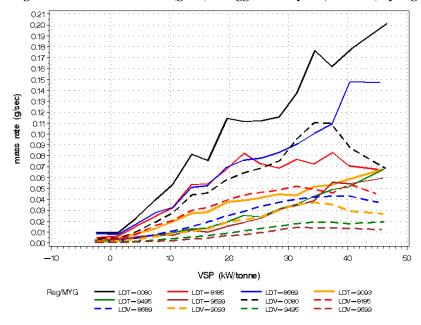

Model-year group	C	ar	Tru	Total	
	US06	MEC	US06	MEC	
1980 & earlier	4	14		6	24
1981-85	15	23	8	19	65
1986-89	21	24	13	31	89
1990-93	54	57	22	36	169
1994-95	49	45	22	30	146
1996-99	58	28	56	17	159
Total	201	191	121	139	652

Figure 1-9, Figure 1-10 and Figure 1-11 show trends in emissions vs. VSP for CO, HC and NO_x for LDV and LDT by model year group. Both cycles were averaged and plotted as aggregates.


Figure 1-9. CO emissions (g/sec) on aggressive cycles, vs. VSP, by regulatory class and model-year group.

4 Figure 1-10. THC emissions (g/sec) on aggressive cycles, vs. VSP, by regulatory class and model-year group.

Figure 1-11. NO_x emissions (g/sec) on aggressive cycles, vs. VSP, by regulatory class and model-year group.

To construct a basis for reference, we averaged the data by regulatory class, model-year group and operating mode, using the model-year groups shown in Table 1-15. After averaging, we calculated ratios from high-power operating modes to a selected reference mode. Specifically, we selected two modes covered by the IM cycles (27 and 37) to serve as reference points. The midpoint VSP for each is ~15 kW/Mg. With mode 27 as a reference, we calculated ratios to modes 28, 29 and 30.

$$R_{i:27} = \frac{E_{h,i}}{E_{h,27}}$$
, for $i = 28, 29, 30$ Equation 1-32

and with mode 37 as a reference, we calculated ratios to modes 38, 39 and 40.

$$R_{i:37} = \frac{E_{h,i}}{E_{h,37}}$$
, for $i = 38, 39, 40$ Equation 1-33

After calculating the ratios, we calculated ratio-based emissions estimates (E^R) as the products of their respective ratios and the initial rate for modes 27 or 37

$$E_{h,i}^R = R_{i:27} E_{h,27}^{initial}$$
, or $E_{h,i}^R = R_{i:37} E_{h,37}^{initial}$ Equation 1-34

- 1 respectively, where $E_h^{initial}$ is the initial data-driven or model-generated rate calculated as
- 2 previously described.
- 3 The next step, the process by which ratio-based rates were selected as rates for particular
- 4 operating modes on a case-by-case basis has changed substantially for the final rates. In the draft,
- 5 we calculated upper and lower confidence limits for E^R and replaced the initial rate with E^R if it
- 6 fell outside the confidence band, i.e., if the initial rate was greater than the upper bound or lower
- 7 than the lower bound. Evaluation of the results of this approach showed, however, that it gave
- 8 spurious results in many cases. We found it impossible to assign a confidence level for the band
- 9 that would work in all cases, i.e., sufficiently sensitive to identify and correct problem cases, but
- 10 not so sensitive so as to make unnecessary modifications.
- 11 For the final rates, we developed a different logic for applying the ratio-based rates. One change
- from the draft is that ratio-based rates were considered only for modes 29,30, 39 and 40, i.e.,
- modes spanning the range of VSP beyond the IM147. Modes 28 and 38 are partially covered by
- 14 the I/M cycles, and the differences among the data, model and ratios were generally much
- smaller than for the four highest modes. The steps in the revised process are:
- 1) Identify acceptable candidate values (data, model or ratio). The data values were considered
- acceptable if (1) a value was present, (2) it met the acceptability criteria (described above) and
- 18 (3) it was greater than the value in the next lowest mode. Similarly, predicted values were
- acceptable if they exceeded the value for the preceding operating mode.
- Following these evaluations, the final value was selected as the minimum of the acceptable
- 21 candidates. These criteria were applied sequentially to prevent declining emissions trends with
- increasing power. As a first step, values were selected for operating modes 29 and 39, relative to
- 23 modes 28 and 38. In a successive step, values were selected for 30 and 40, relative to those
- selected for 29 and 39, respectively. We present some examples below, showing differences
- between the draft and final rates.
- In the THC example (Figure 1-12), the final values are substantially reduced, particularly for
- 27 modes 29 and 30. In the draft (a), the initial rates fall outside the confidence intervals for the
- 28 ratio-based rates for three out of six possible cases, i.e., in modes 30, 39 and 40. The resulting
- rate is higher for modes 30 and 40, but lower for 39. In the final rates, the results vary. For
- 30 modes 29 and 30, the data values meet the criterion of the minimum value giving an increasing
- 31 trend from mode 28 30. However, for modes 39 and 40, the ratio and the model give the
- values meeting the criterion, as shown in (c).
- 33 The example for CO shows different behavior in the draft, but a similar outcome in the final
- 34 (Figure 1-13). In the draft (a), the initial values for modes 28-30 all fall within the confidence
- intervals for the ratio-based value and are thus retained. The values for 39 and 40, fall outside the
- band on the low side and are replaced by the ratio-based rates. For operating modes 29 and 30,
- 37 the data is selected as the minimum option available, as with HC. For modes 39 and 40, the
- 38 model is similarly selected. In the final rates, the ratio based values are not adopted for this
- example, as they had been in the draft, and the net result is a decrease in CO rates in the affected
- 40 operating modes.

Finally, in the NO_x example (Figure 1-14), the initial rates are replaced in five out of six cases in

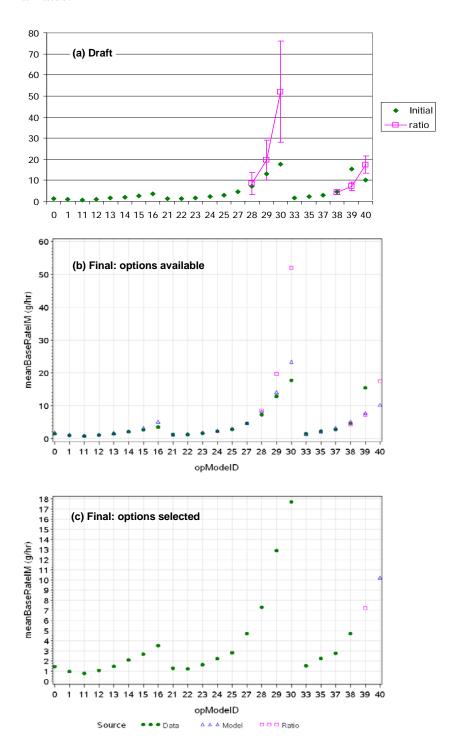
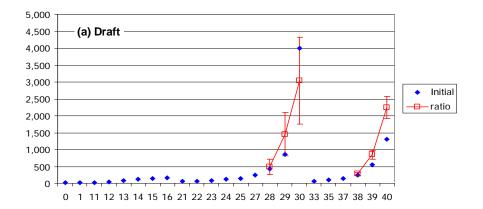
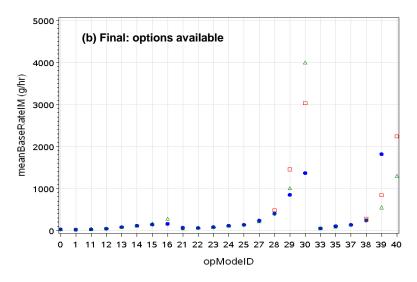
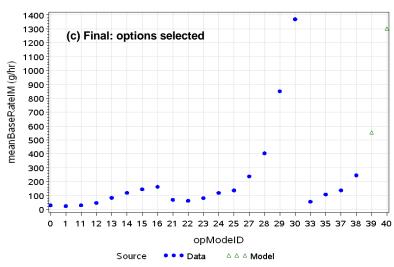
43 the draft (a). The initial values for 28-30 and 40 all fall below the lower confidence limit,

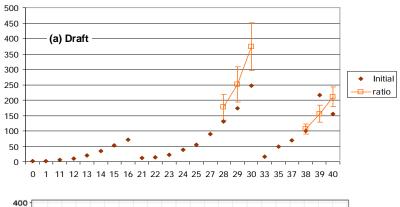
whereas that for 30 falls above the upper confidence limit. In the final, the ratio is used more sparingly, as in the HC and CO examples. Model values are used in two cases (modes 30 and 40) and the ratio in one case (mode 39). These examples highlight the uncertainty of projecting emissions at high power and of projecting beyond the range of the IM147. Uncertainties are much smaller for opModes 28 and 38 than for 29, 30, 39 and 40. This pattern may be due to the fact that, for modes 28 and 38, the power range for the IM147 overlaps somewhat the range of the aggressive cycles. For this reason, the degree of extrapolation is lower and the power trends are similar.

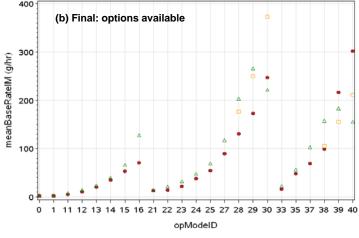
Figure 1-12. THC emission rates (g/hr), vs. VSP for MY 1998 cars at ages 4-5 years: (a) options

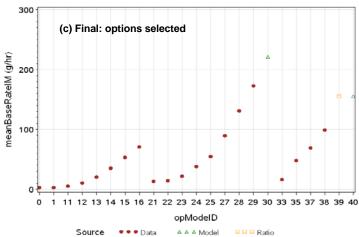
for draft rates, (b) options for final model (data, model and ratio) and (c) options selected for

final rates.

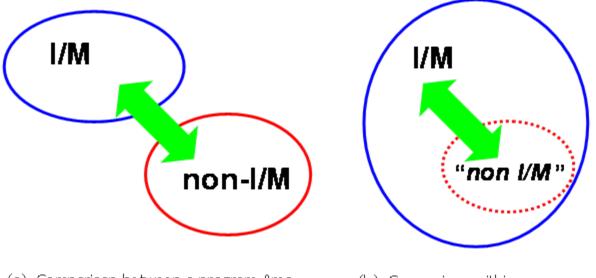

Figure 1-13. CO emission rates (g/hr), vs. operating mode for MY-1998 trucks at ages 6-7: (a) options for draft rates, (b) options for final model (data, model and ratio and (c) options selected for final rates.





3 4

1.3.3.7 Estimating Rates for non-I/M Areas


- 2 In modeling emission inventory for light-duty vehicles, it is necessary at the outset to consider
- 3 the question of the influence of inspection-and-maintenance (I/M) programs. In this regard a
- 4 fundamental difference between MOVES and MOBILE is that MOVES inverts MOBILE's
- 5 approach to representing I/M. In MOBILE, the emission rates stored in the input data tables
- 6 represent non-I/M conditions. During a model run, as required, emissions for I/M conditions are
- 7 modeled relative to the original non-I/M rates.

1

19

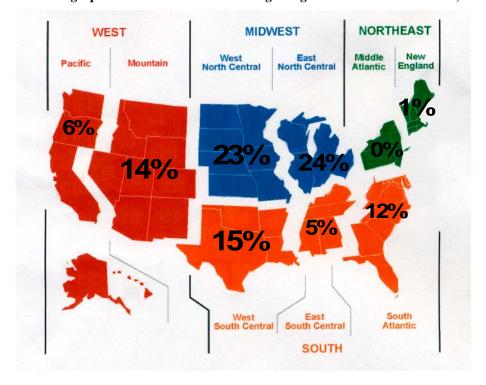
- 8 In MOVES, however, two sets of rates are stored in the input table (emissionRateByAge). One
- 9 set represents emissions under "I/M conditions" (meanBaseRateIM) and the other represents
- 10 rates under "non-I/M conditions" (meanBaseRate). The first set, representing vehicles subject to
- 11 I/M requirements, we call the "I/M reference rates". The second, representing vehicles not
- subject to I/M requirements, we call the "non-I/M reference rates."
- For the I/M reference rates, the term "reference" is used because the rates represent a particular
- program, with a specific design characteristics, against which other programs with differing
- 15 characteristics can be modeled. Thus, the I/M references are, strictly speaking, regional rates, and
- not intended to be (necessarily) nationally representative. Development of the I/M reference rates
- is discussed in 1.3.3.1 to 1.3.3.5. As the I/M references represent Phoenix, the program
- 18 characteristics implicitly reflected in them include:
- 20 A four-year exemption period,
- transient tailpipe tests for MY 81-95,
- OBD-II for MY 96+,
- Biennial test frequency.
- In addition, the Phoenix program provides a relatively stable basis against which to represent other program designs and for application of fuel adjustments.
- Our approach is to derive the non-I/M rates relative to the I/M references, by adjustment. One
- reason for adopting this approach is that, as mentioned, the volumes of data available in I/M
- areas vastly exceed those collected in non-I/M areas. An additional practical reason is that major
- work-intensive steps such as "hole-filling" and projection of deterioration need only be
- 31 performed once.
- 32 In contrast to the I/M references, the non-I/M reference rates are designed to be nationally
- representative. Broadly speaking, they are intended to represent all areas in the country without
- 34 I/M programs. In general, estimating the influence of I/M areas on mean emissions is not trivial,
- and efforts to do so commonly follow one of two broad approaches. One approach is to compare
- emissions for two geographic areas, one with and one without I/M, as shown in Figure 1-15(a).
- A second and less common approach is to compare emissions between two groups of vehicles
- within the same I/M area, but with one group representing the main fleet ostensibly influenced
- 39 by the program, and the second, far smaller, representing vehicles measured within the program
- but presumably not yet influenced by the program, as shown in Figure 1-15(b).

Figure 1-15. General approaches to estimating differences attributable to I/M programs: (a) comparison of subsets of vehicles between two geographic areas, and (b) comparison within a program area.

- (a) Comparison between a program Area and a non-program area
- (b) Comparison within a program Area

For convenience, we refer to the first approach as the "between-area" approach, and the second as the "within-area" approach. Neither approach attempts to measure the incremental difference attributable to a program from one cycle to the next.

The approach we adopted emphasizes the "within-area" approach, based on a sample of vehicles "migrating" into Phoenix. To lay the basis for comparison, the primary goal was to identify a set of vehicles that had been measured by the program after moving into the Phoenix area, but that had not yet been influenced by the program. The specific criteria to identify particular migrating vehicles are presented in Table 1-16.

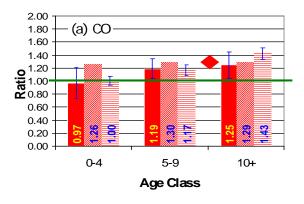

Table 1-16. Criteria used to identify vehicles migrating into the Phoenix program.

logic	Criterion
	The vehicle comes from out-of-state
OR	from a non-I/M county in AZ
AND NOT	from other I/M areas
AND	receiving very first test in Phoenix program
AND	selected for the random evaluation sample

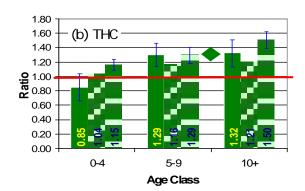
After applying these criteria, we identified a sample of approximately 1,400 vehicles. The origin of vehicles entering the Phoenix Area was traced by following registration histories of a set of approximately 10,000 candidate vehicles. The last registered location of vehicles was identified prior to registration in Phoenix or the vehicle's first test in the Phoenix program. Vehicles were excluded if their most recent registration location was in a state or city with an I/M program.²⁷

Figure 14 shows the distribution of incoming vehicles, by Census Region. Most vehicles migrating to Phoenix came from the Midwest (47%), followed by the South (32%), the West (20%) and the Northeast (1%). The low incidence from the NE may be attributable to the large number of I/M programs in that region.

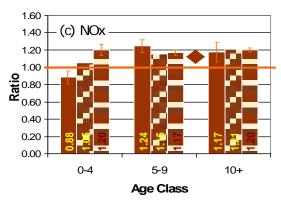
Figure 1-16. Geographic distribution of vehicles migrating into the Phoenix I/M area, 1995-2005.


- 1 To assess the differences between migrating (non-I/M) and "local" (I/M) vehicles, we adopted a
- 2 simple approach. We calculated ratios between means for the migrating and local groups, as
- 3 shown in Equation 1-35. We used aggregate tests, after preliminary analyses suggested that the
- 4 ratios did not vary significantly by VSP. Because the sample was not large in relation to the
- 5 degree of variability involved, we also aggregated tests for cars and trucks in all model years.
- 6 However, we did calculate ratios separately for three broad age groups (0-4, 5-9, and 10+) years.

Ratio =
$$\frac{\overline{E}_{\text{non-I/M}}}{\overline{E}_{\text{I/M}}}$$
 Equation 1-35


- 8 For purposes of verification, we compared our results to previous work. An initial and obvious
- 9 comparison was to previous work based on an out-of-state fleet migrating into Phoenix that
- provided a model for our own analysis. This previous effort identified a migrating fleet, and
- analyzed differences between it and the program fleet for vehicles in model years 1984 1994
- measured during calendar years 1995-2001. To adapt the previous results for our purposes, we
- translated averages for migrating and program fleets into ratios as in Equation 1-35.
- 14 Another valuable source for comparison was remote-sensing data collected in the course of the
- 15 Continuous Atlanta Fleet Evaluation (CAFE) Program. ^{28,29} Unlike our own analysis, this
- program involves a comparison between two geographic areas. The "I/M area" is the thirteen-
- 17 county Atlanta area, represented by measurements for approximately 129,000 vehicles. The other
- 18 (the non-I/M area) is the twelve-county non-I/M area, surrounding Atlanta, represented by
- measurements for approximately 28,000 vehicles. Both areas have been under a low-sulfur fuel
- 20 requirement since 1999. Results used for this analysis were collected during CY 2004. The non-
- 21 I/M: I/M ratios calculated from the remote-sensing are based on concentrations, rather than mass
- 22 rates.
- A third source was an additional remote-sensing dataset collected in N. Virginia/D.C. area.
- 24 The I/M area was the "northern-Virginia" counties, and the non-I/M area was Richmond. The
- 25 I/M and non-I/M areas were represented by about 94,000 and 61,000 vehicles, respectively,
- 26 collected in CY 2004. In this case, the molar ratios were converted to mass rates, with use of
- 27 fuel-consumption estimates derived from energy-consumption rates in MOVES2004. After this
- step, non-I/M: I/M ratios were calculated using the mass rates.
- 29 Results are shown in Figure 1-17. The charts show mean ratios for the three age groups for our
- 30 migrating vehicle analysis, as well as the remote-sensing studies. The diamonds represent
- 31 approximate values from Wenzel's earlier work with the Phoenix data. For our analyses (solid
- bars) the ratios are generally lower for the 0-4 year age Group, and larger for the 5-9 and 10+ age
- groups, but differences between the two older groups are small. The Atlanta results show a
- similar pattern for HC and NO_x , but not for CO, for which the ratios are very similar for all three
- age groups. The Virginia results are the other hand, show increasing trends for CO and HC, but
- not for NO_x . The ratios in Atlanta are slightly higher than those for Phoenix in the 0-4 year age
- 37 group. This difference may be attributable to the shorter exemption period in Atlanta (2 years)
- 38 vs. the four-year period in Phoenix, but it is not clear that these differences are statistically
- 39 significant. In all three programs, ratios for the two older age classes generally appear to be
- 40 statistically significant.

- 2 In interpreting the ratios derived from the Phoenix data, it is important to note that they assume
- 3 full program compliance. In the migrating vehicle analysis this is the case because all emissions
- 4 measurements were collected in I/M lanes. Thus, vehicle owners who evaded the program in one
- 5 way or another would not be represented. On the whole, results from multiple datasets, using
- 6 different methods, showed broad agreement.
- 7 If we calculate non-IM reference rates from the I/M references by ratio, with the ratios constant
- 8 by model-year group and VSP, it follows that the absolute differences must increase with power.
- 9 Similarly, absolute differences increase with age, for two reasons. The first reason is the same as
- that for VSP, that for a constant ratio, the absolute difference increases as emissions themselves
- increase, and on top of this, the second reason is that the ratios themselves increase with age
- 12 (Figure 15). A third implication is the absolute differences would be smaller for successive
- model-year groups as tailpipe emissions decline with more stringent standards.


Figure 1-17. Non-I/M: I/M ratios for CO, HC and NO_x for the Phoenix area (this analysis) compared to remote-sensing results for Atlanta and N. Virginia, and previous work in Phoenix (diamonds).

■ AZ I/M 💥 GA RSD (CY04) = VA RSD (CY04)

■ AZ I/M _ GA RSD (CY04) ■ VA RSD (CY04)

■ AZ I/M ■ GA RSD (CY04) ■ VA RSD (CY04)

A final practical step is to translate these results into terms corresponding to the MOVES age groups. As mentioned, the program in Phoenix has a four-year exemption period for new vehicles. However, it is not uncommon for other programs to have shorter exemptions; for example, both the Atlanta and N. VA programs have two-year exemptions.

An additional factor is that the coarser age groups used for the migrating-vehicle analysis don't mesh cleanly with the MOVES age groups. It was therefore necessary to impute values to the first two MOVES age groups (0-3 and 4-5 years). We achieved this step by linearly interpolating the value for the 5-9 year age Group to a value of 1.0 at 0 years of age, as shown in Figure 1-18. To anchor the interpolation, we associated the value of the ratio for the 5-9 year age group with the midpoint of the group (7.5 years). Then, based on a straight line interpolation, we imputed values for the 0-3 and 4-5 MOVES age groups, by taking the value on the line associated with the midpoint of each class, 1.5 and 5 years, respectively.

Figure 1-18. Imputation of non-I/M ratios for the 0-3 and 4-5 year MOVES ageGroups by linear interpolation from the midpoint of the 5-9 year analysis age group.

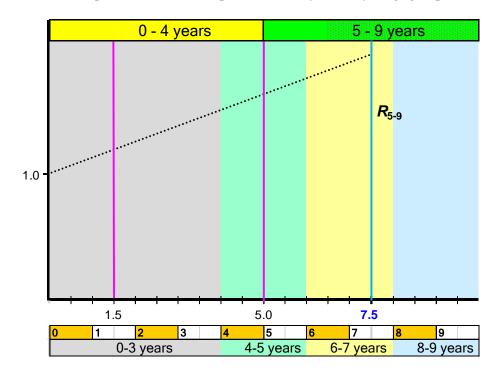
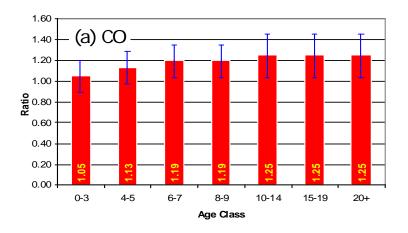
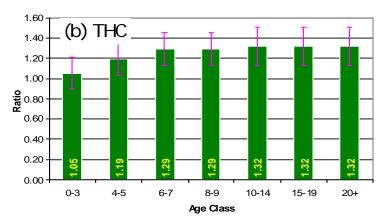
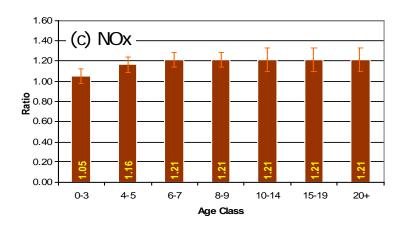





Figure 1-19 shows final values of the non-I/M ratios for CO, THC and NO_x , with error-bars representing 95% confidence intervals. The values for each pollutant start at 5.0% and increase with age, stabilizing at maximum values at 6 years (for NO_x) and 10 years (for HC and CO).

1 The ratios shown in Figure 17 are applied to the I/M reference rates to derive non-I/M reference

2 rates.

$$E_{h,\text{non-I/M}} = \text{Ratio} * E_{h,\text{I/M}}$$
 Equation 1-36

45

3

The uncertainty in $E_{h,\text{non-I/M}}$ was calculated by propagating the uncertainty in the Ratio with that of the corresponding I/M rate $E_{h\text{I/M}}$.

7

6

$$s_{E_{h,\text{non-I/M}}}^2 = \left(\frac{\partial E_{h,\text{non-I/M}}}{\partial R}\right)^2 s_R^2 + \left(\frac{\partial E_{h,\text{non-I/M}}}{\partial E_{h,\text{I/M}}}\right)^2 s_{E_{h,\text{I/M}}}^2$$

$$s_{E_{h,\text{non-I/M}}}^2 = E_{h,\text{I/M}}^2 s_R^2 + R^2 s_{E_{h,\text{I/M}}}^2$$
Equation 1-37

8

9 Thus, for any given cell h, the uncertainty in the non-I/M reference rate is larger than that for the

10 corresponding I/M reference rate, which is reasonable and appropriate given the additional

11 assumptions involved in developing the non-I/M reference rate.

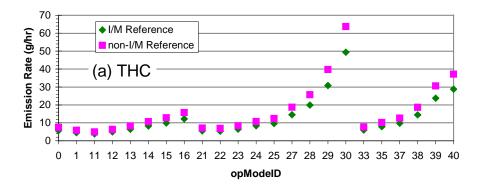
Figure 1-20 shows an example of the reference rates vs. operating mode, for all three pollutants.

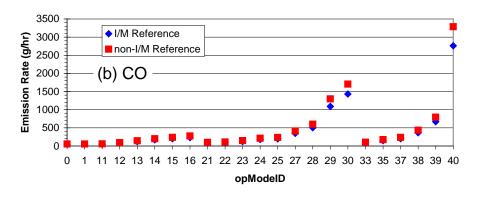
Note that not all the modes are shown, to allow examination of differences between non-I/M and

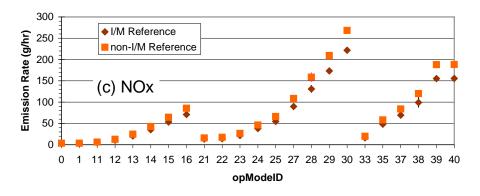
14 I/M rates at lower VSP. Figure 1-21 shows corresponding trends by age for two operating

modes. The first is opmode 11, (speed = 1-25 mph, VSP < 0 kW/Mg) and 27 (speed = 25-50

mph, VSP = 12-18 kW/Mg). A clear observation from both plots is that the I/M difference is


much larger in the more aggressive mode (27) than in the less aggressive one (11), with the


18 inference that I/M differences will be more strongly expressed for more aggressive than less


aggressive driving, in absolute (but not relative), terms.

2021



1 Figure 1-21. Non-I/M and I/M reference rates vs. age for two operating modes (example: cars, MYG 1994).

Age (years)

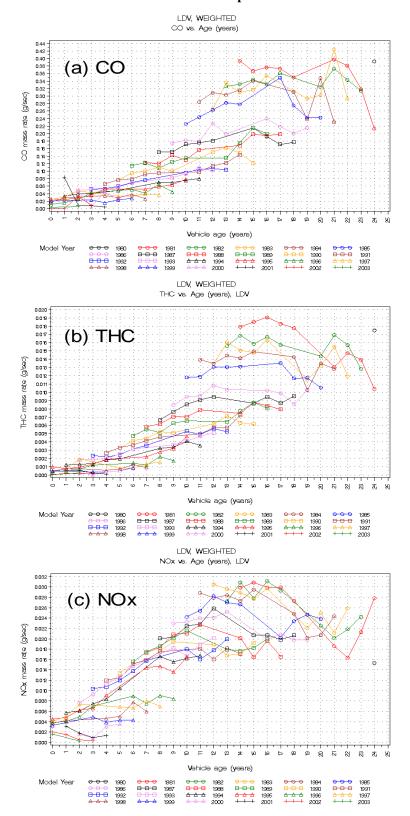
1.3.3.8 Stabilization of Emissions with Age

- 2 One characteristic of the data is that fleet-average emissions do not appear to increase
- 3 indefinitely with age, but rather tend to stabilize at some point between 12 and 15 years of age.
- 4 This behavior is visible in datasets with enough historical depth for age trends to be observable,
- 5 including the Phoenix random sample and long-term remote-sensing studies. ¹² Figure 1-22 and
- 6 Figure 1-23 show age trends by model year for cars and trucks, respectively. The values shown
- 7 are aggregate mass rates over the IM147 expressed as g/sec for CO, THC and NO_x.
- 8 Incorporating stabilization of emissions with age is another departure with the approach used on
- 9 MOBILE, which allowed emissions to increase indefinitely.
- From these figures, as well as Figure 1-6 (page 29), it is clear that no data were available at ages
- older than 10 years of age for model years later than 1995, and that no data was available at ages
- older than 15 years for model years older than 1990. Thus for model years more recent than
- about 1995 it was necessary to project emissions for ages greater than 8-10 years.
- However, it is not appropriate to simply extrapolate the statistical models past about 8-10 years.
- 15 As described above, emissions were modeled as In-linear with respect to age, which implies
- 16 exponential trends for reverse-transformed values. However, exponential trends will increase
- indefinitely if extrapolated much beyond the range of available data, which obviously does not
- describe observed patterns of fleet emissions. To compensate for this limitation, we employed a
- simple approach to represent the decline and stabilization of the rates.
- We calculated ratios of means between the 10-14 and 15-19 year ageGroups, each relative to the
- 8-9 year age group, using the 1986-89 and 1990-93 model-year groups, which contain data for
- vehicles as old as 19 years. For this purpose we used Phoenix data averaged by MOVES model-
- 23 year and age groups, as shown in Figure 1-24. Data points in the figure represent aggregate tests
- 24 (g/mi). After averaging by model-year group and ageGroup, we calculated ratios of means for
- 25 the 10-14 and 15-19 ageGroups.

1

$$R_{\rm age} = \frac{\overline{E}_{10-14}}{\overline{E}_{8-9}}, \quad R_{\rm age} = \frac{\overline{E}_{15-19}}{\overline{E}_{8-9}}$$
 Equation 1-38

27


- We calculated modified rates for the 10-14 and 15-19 year ageGroups as the product of the rate
- for the 8-9 year ageGroup and the corresponding ratio (R_{age}). Assuming that emissions would be
- 30 fully stable by 20 years, we set the rate for the 20+ year ageGroup equal to that for the 15-19
- 31 year ageGroup. We calculated variances for the ratios as in Equation 1-37.

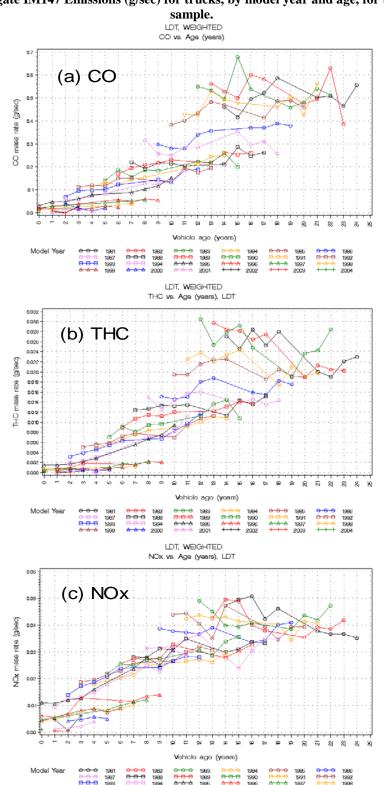
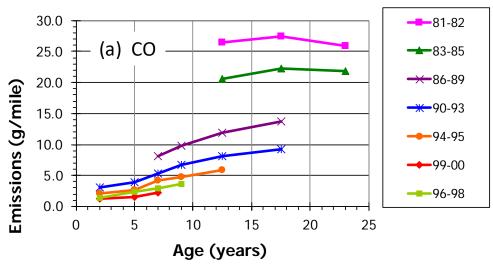
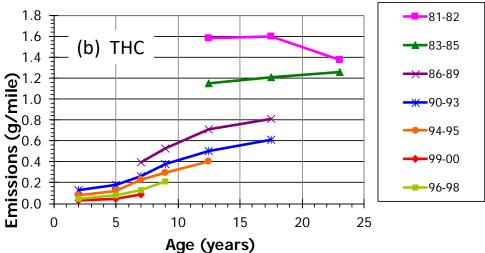
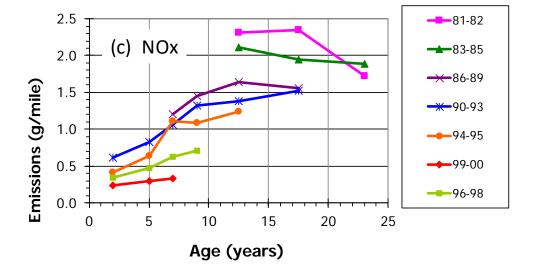

32

Table 1-17. Ratios used to stabilize emission rates for the 10-14 and 15-19 year ageGroups, calculated relative to the 8-9 year ageGroup.


1 2


Regulatory Class	ageGroup	Ratios (Rage)			Variances (V _R)			
		THC CO NO _x		NO_x	THC	СО	NO_x	
Cars	10-14	1.338	1.226	1.156	0.000000032	0.000160	0.00000009	
Cars	15-19	1.571	1.403	1.312	0.00000411	0.00268	0.00000261	
Trucks	10-14	1.301	1.220	1.156	0.00000173	0.000758	0.00000138	
Trucks	15-19	1.572	1.479	1.312	0.0000518	0.0666	0.0000499	



1 1.3.3.8.1 non-I/M Reference Rates 2 The ratios developed in 1.3.3.8 are assumed to apply in I/M areas, as the underlying data was 3 collected in the Phoenix I/M area. It is therefore plausible that the patterns observed may be 4 reflective of I/M areas. The program places some pressure on high-emitting vehicles to improve 5 their emissions, leave the fleet, leave the area, or, it could be added, evade requirements in some 6 way. However, in the absence of a program, high-emitting vehicles are not identified and owners 7 have less incentive to repair or replace them. Thus, the question arises as to whether 8 deterioration patterns would necessarily be identical in non-I/M as in I/M areas. Two plausible 9 scenarios can be proposed. In the first, the pattern of deterioration followed by stabilization is 10 similar in non-I/M as in I/M areas, but emissions stabilize at a higher level, and perhaps at a later age. In the second, emissions continue to increase in non-I/M areas, but at a slower rate after 10-11 12 15 years. Data that sheds light on these questions are very limited, as the datasets with sufficient history 13 14 were collected within I/M areas. Thus, given the absence of information, we adopted an 15 assumption that, absent the existence of a program, emissions would increase after 19 years. We applied this assumption by assuming that the ratio observed between the 10-14 and 15-19 year 16 17 ageGroups would persist in linear fashion from the 15-19 to the 20+ year ageGroups. 18 Table 1-18 shows the deterioration stabilization ratios for both the I/M and non-I/M references 19 rates. As mentioned above, all ratios are applied by multiplication by values for the 8-9 year 20 ageGroup in all operating modes. The ratios for I/M areas ($R_{age,I/M}$) are identical to those in Table 21 1-17. The center column shows the ratio of values of $R_{\text{age,I/M}}$ for the 15-19 to the 10-14 year 22 ageGroups. Ratios for the non-I/M references ($R_{\text{age,non-I/M}}$) are identical to those for I/M in the 23 10-14 and 15-19 year ageGroups. In the 20+ year ageGroup, the non-I/M ratio is equal to the product of the 15-19 value and the ratio of the 15-19 and the 10-14 values. 24 25 26

Table 1-18. Deterioration-stabilization ratios as applied to I/M and non-I/M reference rates.

Pollutant Regulatory		ageGroup	$R_{\text{age,I/M}}^{1}$	M and non-I/M referen Ratio (15-19:10-14)	Rage,non-I/M
	Class				
		10-14	1.338		1.338
	Cars	15-19	1.571	1.174	1.571
THC		20+	1.571		1.845
THC		10-14	1.301		1.301
	Trucks	15-19	1.572	1.206	1.572
		20+	1.572		1.898
		10-14	1.226		1.226
	Cars	15-19	1.403	1.144	1.403
СО		20+	1.403		1.606
CO		10-14	1.220		1.220
	Trucks	15-19	1.479	1.213	1.479
		20+	1.479		1.795
		10-14	1.159		1.159
NO_x	Cars	15-19	1.312	1.132	1.132
		20+	1.312		1.486
		10-14	1.159		1.159
	Trucks	15-19	1.312	1.132	1.132
		20+	1.312		1.486

¹ Values in this column are identical to those in Table 1-17.

1

² Calculated as the ratio of the values in the current and previous rows.

 $^{^{3}}$ for 10-14 and 15-19 year ageGroups, values in this column identical to the I/M column; for the 20+ year ageGroup, values in this column equal the product of the value in the previous row (15-19) and the value in the center column.

1 1.3.4 Emission-Rate Development: Subgroup 2 (MY 2001 and later)

2 1.3.4.1 Data Sources

- 3 Data for vehicles in model years 2001 and later was acquired from results of tests conducted
- 4 under the In-Use Verification Program (IUVP). This program, initiated in 2003, is run by
- 5 manufacturers and administered by EPA/OTAQ through the Compliance Division (CD).
- 6 To verify that in-use vehicles comply with applicable emissions standards, customer-owned
- 7 vehicles at differing mileage levels are tested on an as-received basis with minimal screening.
- 8 Emissions are measured on the Federal Test Procedure, US06 and other cycles. The FTP is most
- 9 relevant to our purposes, but the US06 is also important.

10 1.3.4.1.1 Vehicle Descriptors

In addition to the parameters listed above in Table 1-7, the IUVP data provides test-group

- 12 (formerly engine family) information. Using test group, the IUVP files can be merged with
- certification test records by model year. The certification test records provide information on
- standard level and specific emissions standards applicable to each vehicle. The standard level
- refers to the body of standards to which vehicles were certified (Tier 1, NLEV, LEV-I, LEV-II),
- and the standards refer to specific numeric standards for HC, CO or NO_x, where HC are
- 17 represented by non-methane hydrocarbons (NMHC) or non-methane organic gases (NMOG),
- depending on combinations of standard level and vehicle class (LDV, LDT1-4).

20

19

Table 1-19. Vehicle descriptors available in IUVP files and certification test records.

Parameter		Source	Purpose
	IUVP	Cert. Records	
VIN	Y		Verify MY or other parameters
Fuel type	Y		
Make	Y	Y	
Model	Y	Y	
Model year	Y	Y	Assign sourceBinID, calculate age-at-test
Test group ¹	Y	Y	
Tier		Y	
Emissions Standard		Y	Assign Vehicle Class
¹ Formerly "engine family	·."		

2122

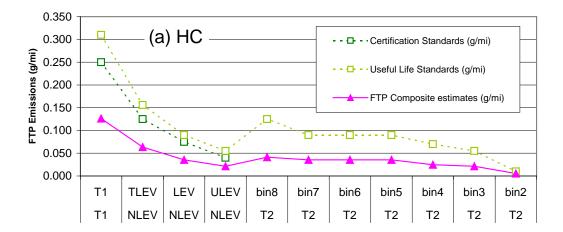
Combining data from both sources allows individual test results to be associated with the correct standard level and emissions standard, allowing inference of the correct vehicle class.

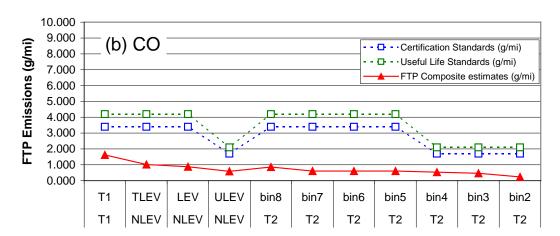
2324

25

1.3.4.2 Estimating I/M Reference Rates

- The goal of this process is to represent I/M reference rates for young vehicles, i.e., the first
- ageGroup (0-3 years). The rates are estimated by Tier, model year and regulatory class. The
- process involves six steps, each of which is discussed in more detail in Section 1.3.4.2.1, below.
- 29 1. Average IUVP results by standard level and vehicle class.


- 2. Develop phase-in assumptions for MY 2001 2017, by standard level, vehicle class and
- 2 model year.
- 3 3. Merge FTP results and Phase-in assumptions. For running emissions, calculate weighted
- 4 ratios of emissions in each model year to those for Tier 1 (MY2000). We assumed that the
- 5 emissions control at high power (outside ranges of speed and acceleration covered by the FTP)
- 6 would not be as effective as at lower power (within the range of speed and acceleration covered
- 7 by the FTP).
- 8 4. Estimate Emissions by Operating Mode. Then calculate emissions by operating mode in each
- 9 model year by multiplying the MY2000 emission rates by the weighted ratio for each model
- 10 year.
- 5. Apply Deterioration to estimate emissions for three additional age Groups (4-5, 6-7 and 8-9).
- We assume that NLEV and Tier 2 vehicles will deteriorate similarly to Tier-1 vehicles, when
- viewed in logarithmic terms. We therefore apply ln-linear deterioration to the rates developed in
- steps 1-4. For the remaining three groups, emissions are assumed to stabilize as described above
- 15 on page 58.
- 6. Estimate non-I/M reference rates. The rates in steps 1-6 represent I/M references.
- 17 Corresponding non-I/M references are calculated by applying the ratios applied to the Tier-1 and
- pre-Tier-1 rates (Figure 1-19).
- 19 Each of these steps is described in greater detail in the sub-sections below.


21 1.3.4.2.1 Averaging IUVP Results

- 22 In using the IUVP results, "cold-start" emissions are represented as "Bag 1 Bag 3" i.e., the
- 23 mass from the cold-start phase less that from the corresponding hot-start phase. Similarly, "hot-
- running" emissions are represented by the "Bag 2," or the "hot-stabilized" phase, after the initial
- 25 cold-start phase has conditioned the engine.
- The first step is to average the IUVP results by Tier and vehicle Class. Results of this process
- are shown below. In the figures, note that the HC values represent non-methane hydrocarbons
- 28 (NMHC) for Tier 1 and non-methane organic gases (NMOG) for NLEV and Tier 2. Figure 1-25
- 29 shows FTP composite results in relation to applicable certification and useful-life standards. For
- 30 THC and NO_x, the data show expected compliance margins in the range of 40-60% in most
- 31 cases. For CO, compliance margins are even larger, ostensibly reflecting the concomitant effects
- of HC or NO_x control on CO emissions.
- Figure 1-26 shows results for separate phases of the FTP, to examine differential effects of
- standards on start and running emissions. As mentioned, the "cold-start" emissions are
- represented by the difference between Bags 1 and 3, divided by the nominal bag distance (3.59)
- miles) which expresses the values as a "start rate" in g/mi. The "hot-running" emissions are
- 37 represented by Bag 2 emissions, also divided by the appropriate distance to obtain an aggregate
- 38 rate, in g/mi. Additionally, Figure 1-27 shows composite, start and running values normalized to
- 39 their respective Tier-1 levels, which clearly displays the greater relative levels of control for
- 40 running as opposed to start emissions. Not surprisingly then, distinguishing start and running
- 41 emissions shows that composite FTP values for HC and CO are strongly influenced by start
- 42 emissions. Starts are also important for NO_x , but to a lesser degree. In any case, the results show

- that sole reliance on composite results in projecting future emissions declines would give misleading results in projecting either start or running emissions. Hence, the method described 1 2 3
- below emphasizes treating them separately.

Figure 1-25. Composite FTP Results for Tier 1, NLEV and Tier 2 passenger cars (LDV), as measured by IUVP, in relation to corresponding certification and useful-life standards.

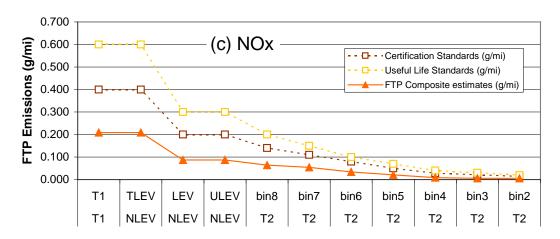
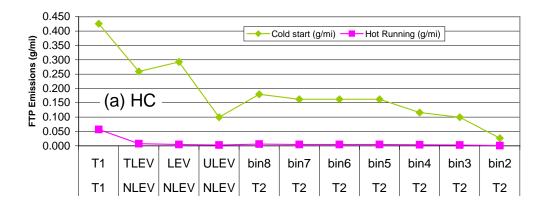
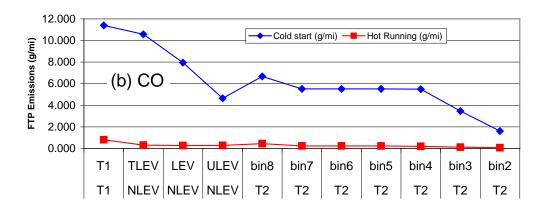




Figure 1-26. Cold-start (Bag 1 – Bag 3) and hot-running (Bag 2) FTP emissions for Tier 1, NLEV and Tier 2 passenger cars (LDV), as measured by IUVP (g/mi).

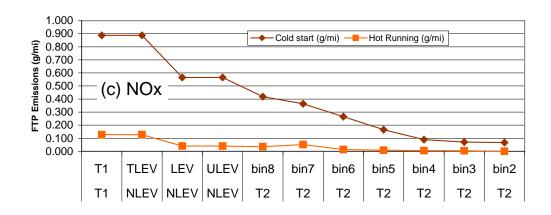
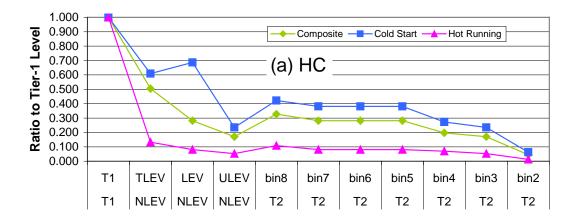
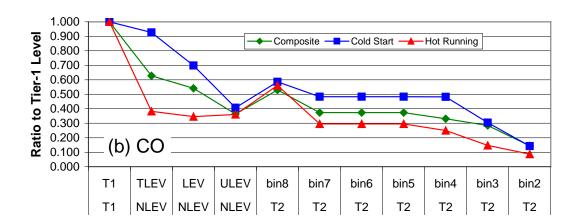
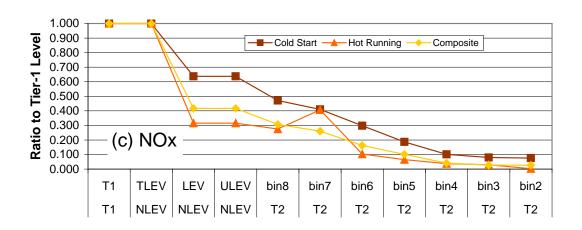





Figure 1-27. Composite, cold-start (Bag 1 – Bag 3) and hot-running (Bag 2) FTP emissions for Tier 1, NLEV and Tier 2 passenger cars (LDV), as measured by IUVP, normalized to respective Tier-1 levels.

1.3.4.2.2 Develop Phase-In Assumptions

- 2 To estimate emissions levels for specific model years, we developed assumptions describing the
- 3 phase-in of new emissions standards after model year 2000. For rates stored in the MOVES
- 4 default database, we developed assumptions intended to apply to vehicles sold in states where
- 5 Federal, rather than California standards applied. Thus, the phase-is designed to represent the
- 6 phase-in of National-Low-Emission-Vehicle (NLEV) and Tier 2 standards.
- 7 To achieve these steps, we obtained certification records and test results for a selection of model
- 8 years. 30 These records contain information on certified vehicles, including model year, test
- 9 group (engine family), standard level (Tier-1, LEV, Bin 5, etc.), and sales area, as well as
- numerical standards used for certification on the Federal Test Procedure (e.g., 0.05 g
- 11 NMOG/mile, etc.). For each engine family, we inferred the vehicle class (LDV, LDT1-LDT4)
- based on combination of standard and numerical values. Examples illustrating this process are
- shown in Table 1-20.

- 14 After compiling lists of engine families by standard, model year and vehicle class, we obtained
- estimates of final sales from the EPA VERIFY database for MY 2001-2007.³¹ We merged the
- certification records with the sales estimates, by model year and engine family.
- 17 Then to estimate the default "Federal" phase-in, we summed the sales by model year, standard
- level and vehicle class, for a subset of sales areas in which Federal or California standards
- 19 applied, excluding those sales areas in which only California standards applied. Estimates of
- 20 numbers of engine families certified for various sales areas are listed in Table 1-21. Sales-
- 21 weighted phase-in scenarios for each vehicle class are shown in Figure 1-28 through Figure 1-31.
- As noted, the results in the Figures reflect the certifications in the "Fed" or "Both" groups shown
- 23 in Table 1-21.
- 24 Proportions of each standard represent actual phase-in history for MY 2001-2007. We projected
- 25 phase-in assumptions through MY2010, after which we held assumptions constant, under
- assumption that the Tier 2 phase-in would be complete.
- 27 The National LEV (NLEV) standards apply only to LDV, LDT1 and LDT2 vehicle classes, for
- 28 which Tier 1 certification ended in MY 2000. Certification to NLEV standards began in 2001
- and ended in 2006, however, NLEV vehicles dominate the (Federal) fleet between 2001 and
- 30 2003. Tier 2 vehicles enter the fleet in 2003 and completely comprise new sales by 2010.
- 31 The phase-in for LDV, LDT1 and LDT2 are broadly similar in that LEV and Bin 5 vehicles
- 32 dominate certifications and sales. There are relatively small differences in that LDV-T1 contains
- 33 higher fractions of ULEV and Bin 8.
- 34 The phase-in for heavy light-duty trucks is simpler in that Tier-1 certifications continue through
- 35 2004, after which Tier 2 standards are introduced. After 2003, certifications are dominated by
- 36 Bin 8, Bin 5 and Bin 4.

7	1	
′)	1	
\mathcal{L}	2	

Standard	Engine Family	Sales Area		Vehicle-Class		
			50,000-mi	100,000-mi	120,000-mi	
LEV	2HNXV02.0VBP	NLEV all states	0.075	0.09		LDV, LDT1
LEV	2MTXT02.4GPG	NLEV all-states	0.100	0.13		LDT2
Tier 1	2CRXT05.95B2	Federal all-altitude	0.32		0.46	LDT3
Tier 1	2CRXT05.96B0	Federal all-altitude	0.39		0.56	LDT4

3 4 5

Table 1-21. Approximate numbers of engine families certified, by model year and age group, for model years 2001-2007.

Sales Area	Code	Group ¹	oup ¹ Model Year						Total	
			2001	2002	2003	2004	2005	2006	2007	
California	CA	CA	114	116	118	240	251	275	255	1,369
Clean Fuel Vehicle	CF	Fed	38	46	81	76	69	61	55	426
California + NLEV (all states)	CL	Both	149	140	129					418
Federal All Altitude	FA	Fed	79	75	86	209	219	271	274	1,213
Federal + CA Tier 2	FC	Both			16	81	41	33	16	187
Clean Fuel Veh + NLEV(ASTR) ² + CA	NF	Both	57	56	45					158
NLEV (All States)	NL	Fed	31	47	74					152
TOTAL			468	480	549	606	580	640	600	3,923

¹ "Fed" denotes areas for which vehicles were certified to Federal Tier 1, NLEV or Tier 2 standards, "CA" denotes vehicles certified to California LEV-I or LEV-II standards, including the "section 177" states, "Both" denotes vehicles certified for Federal or California Sales Areas.

² "ASTR" = "All-state trading Region."

Figure 1-28. Phase-in assumptions for Tier 1, NLEV, and Tier 2 standards, for LDV and LDT1.

1

2 3

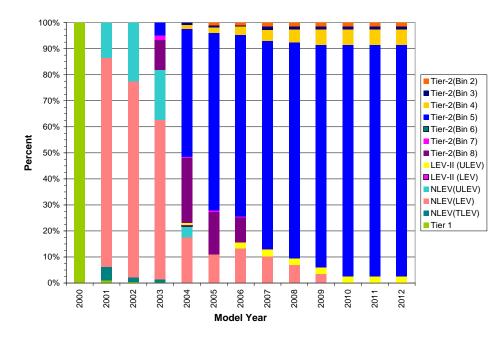
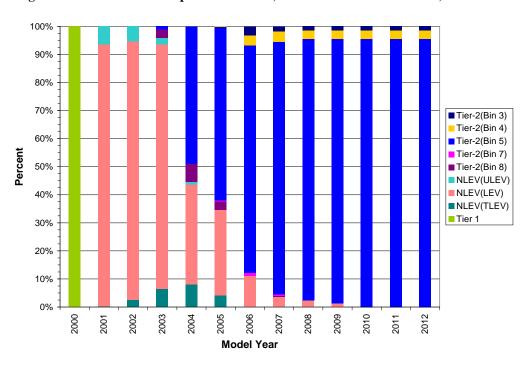



Figure 1-29. Phase-in assumptions for Tier 1, NLEV and Tier 2 standards, for LDT2.

Figure 1-30. Phase-in assumptions for Tier 1 and Tier 2 standards, for LDT3.

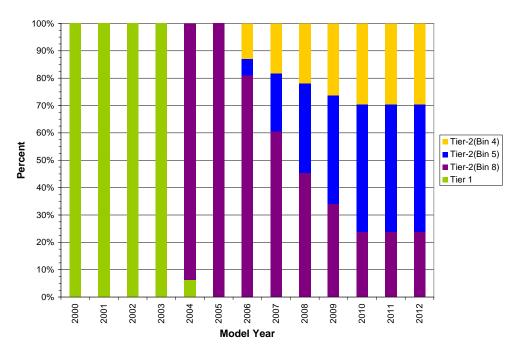
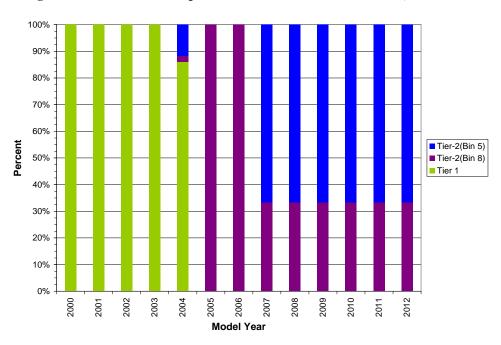



Figure 1-31. Phase-in assumptions for Tier 1 and Tier 2 standards, for LDT4.

1	1.3.4.2.3	Merge FTP results and phase-in Assumptions
2 3 4 5 6 7	for all standards in each model year, with the fractions. We do this step for each vehicle together using a set of fractions also derive	ed averages of the FTP cold-start and running results he emissions results weighted by applicable phase-in class separately, then we weight the four truck classes d from the weighted sales estimates. Through MY actions vary by model year, but are held stable after
8 9 10 11 12 13 14 15	years 2000 and 2010. The figure shows co Tier 2 standards, as well as the phase-in fra running emissions in each model year are s emissions estimates and the phase-in fracti- directly to represent cold-start emissions for	e-in calculation for NO_x from cars between model ld start and running FTP values for Tier 1, NLEV and actions for each standard in each model year. Start and imply calculated as weighted averages of the ons. The resulting weighted start estimates are used or young vehicles in each model year (ages 0-3). For are not used directly; rather, each is expressed as a
16 17 18 19 20 21 22	composites, cold-start and hot-running emi mass increment (g), are used directly in the emissions (for operating mode 108). The (g/mi), are presented for comparison. For a	for model-years 2001-2010 for simulated FTP ssions. The start values, expressed as the cold-start MOVES emission rate table to represent cold-start composites and running emissions, expressed as rates running emissions, however, the averages shown in is expressed as a ratio to the corresponding Tier-1 36 below.
23		
24		
25		

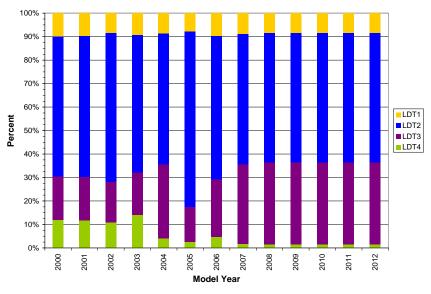


Figure 1-33. Example of phase-in calculation, for NO_x from cars (LDV), for MY 2000-2010.

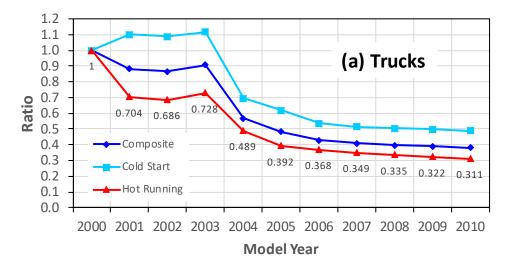

Standard		Cold start	Hot Running					Phase	e-in by Mo	del Year				
		(g)	(g/mi)	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	201
Tier 1	Tier 1	0.888	0.127	1	0.011	0.004	0.002	0	0	0	0	0	0	
	TLEV	0.888	0.127	0	0.052	0.018	0.011	0	0	0	0	0	0	
NLEV	LEV	0.566	0.040	0	0.801	0.752	0.613	0.175	0.110	0.132	0.103	0.070	0.035	
	ULEV	0.566	0.040	0	0.136	0.226	0.192	0.042	0	0	0	0	0	(
	bin8	0.418	0.035	0	0	0	0.115	0.251	0.163	0.095	0.002	0	0	(
	bin7	0.364	0.052	0	0	0	0.017	0.004	0.005	0.004	0	0	0	
Tier 2	bin5	0.165	0.008	0	0	0	0.049	0.491	0.682	0.698	0.799	0.830	0.855	0.89
	bin4	0.090	0.005	0	0	0	0	0.016	0.021	0.033	0.042	0.050	0.060	0.06
	bin3	0.071	0.004	0	0	0	0	0.008	0.009	0.003	0.013	0.010	0.010	0.010
	bin2	0.067	0.000	0	0	0	0	0	0.010	0.011	0.014	0.015	0.015	0.01
LEV-II	LEV	0.165	0.008	0	0	0	0	0.0052645	0.000	0.000	0.000	0.000	0.000	0.00
	ULEV	0.071	0.004	0	0	0	0	0.0074988	0.000	0.024	0.026	0.025	0.025	0.02
			Start (g)	0.888	0.586	0.573	0.530	0.314	0.248	0.237	0.199	0.185	0.170	0.15
		R	tunning (g/mile)	0.127	0.046	0.042	0.039	0.022	0.016	0.015	0.011	0.010	0.009	0.00
		I RATI	O to Tier 1	1.00	0.36	0.33	0.31	0.17	0.13	0.12	0.087	0.079	0.070	0.061

Table 1-22. Weighted average FTP values for trucks and cars for MY 2001-2010.

regClass	MY	1-22. vv	CO		1		THC		Ì		NOx	
		Comp.	Start	Running		Comp.	Start	Running		Comp.	Start	Running
		(g/mi)	(g)	(g/mi)		(g/mi)	(g)	(g/mi)		(g/mi)	(g)	(g/mi)
Reference ¹	2000	1.62	11.4	0.805		0.126	1.53	0.0571		0.209	0.888	0.127
Trucks	2001	1.43	12.6	0.566	1	0.0965	1.23	0.0400	l	0.171	0.843	0.0876
TTUCKS	2002	1.41	12.4	0.552		0.0942	1.21	0.0376		0.169	0.836	0.0865
	2002	1.47	12.7	0.586		0.1004	1.25	0.0370		0.181	0.863	0.0934
	2003	0.923	7.92	0.393		0.0535	0.786	0.0424		0.181	0.473	0.0434
	2005	0.783	7.05	0.315		0.0440	0.703	0.00574		0.0596	0.367	0.0291
	2006	0.697	6.12	0.296		0.0378	0.612	0.00511		0.0381	0.264	0.0183
	2007	0.664	5.85	0.281		0.0361	0.587	0.00490		0.0315	0.226	0.0148
	2008	0.647	5.75	0.270		0.0356	0.580	0.00479		0.0285	0.208	0.0130
	2009	0.632	5.67	0.260		0.0350	0.571	0.00470		0.0258	0.192	0.0115
	2010	0.618	5.58	0.251		0.0345	0.564	0.00461		0.0233	0.177	0.0101
Cars	2001	0.8561	7.68	0.287		0.0361	0.954	0.00508		0.0948	0.586	0.0457
	2002	0.8206	7.27	0.284		0.0333	0.893	0.00451		0.0898	0.573	0.0421
	2003	0.8076	7.05	0.300		0.0340	0.839	0.00462		0.0824	0.530	0.0394
	2004	0.7141	6.16	0.298		0.0360	0.664	0.00488		0.0461	0.315	0.0220
	2005	0.6716	5.91	0.274		0.0358	0.634	0.00477		0.0351	0.248	0.0161
	2006	0.6566	5.85	0.257		0.0350	0.633	0.00462		0.0335	0.239	0.0150
	2007	0.6210	5.63	0.234		0.0341	0.608	0.00443		0.0271	0.201	0.0112
	2008	0.6114	5.55	0.232		0.0341	0.592	0.00443		0.0248	0.187	0.0101
	2009	0.6011	5.47	0.230		0.0339	0.574	0.00442		0.0224	0.172	0.00896
	2010	0.5915	5.38	0.229		0.0339	0.557	0.00442		0.0201	0.158	0.00784

¹The reference level for calculating ratios is MY 2000, representing cars (LDV) for Tier 1.

Figure 1-34. Weighted ratios for composite, start and running CO Emissions, for (a) trucks and (b) cars.

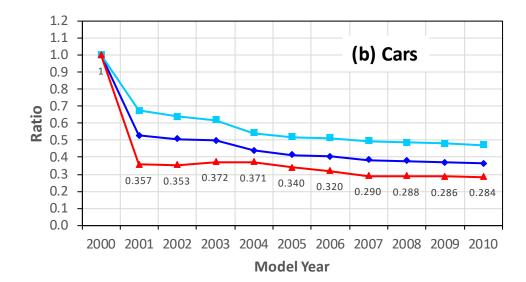
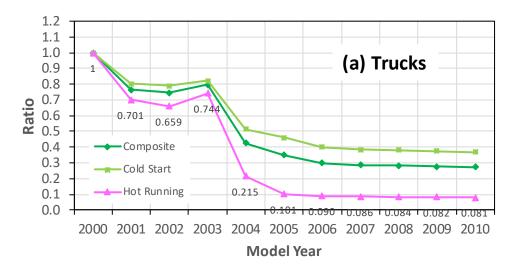



Figure 1-35. Weighted ratios for FTP composite, start and running THC emissions, for (a) trucks and (b) cars.

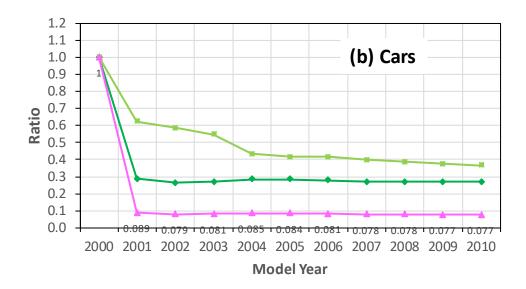
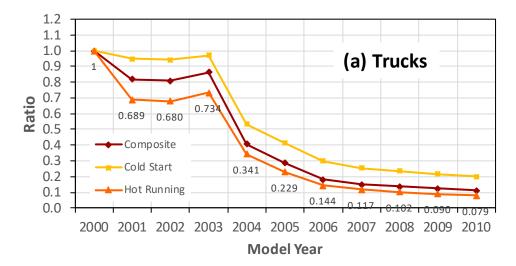
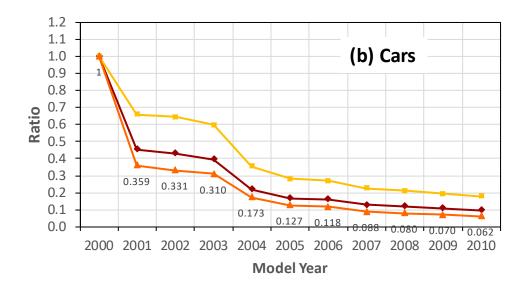




Figure 1-36. Weighted ratios for FTP composite, start and running NO_x emissions, for (a) trucks and (b) cars.

1.3.4.2.4 Estimating Emissions by Operating Mode

- With the introduction of the NLEV standards, new emissions requirements were imposed, in
- 3 addition to standards defined in terms of the Federal Test Procedure. The new requirements,
- 4 under the "Supplemental Federal Test Procedure" (SFTP), imposed more stringent emissions
- 5 control under conditions of high speed and power (through the US06 cycle), and with air-
- 6 conditioning running (through the SC03 cycle). To project emissions for NLEV and Tier 2
- 7 vehicles, we divided the operating modes for running exhaust into two groups. These groups
- 8 represent the ranges of speed and power covered by the FTP standards (< ~18 kW/Mg), and the
- 9 ranges covered by the US06 cycle. For convenience, we refer to these two regions as "the hot-
- running FTP region" and "US06 region," respectively (See Figure 1-37). Data measured on the
- 11 SC03 cycle did not play a role in emission rate development.
- 12 To estimate emissions by operating mode, the approach was to multiply the emission rates for
- 13 MY 2000, representing Tier 1, by a specific ratio for each model year from 2001 to 2010, to
- represent emissions for that year. For the FTP operating modes, we applied the "hot-running"
- ratios shown in Figure 1-34 to Figure 1-36 above.

16 **1.3.4.2.4.1 Running Emissions**

- 17 For the "US06" operating modes, we followed a different approach from that described above in
- 18 1.3.4.2.3. At the outset, we noted that the degree of control in the FTP standards increases
- dramatically between MY 2000 through MY 2010, following phase-in of the Tier 2 standards,
- 20 giving pronounced declines in emissions on the FTP, especially for the hot-running phase (Bag
- 21 2). For our purposes, we are referring specifically to declines in running emissions, as shown by
- changes in Bag-2 emissions. However, it was not obvious that the degree of control would
- 23 increase as dramatically for the SFTP standards, as shown by the US06. Thus, in preparation of
- 24 the draft rates, we adopted a conservative assumption that emissions in the "US06" region would
- not drop as sharply as those in the "hot-running FTP" region.
- 26 It was therefore necessary to estimate different sets of ratios. Two alternative approaches were
- 27 developed.

- 28 The first option involved returning to the Phoenix I/M data. To create pre- and post-SFTP
- estimates, we pooled tests for two model-year groups, 1998-2000, representing Tier 1 vehicles
- 30 not subject to SFTP requirements, and 2001-2003, representing NLEV vehicles subject to the
- 31 SFTP. For each group, we calculated means for each pollutant for the US06 operating modes (as
- a group), and calculated ratios between the two groups.

$$R_{\text{SFTP}} = \frac{\overline{E}_{\text{poll,SFTP,01-03}}}{\overline{E}_{\text{poll,SFTP,98-00}}}$$
 Equation 1-39

- 33 The resulting ratios were used for CO and HC, as shown in Figure 1-38.
- 34 The second approach involved compilation of results on the US06 cycle and calculation of ratios
- in a manner similar to that used for FTP data as described in 1.3.4.2.3 above. It was possible to
- obtain data representing US06 tests representing vehicles in MY 1996-97 from the Mobile-
- 37 Source Observation Database (MSOD), developed and maintained by EPA/OTAQ.³² For NLEV
- and Tier 2 vehicles manufactured after MY2000, US06 results were available from the IUVP
- 39 program. Emissions results on the US06 by standard were weighted by the phase-in assumptions

for MY 2001-2007 as with the FTP results. Resulting ratios for cars and trucks are shown in Figure 1-38.

Figure 1-39 and Figure 1-40 show application of the ratios to the hot-running FTP and US06 operating modes in model years 2000 (the reference year), 2005, and 2010, both calculated with respect to 2000. The sets of ratios shown in Figure 1-38 for cars are used for both sets of modes. Note that the values for the SFTP modes are equal in 2005 and 2010 for HC and CO, because the SFTP ratios are constant by model year. In these figures, the results are presented on both linear and logarithmic scales. The linear plots display the differences in the high-power modes, but obscure those in the low-power modes. The logarithmic plots supplement the linear plots by making visible the relatively small differences between MY 2005 and 2010 in the lower power modes.

12 13

14

15 16 17

1 2

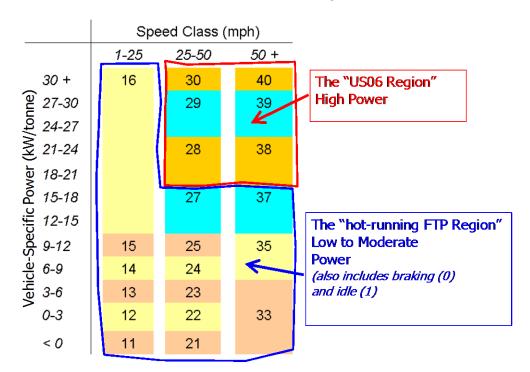
3

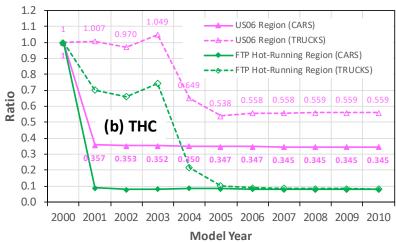
4

5

6

7

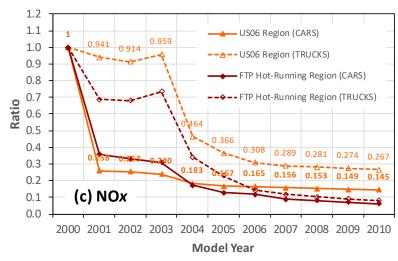

8


9

10

11

Figure 1-37. Operating modes for running exhaust emissions, divided broadly into "hot-running FTP" and "US06" regions.



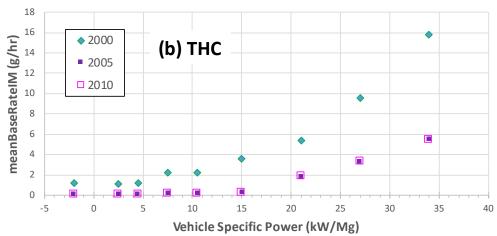


Figure 1-39. Projected emission rates for cars, vs. VSP, for three model years (LINEAR SCALE). (NOTE: rates pictured represent operating modes 21-30 for ages 0-3 years).

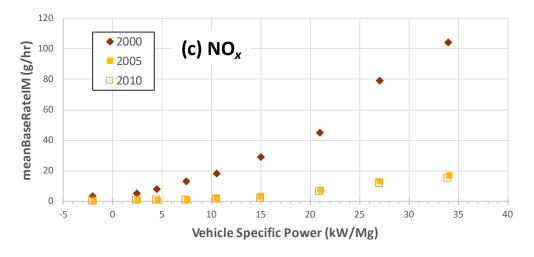
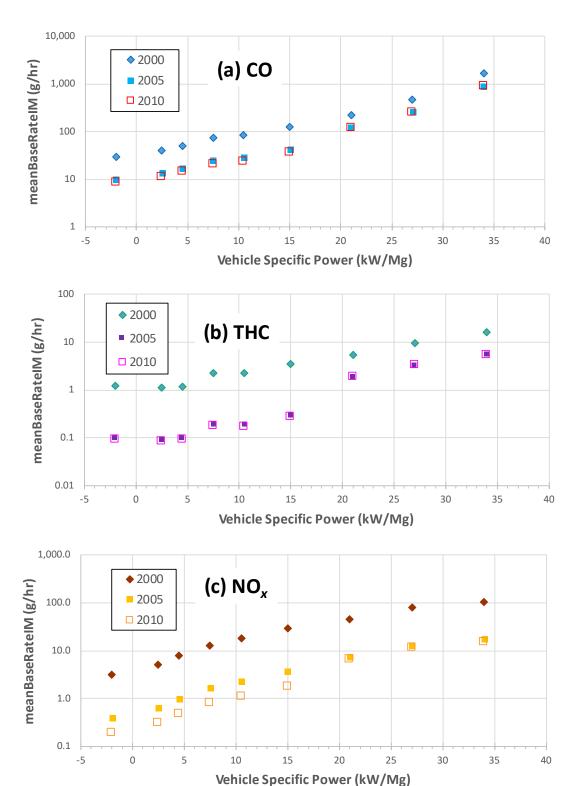



Figure 1-40. Projected emission rates for cars, vs. VSP, for three model years (LOGARITHMIC SCALE). (NOTE: rates pictured represent operating modes 21-30 for ages 0-3 years).

2 1.3.4.2.5 Apply Deterioration 3 Based on review and analysis of the Phoenix I/M data, we assume that deterioration for different 4 technologies is best represented by a multiplicative model, in which different technologies, 5 represented by successive model-year groups, show similar deterioration in relative terms but 6 markedly different deterioration in absolute terms. We implemented this approach by translating 7 emissions for the 0-3 age Group, as calculated above, into natural logarithms and applying 8 uniform logarithmic age trends to all model-year groups. We derived logarithmic deterioration 9 slopes for Tier-1 vehicles (MY 1996-98) and applied them to NLEV and Tier 2 vehicles. In this 10 process we applied the same logarithmic slope to each operating mode, which is an extension of the multiplicative deterioration assumption. 11 12 13 1.3.4.2.5.1 Recalculate the logarithmic mean 14 Starting with the values of the arithmetic mean (x_a) calculated above, we calculate a logarithmic 15 mean (x_l) , as shown in Equation 1-40. Note that this equation is simply a rearrangement of 16 Equation 1-30 (page 36). 17 $\overline{x}_l = \ln \overline{x}_a - \frac{\sigma_l^2}{2}$ **Equation 1-40** 18 19 The values of the logarithmic variance are intended to represent values for young vehicles, as the estimates for x_a represent the 0-3 year age Group. The values of σ_l^2 used for this step were 1.30, 20 21 0.95 and 1.60 for CO, THC and NO_x, respectively. 22 23 Apply a logarithmic Age slope 1.3.4.2.5.2 24 After estimating logarithmic means for the 0-3 age class ($x_{l,0-3}$), we estimate additional 25 logarithmic means for successive age classes ($x_{l,age}$), by applying a linear slope in ln-space (m_l). 26 $\bar{x}_{l.age} = \bar{x}_{l.0-3} + m_l (age - 1.5)$ **Equation 1-41** 27 28 The values of the logarithmic slope are adapted from values developed for the 1996-98 model – 29 year group. The values applied are shown in Table 1-23. When calculating the age inputs for 30 this equation, we subtracted 1.5 years to shift the intercept to the midpoint of the 0-3 year age 31 Group, as shown in Equation 1-41. 32 Figure 1-41 shows an example of the approach, as applied to THC from LDV in the 1996-98

1

33

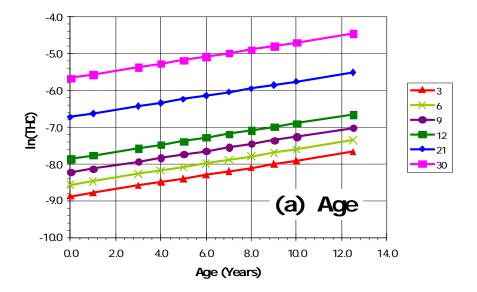
34

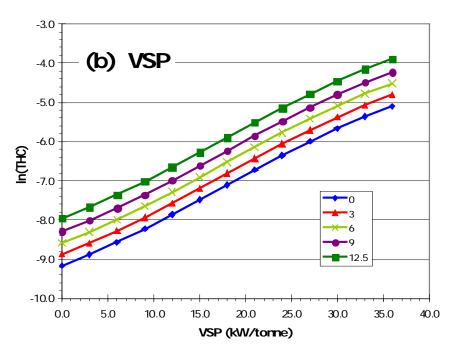
35

model-year group. The upper plot (a) shows lnTHC vs Age, by VSP, where the VSP acts as a

lines, with the gaps between the lines reflecting the magnitude of the VSP differences between

surrogate for operating mode. The defining characteristics of the plot are a series of parallel


5 6


7 8

3

Table 1-23. Values of the logarithmic deterioration slope applied to running-exhaust emission rates for MY following 2000.

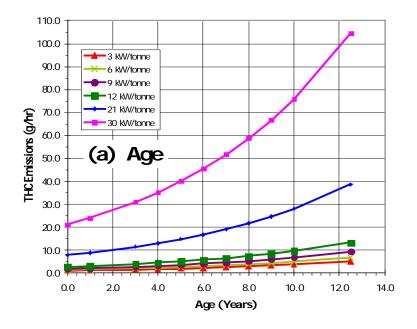
pollutant	opMode Group	Logarithmic slope (m_l)							
СО	"hot-running FTP"	0.13							
	"US06" ²	0.06							
THC	"hot-running FTP"	0.09							
	"US06"	0.09							
NO_x	"hot-running FTP"	0.15							
	"US06"	0.15							
¹ Includes o	¹ Includes opModeID = $0,1, 11-16, 21-25, 27, 33,35,37$.								
² Includes o	pModeID = 28,29,30, 3	8,39,40.							

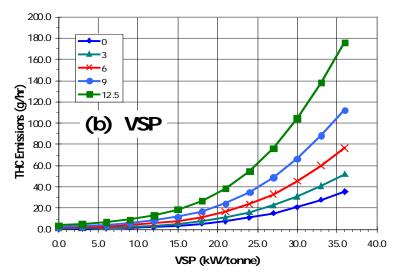
1.3.4.2.5.3 Apply the reverse transformation

- After the previous step, the values of $x_{l,age}$ were reverse-transformed, as in Equation 1-30. The
- 3 values of the logarithmic variance used for this step were adapted from the Phoenix I/M results
- 4 and are intended to represent emissions distributions for "real-world" vehicle populations,
- 5 meaning that the values are higher than the value used in step 1.3.4.2.5.1 and may vary with age.
- 6 Values of logarithmic variances for all three pollutants are shown in Table 1-24.

Table 1-24. Values of logarithmic variance used to calculate emissions deterioration by reverse transformation of logarithmic means.

Age Group	Pollutant				
	co	ТНС	NO_x		
0-3 years	1.30	0.95	1.60		
4-5	2.05	1.50	1.60		
6-7	2.00	1.70	1.40		
8-9	1.80	1.90	1.40		


9


1

7

8

- No values are presented in the table for the 10-14, 15-19 and 20+ year age Groups. This
- omission is intentional, in that we did not want to extrapolate the deterioration trend beyond the
- 8-9 year age Group. Extrapolation beyond this point is incorrect, as we assume that emissions
- tend to stabilize beyond this age, while the ln-linear emissions model would project an
- increasingly steep and unrealistic exponential emissions trend. For the 10-14, 15-19 and 20+ age
- 15 Groups, the "stabilization of emissions with age" was estimated as described in section 1.3.3.8.
- 16 Figure 1-42 shows the same results as Figure 1-41, following reverse transformation. The
- families of parallel logarithmic trends are replaced by corresponding "fans" of diverging
- 18 exponential trends. An implication of this model is that as deterioration occurs, it is expressed
- more strongly (in absolute terms) at high power. Similarly, the relationship between emissions
- and VSP becomes more pronounced, in absolute terms, with increasing age.

1.3.4.2.6 Estimate non-I/M References

Completion of steps 1.3.4.2.1 - 1.3.4.2.6 provided a set of rates representing I/M reference rates for MY 2001-2021. As a final step, we estimated non-I/M reference rates by applying the same ratios applied to the I/M references for MY 2000 and previous, as described above.

1.4 Exhaust Emissions for Start Operation

Up to this point, the discussion has concerned emissions occurring after both the engine and the emissions control system (primarily the catalyst) have come to operating temperature. Under these conditions, the catalyst, if properly functioning, controls emissions.

1 2

In contrast, "start" emissions occur during a brief period (several minutes), after the engine has been turned on. If sufficient time has elapsed since the last keyoff, both the engine are emissions control systems are "cold," i.e., at ambient temperature. To start the engine, it is necessary to inject "excess" fuel into the cylinder to provide enough flammable vapor to ignite when the spark plug fires. Incomplete combustion of this fuel yields a bolus of "excess" emissions during a brief "start period" following key-on events. These emissions are referred to as "start emissions," in contrast to "hot running" emissions as discussed in section 1.3.

Emission rates for start emissions are expressed as mass emitted for a single start event following key on (mass/start).

In MOVES, start emissions for light-duty vehicles are defined in terms of the Federal Test Procedure (FTP). The cycle includes three phases, or "bags," which are intended to represent, "cold-start", "hot-running" and "hot-start" emissions, respectively. The first, or "cold-start" phase, is 505 seconds (8.42 min.) in duration. The second, or "hot-running" phase is 867 seconds long. Following the second phase, the engine is turned off, and allowed to "soak" for 10 min., after which the engine is restarted and the third "hot-start" phase is performed. The third phase is simply a repeat of the first phase. To estimate true "cold-start" emissions, the mass emitted during the third phase is subtracted from that emitted during the first phase, as described in more detail below.

Note that all discussion in this section applies to start conditions under "warm ambient" conditions, i.e., for temperatures above 68F. For start emission at colder temperatures, MOVES applies a separate "temperature adjustment." Note that the development and application of temperature adjustments is discussed in a separate report.³³

- 1.4.1 Estimation of Emission Rates for Cold Starts
- Within the MOVES modal structure, operating modes for start emissions are defined in terms of soak time (preceding the engine start). This section discusses the development of base rates for
- "cold starts" (operating mode 108).

36 1.4.1.1 Subgroup 1: Vehicles manufactured in model year 1995 and earlier

- 37 Start emissions for passenger cars and light-duty trucks, are dependent upon two factors:
 - 1. the (base) emissions level at 75 degrees Fahrenheit, ³⁴
- 39 2. an adjustment based on the length of soak time, ³⁵

1.4.1.1.1 Data Sources

Data used in these analyses were acquired from the following four sources:

1. EPA's Mobile Source Observation Database (MSOD) as of April 27, 2005. Over the past decades, EPA has performed emission tests (usually the Federal Test Procedure) on large numbers of vehicles under various conditions.

- We identified (in the MSOD) 549 gasoline-fueled vehicles (494 passenger cars and 55 light-duty trucks) that had FTPs performed at temperatures both within the normal FTP range (68° to 86° Fahrenheit) as well as outside that range (i.e., either below 68° or above 86°). Aside from the differences in ambient temperature, the test parameters for the paired FTPs on each vehicle were identical. The FTPs were performed at temperatures from 16 through 111° F.
- 2. EPA's Office of Research and Development (ORD) contracted (through the Clean Air Vehicle Technology Center, Inc.) the testing of five cars (model years 1987 through 2001). Those vehicles were tested using both the UDDS and the IM240 cycle at temperatures of: 75, 40, 20, 0 and -20 °F. ³⁶
- 3. Southwest Research Institute (SwRI) tested four Tier 2 vehicles (2005 model year car and light-duty trucks) over the UDDS at temperatures of: 75, 20, and 0 °F. ³⁷
- 4. During 2004-05, USEPA Office of Transportation and Air Quality (OTAQ) and Office of Research Development (ORD), in conjunction with the Departments of Energy and Transportation, conducted a program in the Kansas-City Metropolitan Area. During this study, designed to measure particulate emissions, gaseous emissions were also measured on the LA92 cycle.⁴¹

1.4.1.1.2 Defining Start Emissions

Using the data described above, measured on the Federal Test Procedure (FTP), we estimated cold-start emissions as the difference in mass between Bag 1 and Bag 3 (g). However, because Bag 1 follows a 12-hour (720 minute) soak and Bag 3 follows a 10-minute soak, it is possible to use soak/time relationships to modify the Bag1-Bag3 difference so as to account for the respective soak periods. The start/soak relationships we applied were adapted from a study performed by the California Air Resources Board. Based on these data, we derived a correction factor "A" as shown in Equation 1-42 and Table 1-25.

Cold Start Emissions = $\frac{(\text{Bag 1 - Bag 3})}{1-A}$ Equation 1-42

Table 1-25. Correction factor A for application in Equation 1-42

Vehicle Type	нс	CO	NO_x
No Catalyst	0.37101	0.34524	1.57562
Catalyst Equipped	0.12090	0.11474	0.39366
Heated Catalyst	0.05559	0.06937	1.05017

Model-year groups used to calculate start rates for vehicles in model year 1995 and earlier are shown in Table 1-26. In some cases, model-year groups were adjusted to compensate for sparsity of data in narrower groups. For example, the average NO_x emissions for MY 1983-1985 trucks are slightly negative. This result is possible, but is likely due to erratically behaving means from small samples. Thus, these model years were grouped with the 1981-1982 model years, which for trucks had similar emission standards. In addition, the MY1994-1999 gasoline truck sample includes a very high-emitting vehicle, which strongly influences the results for CO. To compensate, these vehicles were grouped with the 1990-1993 model years. The values in the table represent the difference of Bag-1 minus Bag-3, adjusted, as described above, to estimate cold-start emissions.

Table 1-26. Cold-start emissions (Bag 1 – Bag 3,) for gasoline-powered cars and trucks

Model-year Group	n		Mean (g)		Standard deviation (g)			CV-of-the-Mean (RSE)		
Years		ТНС	co	NO_x	ТНС	со	NO _x	ТНС	co	NO_x
				C	ars					
1960-1980	1,488	5.172	75.832	0.608	6.948	83.812	2.088	0.035	0.029	0.089
1981-1982	2,735	3.584	52.217	1.118	7.830	60.707	1.682	0.042	0.022	0.029
1983-1985	2,958	2.912	34.286	0.922	5.216	44.785	1.321	0.033	0.024	0.026
1986-1989	6,837	2.306	21.451	1.082	2.740	32.382	1.034	0.014	0.018	0.012
1990-1993	3,778	1.910	17.550	1.149	1.728	13.953	1.034	0.015	0.013	0.015
1994-1995	333	1.788	16.233	1.027	1.203	31.648	0.742	0.037	0.107	0.040
				Tru	icks					
1960-1980	111	9.008	115.849	0.155	9.179	113.269	2.682	0.097	0.093	1.641
1981-1985	910	4.864	94.608	0.0412	4.992	67.871	1.797	0.034	0.024	1.445
1986-1989	1,192	3.804	45.918	2.107	2.298	36.356	2.152	0.017	0.023	0.030
1990-1995	1,755	3.288	40.927	2.192	4.211	42.478	2.158	0.031	0.025	0.024

1.4.1.2 Subgroup 2: Vehicles manufactured in MY1996 and later

Start rates for vehicles manufactured in model year 1996 and later were estimated using data from the EPA In-use Verification Program (IUVP), as with running rates for MY2001 and later (see Section 1.3.4, page 65).

For model years 1996-2000, rates for vehicles at 0-3 years of age (ageGroup=0003) are shown above in Table 1-22, in the row for MY2000.

3

- 4 For MY 2001 and later, cold-start rates (opModeID=108) were estimated as described in Section
- 5 1.3.4 above, using the data and approaches described in steps 1-4 and step 6. We applied the FTP
- 6 averages as shown in Figure 1-26 and Figure 1-27, and the phase-in assumptions shown in
- 7 Figure 1-28 through Figure 1-32. As with running emissions, Figure 1-33 illustrates the
- 8 calculation of weighted average FTP results for NO_x by model year.

9

10

11

1.4.2 Estimation of Emission Rates for Hot to Warm Starts

- 12 Within the MOVES modal structure, operating modes for start emissions are defined in terms of
- soak time (preceding an engine start). The following section discusses the development of base
- rates for "warm" or "hot" starts following seven soak periods of varying length defined in
- MOVES (operating modes 101-107).

16

17

1.4.2.1 Subgroup 1: Model Years 2003 and earlier

18 1.4.2.1.1 Relationship between Soak Time and Start Emissions

- 19 The "cold-start," as defined and calculated above, is represented as opModeID=108. An
- additional seven modes are defined in terms of soak times ranging from 3 min up to 540 min
- 21 (opModeID = 101-107). To estimate start rates for the additional seven modes, we applied soak-
- 22 time/start relationships described below. The specific values used are adapted from the
- 23 MOBILE6 soak-effect curves for catalyst-equipped vehicles. ¹⁵ To adapt these relationships to the
- 24 MOVES operating modes, the soak time was divided into eight intervals, each of which was
- assigned a "nominal" soak time, as shown in Table 1-27.

Table 1-27. Operating-mode definitions for start emissions, defined in terms of soak time

Nominal Soak Period (min)	OpModeID	OpModeName
3	101	Soak Time < 6 minutes
18	102	6 minutes ≤ Soak Time < 30 minutes
45	103	30 minutes ≤ Soak Time < 60 minutes
75	104	60 minutes ≤ Soak Time < 90 minutes
105	105	90 minutes ≤ Soak Time < 120 minutes
240	106	120 minutes ≤ Soak Time < 360 minutes
540	107	360 minutes ≤ Soak Time < 720 minutes
720	108	720 minutes ≤ Soak Time

2 3

For model years 1995 and earlier, we adapted and applied the soak-time adjustments used in MOBILE6.2 for gasoline-fueled vehicles, as shown in Table 1-28. Additionally, all pre-1981 model year passenger cars and trucks use the same catalyst-equipped soak curve adjustments,

5 6

4

7 8 9

Table 1-28. Calculated soak-time adjustments, derived from MOBILE6 soak-time coefficients for catalystequipped vehicles

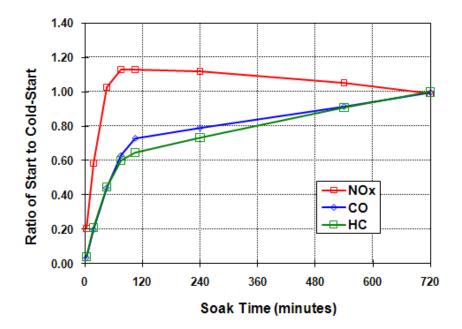
although some of these vehicles were not catalyst-equipped.

opModeID	Soak period (min)		Adjustment				
		HC	CO	NO_x			
101	3	0.051	0.034	0.093			
102	18	0.269	0.194	0.347			
103	45	0.525	0.433	0.872			
104	75	0.634	0.622	1.130			
105	105	0.645	0.728	1.129			
106	240	0.734	0.791	1.118			
107	540	0.909	0.914	1.053			
108	720	1.000	1.000	1.000			

10

11

13 14 For model years 1996-2003, soak fractions were also adapted from the approach applied in the


MOBILE model.²⁰ Specifically, the piece-wise regression equations used in MOBILE6 for 12

"conventional catalyst" engines were evaluated at the midpoint of the soak period for each

operating mode. For each mode, the start rate is the product of the cold-start rate and the

corresponding soak fraction. Figure 1-43shows the soak fractions for HC, CO and NO $_x$, with each value plotted at the midpoint of the respective soak period.

Figure 1-43. Soak fractions applied to cold-start emissions (opModeID = 108) to estimate emissions for shorter soak periods (operating modes 101-107, for MY 1996-2003)

1.4.2.2 Subgroup 2: Model Years 2004 and Later

The soak fractions adapted from MOBILE6 are based on data collected in the early 1990's. More recently, the question arose as to whether they could be considered applicable to more recently manufactured vehicles designed to comply with Tier 2 (or LEV-II) exhaust emissions standards. To address this question, we initiated a research program during the summer of 2016, with the goal of examining the relationships between soak time and start emissions for a set of light-duty vehicles certified to Tier 2 standards. Measurements were collected on four vehicles, five to seven years old at the time of measurement, that are certified to Federal Bin 5 or California LEV-II/ULEV standards (Table 1-29).

This work differed from previous efforts in that it represents a first attempt (for EPA) to estimate start emissions using portable emissions measurement systems (PEMS), rather than by using the FTP cycle on a chassis dynamometer. During July-September, 2016, the test vehicles, outfitted with Sensors SEMTECH-D instruments, were repeatedly driven over a 2.7-mile route in Ann Arbor, MI, starting and ending at the National Vehicle and Fuel Emissions Laboratory (NVFEL). The route and drive times were designed to minimize variability in trip time and idling due to traffic conditions. A typical speed trace of the route is shown in Figure 1-44.

Table 1-29 Light-Duty Vehicle Sample for the Start/Soak Project

Make and Model	Model Year	Engine Displacement	Standard	Number of Trips
Ford Explorer	2009	4.0 L	Bin 4	42
Ford F150	2011	3.5 L	Bin 4	20
Saturn Outlook	2009	3.6 L	Bin 5 (ULEV)	47
Tovota Camry	2009	2.4 L	Bin 5 (ULEV)	19

Vehicles were soaked indoors at 72° F prior to driving each repeat trip on the route. For purposes of this analysis, only trips driven when the outdoor ambient outdoor temperature was above 50°F were used. Repeat trips were performed for soak periods targeted to the midpoint times of each MOVES operating mode (Table 1-27).

During each repeat route, the PEMS measured continuous CO_2 , CO, THC and NO_x emissions at a time-interval of approximately 1.0 Hz. For purposes of quality assurance, time series were viewed to identify irregularities and measurement issues.

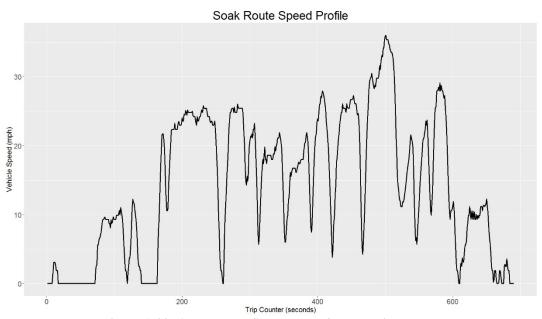


Figure 1-44. An Example Speed Trace for the Drive Route.

In analysis of the data, it was important to verify that the route was long enough for engines to warm up fully. To examine this question, we summarized and viewed results for catalyst and coolant temperatures. Trends in catalyst temperatures for the measured soak periods for the Explorer are shown in Figure 1-45. These results for selected individual drives suggest that the catalyst temperature stabilizes at 300°C or higher between 300 to 400 seconds after engine start, depending on the duration of engine soak prior to the start. Similar results for coolant temperatures are shown for the Toyota Camry in Figure 1-46.

An interesting result is that the catalyst takes more time to come to operating temperature for intermediate soaks (45-240 min, operating modes 103-106) than for the longest soak period (720 min, operating mode 108). However, the coolant temperature shows the opposite pattern, with

coolant returning to operating temperature more quickly for the intermediate soaks than for the longer soaks.

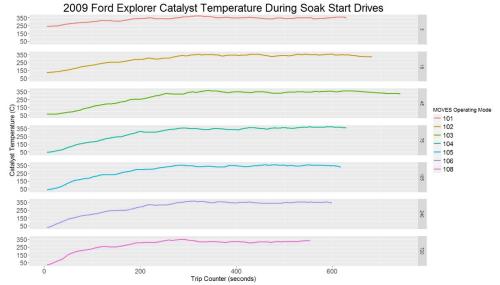


Figure 1-45. Mean catalyst temperature trends for the Ford Explorer, by soak period.

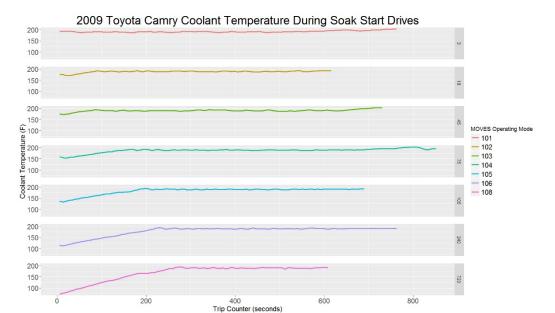


Figure 1-46. Mean trends in coolant temperature for the Toyota Camry, by soak period.

To apply the results of this project to the revision of warm- and hot-start emission rates, several steps were taken.

First, the cumulative emissions mass for each soak period (operating mode) were averaged by each vehicle, as shown in Figure 1-47 to Figure 1-49. This step effectively assigned equal weight to each vehicle in the final means for each operating mode, regardless of differences in numbers of trips for different vehicles. The averages by vehicle in each operating mode were again averaged across vehicles to obtain single averages in each mode.

As an analog to subtracting the FTP hot-start mass from the corresponding cold-start mass, we subtracted the final averaged emission mass associated with operating mode 101 (soak time = 3 minutes) from the masses for all other operating modes, to obtain reduced masses representing only the "start emissions increment" for each soak period.

To convert the revised masses to "soak fractions" relative to the cold start (soak time > 720 min.), mean emission masses at each operating mode were divided by the mass for operating mode 108 (soak time ≥ 720 minutes). The emissions were averaged prior to calculating fractions, rather than calculating fractions by vehicle, and then averaging, because the fractions for individual vehicles are influenced by the magnitudes of their respective emission levels.

Analysis of total emission masses for each soak period yielded new soak curves for THC, NOx, and CO that we are using in MOVES201X. The soak fractions in MOVES2014 and MOVES201X are shown in Table 1-30, and graphically in Figure 1-50 to Figure 1-52. The comparison between MOVES2014 and MOVES201X show the largest differences in soak curves for THC and NOx, especially for soak times less than 240 minutes. Both the THC and NOx ratios surpass 1.0 before the 720-minute soak mark, indicating that THC and NOx emissions from starts after less than 240 minutes soaking are greater than after 720 minutes or more.

As described below, the fractions for three operating modes could not be populated directly from the data, and therefore, it was necessary to populate them by interpolating between other values.

One such mode was opModeID 101, which could not be directly estimated because, as mentioned, the mean value for the briefest soak period was subtracted from those for the remaining soak periods. Accordingly, after correcting for running and hot-start emissions, operating mode 101 would have had a mass of 0.0 g. To compensate, the soak fraction for the opModeID 101 was interpolated after calculating the soak fractions. This fraction was estimated by multiplying the fraction at operating mode 102 (soak time = 18 minutes) by 3/18, the proportional difference between the midpoints of the soak periods for these two operating modes.

The second operating mode to be interpolated was opModeID 107 (soak time = 540 min). Due to constraints of scheduling during the workday, it was not practical to drive the route following a 9-hour soak. To compensate, the fraction for this mode was calculated using linear interpolation of the form y = mx + b, where the y-intercept, b, is the ratio at operating mode 106 and the slope, m, is the difference between the two fractions (opModeID 108 – opModeID 106) divided by the difference between the soak times (720 – 240 min).

The third mode to be interpolated was opModeID 104 (soak time = 75 minutes), but for NOx only. After quality assurance of the data, some drives were excluded from the final analysis due

to several factors, including excessive idle time, equipment malfunction, or outdoor ambient temperatures outside the specified range. As a result, no useable trips remained for the Ford F150 for 75-min soak period. As it is obvious in Figure 1-47 that the difference in mass emissions between the F150 and other vehicles is large, the fraction initially calculated for operating mode 104 was much lower than neighboring modes. Rather than allowing the fraction for operating mode 104 to be incorrectly influenced by a missing data point, the fraction for opModeID 104 was estimated via linear interpolation between operating modes 103 and 105.

The final results for use in MOVES201X are shown in Table 1-30. As mentioned, these fractions will be applied to model years 2004 and later.

Table 1-30. Revised Start Fractions for Light-duty Start Emissions, for MY 2004 and later

opModeID	Midpoint Soak time	Soak Fractions					
	(min)	нс	СО	NOx			
101	3	0.059	0.033	0.095			
102	18	0.356	0.200	0.569			
103	45	1.461	0.675	2.525			
104	75	1.626	0.791	2.603			
105	105	1.366	0.834	2.680			
106	240	0.854	0.920	1.288			
107	540	0.945	0.970	1.108			
108	720	1.000	1.000	1.000			

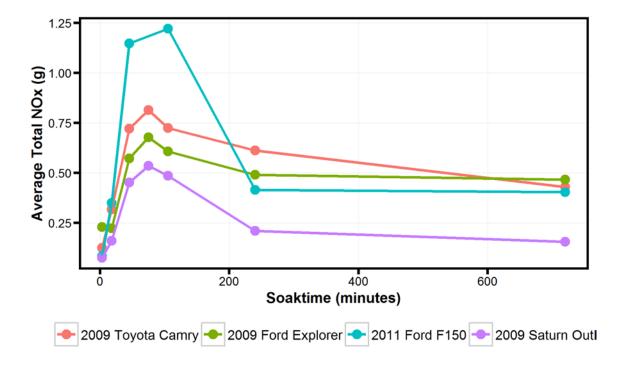


Figure 1-47. NOx: Average start masses, by vehicle and soak period

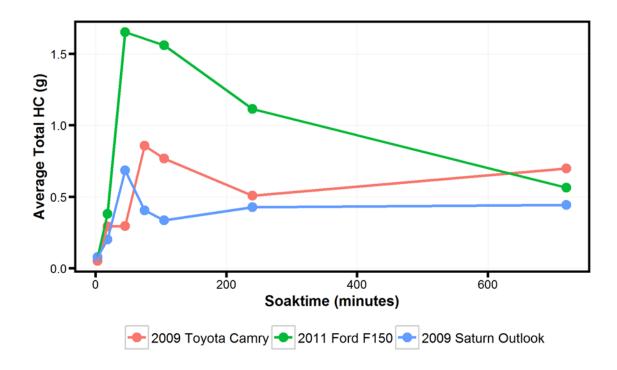


Figure 1-48. THC: Average start masses, by vehicle and soak period

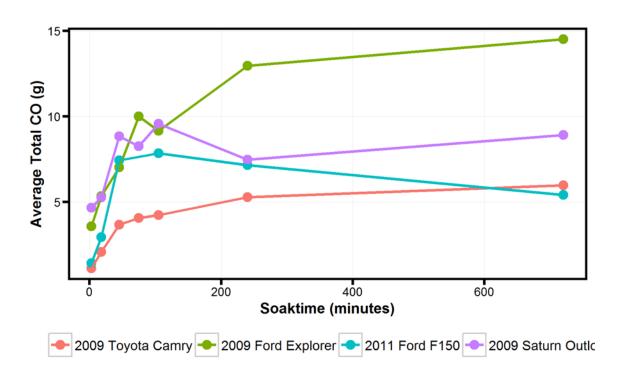
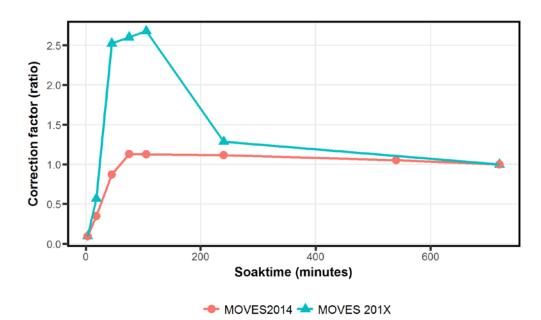



Figure 1-49. CO: Average start masses, by vehicle and soak period

Figure 1-50. Soak fraction in MOVES2014 and MOVES201X for NOx

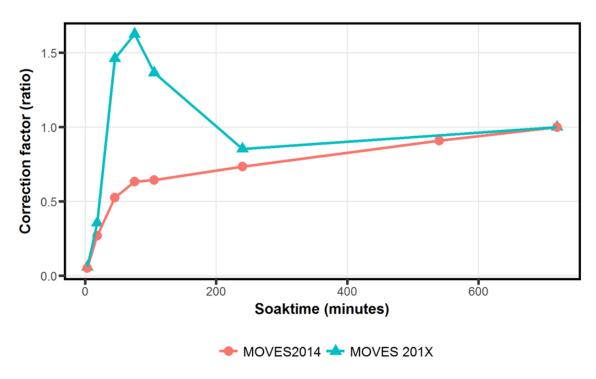
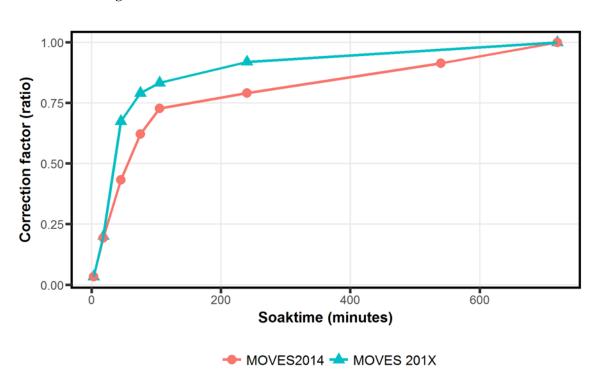



Figure 1-52. Soak fraction in MOVES2014 and MOVES201X for CO

2

1.4.3 Applying Deterioration to Starts

3 **Assessing Start Deterioration in relation to Running Deterioration**

4 The large datasets used to develop rates for running emissions provided much information about 5

deterioration for hot-running emissions, but no information on deterioration for start emissions.

6 After some consideration, it occurred to us that the data from the IUVP program, used to develop 7

running rates for NLEV and Tier 2 vehicles, could also be useful in evaluating the relationship

8 between deterioration trends for start and running emissions. A valuable aspect of these data is

that they provide FTP results with the measurement phases separated. As before, we focused on

10 cold-start emissions, calculated as Bag1 - Bag3 (g), and hot-running emissions, represented by

Bag2 (g/mi). For this purpose, these data are also valuable because they provide emissions 11

measured over a wide range of mileage, up to 100,000 mi, although the corresponding range of

vehicle age is relatively narrow (0-5 years). Thus, we elected to evaluate trends in emissions vs.

14 mileage.

15 16

17

18

19

12

13

9

At the outset, we plotted the data for NMOG and NO_x vs. odometer reading, on linear and logarithmic scales. Scatterplots of start and running NMOG emissions are shown in Figure 1-53 and Figure 1-54; corresponding plots for lnNMOG are shown in Figure 1-55 and Figure 1-56. Similarly, scatterplots of start and running NO_x emissions are shown in Figure 1-57 and Figure 1-58; corresponding plots for $lnNO_x$ are shown in Figure 1-58 and Figure 1-59.

20 21 22

23 24

25

26

27

28

29

30

31

In viewing the data, some observations are apparent. The data are grouped, with one group representing vehicles measured at less than 50,000 miles, centered around 10,000-20,000 miles, and a second group representing vehicles measured at 50,000 to 100,000 miles. Given the purpose of the IUVP program, the two groups are designed to assess compliance with certification (< 50,000 mi) and useful-life (>50,000 mi) standards, respectively. As expected, distributions of emissions are skewed, but with running emissions more skewed than start emissions. On a logarithmic scale, the degree of skew is shown by the variability of the transformed data, with the ln(start) spanning 3-3.5 factors of e, and the ln(running) spanning 6-7 factors of e. Finally, and of most relevance to this analysis, deterioration trends are visible in the In plots, with the masses of points at >50,000 miles centered higher than those for < 50,000 miles.

32 33 34

35

36

37

38

39

40

41

To assess the presence of trends in emissions and mileage more rigorously, we ran linear statistical models on the In-transformed data. To illustrate, we will focus on models run on vehicles certified to LEV standards, as shown in Table 1-33 and Table 1-34. The model structure includes a grand intercept for all vehicle classes (LDV, LDT1-4), and with separate intercepts for each vehicle class. All parameters are highly significant, both for lnNMOG and lnNO_x. A more complex model structure was attempted, which included individual mileage slopes for different vehicle classes. However, this model was not retained, as it did not improve the fit, nor were the interaction terms themselves significant. The covariance structure applied was simple, in that a single residual error variance was fit for all vehicle classes.

42 43 44

45

46

Models were fit to vehicles certified to other standards, such as ULEV and Tier 2/Bin-5, the results for which are not shown here. The models for ULEV show very similar patterns to those for LEV, whereas the models fit to Bin5 data were not considered useful as the range of mileage covered for these more recent vehicles was not wide enough to demonstrate deterioration trends (i.e., < 25,000 mi).

The models confirm the visual impression given by the plots of lnNMOG and $lnNO_x$. Positive trends in emissions do appear evident in these data, but the increase in emissions with mileage is very gradual. The trends in $lnNO_x$ are steeper than those for lnNMOG, and the trends for running emissions are steeper than those for start emissions. However, the differences between the slopes for start and running are less pronounced for $lnNO_x$ than for lnNMOG. For $lnNO_x$, the running slope is 1.25 times that for starts, and for lnNMOG, the running slope is 1.65 times that for starts.

Figure 1-53. Cold-start FTP emissions for NMOG (g) vs. odometer (mi), for LEV vehicles, from the IUVP program.

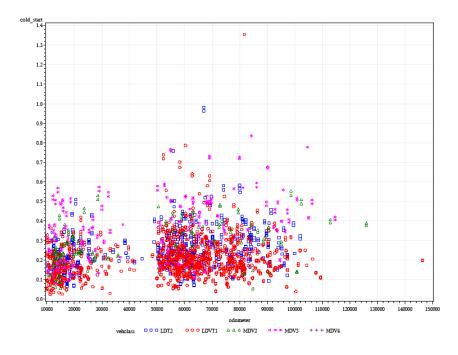
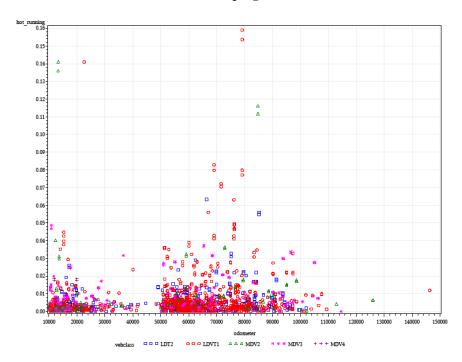



Figure 1-54. Hot-running (Bag 2) FTP emissions for NMOG (g/mi) vs. odometer (mi), for LEV vehicles, from the IUVP program.

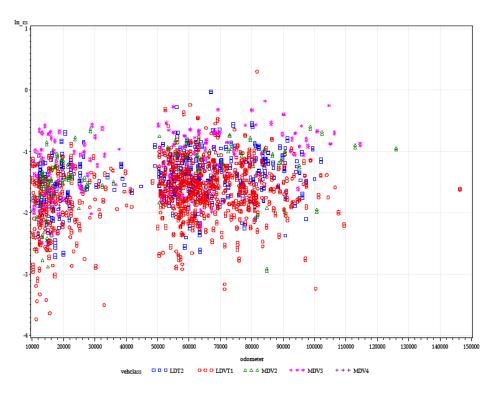


Figure 1-56. Hot-running (Bag 2) FTP emissions for ln(NMOG) vs. odometer (mi), for LEV vehicles, from the IUVP program (LOGARITHMIC SCALE).

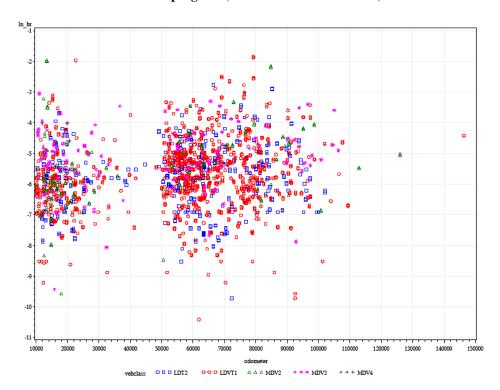


Figure 1-57. Cold-start FTP emissions for NO_x (g) vs. odometer (mi), for LEV and ULEV vehicles, from the IUVP program.

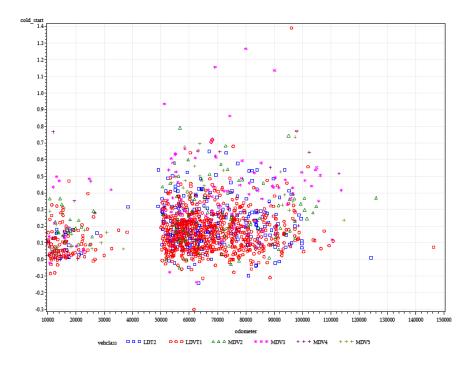


Figure 1-58. Hot-running (Bag 2) FTP emissions for NO_x (g/mi) vs. odometer (mi), for LEV and ULEV vehicles, from the IUVP program.

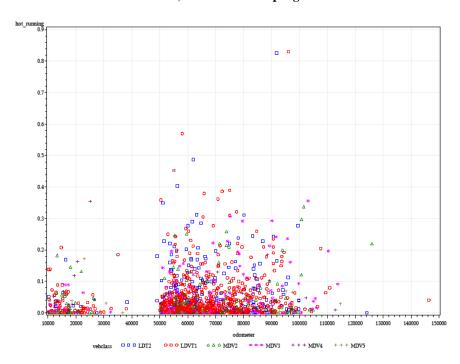


Figure 1-59. Cold-start FTP emissions for $ln(NO_x)$ vs. odometer (mi), for LEV vehicles (Source: IUVP program).

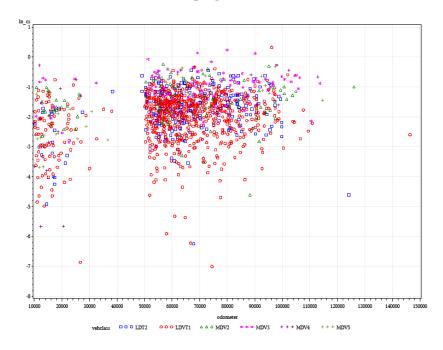


Figure 1-60. Hot-running (Bag 2) FTP emissions for $ln(NO_x)$ vs. odometer (mi), for LEV vehicles from the IUVP program.

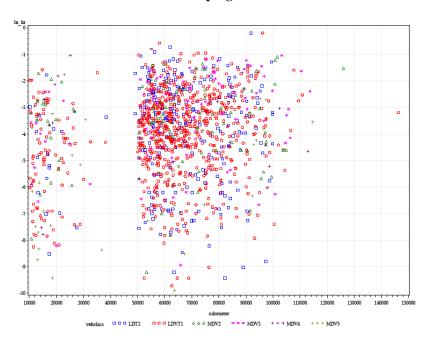


Table 1-31. Model fit parameters for lnNMOG, for LEV vehicles.

Parameter	Predictor	Estimate	Standard error	Denom. D.F.	<i>t</i> -value	Pr > <i>t</i>			
Cold-Start (Bag 1 – Bag 3) (residual error = 0.1942)									
Slope	Odometer (mi)	0.000004982	0.0	2,404	∞	< 0.0001			
intercept	LDV-T1	-1.9603	0.02224	2,404	-88.14	< 0.0001			
intercept	LDT2	-1.7353	0.02429	2,404	-71.43	< 0.0001			
intercept	LDT3 (MDV2)	-1.5735	0.03520	2,404	-44.70	< 0.0001			
intercept	LDT4 (MDV3)	-1.2937	0.03233	2,404	-40.01	< 0.0001			
Hot-Runnir	ng (Bag 2) (resid	ual error = 1.30	018)						
Slope	Odometer (mi)	0.000008237	0.0	2,225	∞	< 0.0001			
intercept	LDV-T1	-6.1604	0.05961	2,225	-103.34	< 0.0001			
intercept	LDT2	-6.2554	0.06577	2,225	-95.11	< 0.0001			
intercept	LDT3 (MDV2)	-5.9018	0.09239	2,225	-63.88	< 0.0001			
intercept	LDT4 (MDV3)	-5.5949	0.08766	2,225	-63.83	< 0.0001			

2

3

Table 1-32. Model fit parameters for lnNOx, LEV+ULEV vehicles.

Table 1-32. Wrotter itt parameters for iniv O_x , LEV+OLEV vehicles.									
Parameter	Predictor	Estimate	Standard error	Denom. D.F.	<i>t</i> -value	Pr > t			
Cold-Start (l	Cold-Start (Bag 1 – Bag 3) (residual error = 0.68)								
Slope	Odometer (mi)	0.000009541	0.0	1,657	∞	< 0.0001			
intercept	LDV-T1	-2.6039	0.05231	1,657	-50.74	< 0.0001			
intercept	LDT2	-2.4538	0.06056	1,657	-40.52	< 0.0001			
intercept	LDT3 (MDV2)	-2.0769	0.08173	1,657	-25.41	< 0.0001			
intercept	LDT4 (MDV3)	-1.645	0.08882	1,657	-18.52	< 0.0001			
Hot-Running	g (Bag 2) (residu	al error = 2.96	43)						
Slope	Odometer (mi)	0.000012	0.00000165	1,622	7.13	< 0.0001			
intercept	LDV-T1	-4.7396	0.1092	1,622	-43.40	< 0.0001			
intercept	LDT2	-4.9527	0.1304	1,622	-37.98	< 0.0001			
intercept	LDT3 (MDV2)	-4.3144	0.1740	1,622	-24.80	< 0.0001			
intercept	LDT4 (MDV3)	-4.1214	0.1835	1,622	-22.47	< 0.0001			

- 5 Having drawn these conclusions, we developed an approach to apply them to emission rate
- 6 development. To begin, we applied the statistical models by calculating predicted values of
- 7 lnNMOG and lnNO_x at mileages from 0 (the intercept) to 155,000 miles. We reverse-
- 8 transformed the models using Equation 1-30 (page 36) to obtain predicted geometric and
- 9 arithmetic means with increasing mileage, as shown in Table 1-33 for NMOG and Table 1-34 for
- 10 NO $_x$.
- We normalized the predicted means at each mileage to the value at 0 miles to obtain a
- "deterioration ratio" R_{det} , by dividing each predicted value at a given mileage by the predicted
- value at 0 miles (i.e., the intercept); R_{det} for the intercept = 1.0 (Equation 1-43).

$$R_{
m det} = rac{\overline{x}_{a,
m miles}}{\overline{x}_{a,0}}$$
 Equation 1-43

- 2 We took this step to express start and running trends on a comparable relative multiplicative
- 3 basis, as trends in absolute running and start emissions are clearly not comparable.
- 4 Finally, to relate start and running trends, we calculated the ratio in R_{det} for start to that for
- 5 running, designated as $R_{\rm rel}$

6

$$R_{\rm rel} = \frac{R_{\rm det, start}}{R_{\rm det, running}}$$
 Equation 1-44

7

11

12

- 8 Values or R_{det} and R_{rel} for NMOG and NO_x are shown in Table 1-33 and Table 1-34,
- 9 respectively, with corresponding results shown graphically in Figure 1-61 and Figure 1-62,
- 10 respectively.

Table 1-33. Application of models for NMOG, representing emissions trends for LDV-T1 vehicles certified to LEV standards.

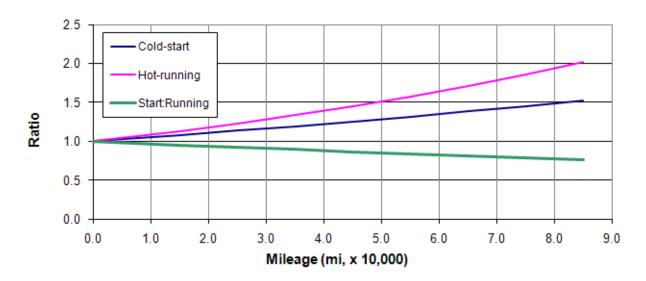
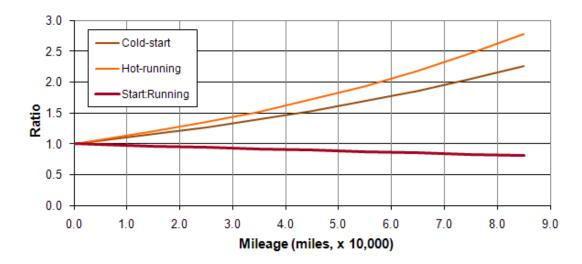

LEV standards.									
Parameter		Odometer (mi, ×10,000)							
	0	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5
Cold Start									
lnNMOG	-1.960	-1.886	-1.836	-1.786	-1.736	-1.686	-1.636	-1.587	-1.537
Geometric mean	0.141	0.152	0.159	0.168	0.176	0.185	0.195	0.205	0.215
Arithmetic mean	0.156	0.168	0.176	0.185	0.195	0.205	0.215	0.226	0.238
Deterioration ratio (R_{det})	1.000	1.078	1.133	1.190	1.251	1.315	1.382	1.453	1.527
Hot Running									
lnNMOG	-6.160	-6.037	-5.954	-5.872	-5.790	-5.707	-5.625	-5.543	-5.460
Geometric mean	0.00211	0.00239	0.00259	0.00282	0.00306	0.00332	0.00361	0.00392	0.00425
Arithmetic mean	0.00404	0.00458	0.00497	0.00540	0.00586	0.00636	0.00691	0.00750	0.00815
Deterioration ratio (R_{det})	1.000	1.132	1.229	1.334	1.449	1.573	1.708	1.855	2.014
Relative Ratio (R _{rel})	1.000	0.9952	0.922	0.892	0.864	0.836	0.809	0.783	0.758

Table 1-34. Application of models for NO_x , representing emissions trends for LDV-T1 vehicles certified to LEV standards.


3 4

Parameter	Odometer (mi, ×10,000)								
	0	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5
Cold Start									
$lnNO_x$	-2.604	-2.461	-2.365	-2.270	-2.175	-2.079	-1.984	-1.888	-1.793
Geometric mean	0.0740	0.0854	0.0939	0.1033	0.1137	0.1250	0.1376	0.1513	0.1665
Arithmetic mean	0.1039	0.1199	0.1319	0.1452	0.1597	0.1757	0.1933	0.2126	0.2339
Deterioration ratio (R_{det}) Hot Running	1.000	1.154	1.269	1.396	1.536	1.690	1.859	2.045	2.250
lnNO _x	-4.740	-4.560	-4.440	-4.320	-4.200	-4.080	-3.960	-3.840	-3.720
Geometric mean	0.0087	0.0105	0.0118	0.0133	0.0150	0.0169	0.0191	0.0215	0.0242
Arithmetic mean	0.0385	0.0461	0.0520	0.0586	0.0660	0.0745	0.0840	0.0947	0.1067
Deterioration ratio (R_{det})	1.000	1.097	1.350	1.522	1.716	1.935	2.181	2.460	2.773
Relative Ratio (<i>R</i> _{rel})	1.000	0.964	0.940	0.918	0.895	0.874	0.852	0.832	0.811

Figure 1-61. Deterioration ratios for cold-start and hot-running NMOG emissions.

4 5

6

7

10

13

For NO_x (Figure 1-62) we decided to assign start NO_x the same multiplicative relative deterioration as running NO_x . However, for HC, the difference between running and start deterioration was greater, large enough that we reduce to reduce start deterioration relative to running deterioration.

1.4.3.2 Translation from Mileage to Age Basis

8 T 9 c

The question remained, as to how the results derived from the IUVP data and presented above could be applied during the generation of emission rates. At the outset, a question arises from the fact that the results shown above were generated on the basis of mileage, whereas MOVES assigns deterioration on the basis of age. It was therefore necessary to translate the $R_{\rm rel}$ from a

11 a

mileage basis to an age basis. We achieved the translation through a series of steps. First, we assumed a rate of mileage accumulation of about 10,000 miles per year, from which it follows that the $R_{\rm rel}$ at 125,000 miles would occur at about 12.5 years of age, or would be

14 fo

represented by the 10-14 year ageGroup. Accordingly, we assigned midpoints to the 0-3 and 10-

16 14 17 age

14 year ageGroups of 2 and 12.5 years, respectively, and assume that R_{rel} declines linearly with age. These assumptions allow calculation of a declining trend in the ratio with respect to age.

The slope of the trend is the change in ratio ($\Delta R_{\rm rel}$) over the corresponding change in time

18

20

19 (Δtime).

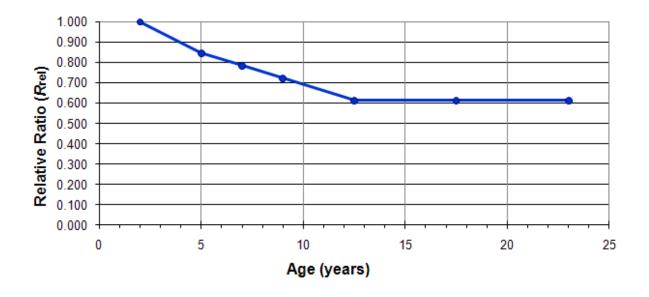
$$m_{Rrel} = \frac{\Delta R_{rel}}{\Delta time} = \frac{0.675 - 1.0}{12.5 - 2} = \frac{-0.325}{10.5} = -0.30952$$
 Equation 1-45

2122

The calculation of the slope lets us estimate a value of R_{rel} for each ageGroup.

$$R_{\text{rel,age}} = 1.000 - m_{R\text{rel}} \text{age}$$

Equation 1-46


The results, as applied for hydrocarbons and CO, are shown in Table 1-35 and Figure 1-63. The net result is a 15-40% reduction in multiplicative start deterioration, relative to running

3 deterioration.

Table 1-35. Relative deterioration ratios (R_{rel}), for NMOG (and CO), assigned to each ageGroup.

AgeGroup	Age (years)	Relative Ratio (R_{rel})
0-3	2	1.000
4-5	5	0.845
6-7	7	0.783
8-9	9	0.721
10-14	12.5	0.613
15-19	17.5	0.613
20 +	23	0.613

Figure 1-63. Relative deterioration ratios (R_{rel}), for NMOG (and CO), assigned to each ageGroup.

1.4.3.3 Application of Relative Multiplicative Deterioration

2 An advantage of the modal approach is that any driving cycle can be represented as a weighted

- 3 average of the MOVES emission rates and the "operating-mode distribution" for the cycle. This
- 4 allows emissions from a vehicle driven on one drive cycle to be converted to another drive cycle
- 5 within the operating mode envelope. In this case, we applied an operating-mode distribution for
- 6 the "hot-running" phase of the FTP. We apply the FTP in this context because the start rates are
- 7 expressed in terms of the FTP cold-start and hot-start phases. This phase is 860 seconds long and
- 8 represents urban driving over a 3.86 mile route after the engine has stabilized at its normal
- 9 operating temperature. We estimated an operating-mode distribution using the "Physical
- 10 Emission Rate Simulator" (PERE). 18 This distribution, shown in Table 1-36, represents a
- 11 "typical" car, with engine displacement and test weight of 2.73 L and 3,350 lb. A corresponding
- 12 "typical" truck was represented with displacement and test weight of 4.14 L and 4,364 lb.,
- 13 respectively.

1

- 14 Combining emission rates for hot-running emissions with the operating-mode distributions, we
- calculated aggregate cycle emissions for the hot-running phase of the FTP (g/mi), for all model-
- year and age groups. Figure 1-64 and Figure 1-65 show resulting cycle aggregates for THC and
- NO_x. Note that the underlying rates for model years 1995 (representing Tier 0) and 2000
- 18 (representing Tier 1) were derived using data and methods described above in Section 1.3.3
- 19 (starting on page 19), and those for model years 2005 and 2010 were derived using data and
- 20 methods described above in Section 1.3.4 (starting on page 65).
- 21 It is important to note that this step is performed both for vehicles in inspection-and-maintenance
- areas (I/M, using the meanBaseRateIM) and for vehicles outside I/M areas (using
- 23 meanBaseRate). Because deterioration is represented differently for the non-I/M and I/M
- reference rates (see 1.3.3.7.2, page 63), and this difference is carried into deterioration for the
- start rates, the result is that the MOVES rates represent that I/M programs have effects on start as
- well as running emissions.

27

$$R_{\rm det,MYG,Age} = \frac{\overline{E}_{\rm FTP2,MYG,Age}}{\overline{E}_{\rm FTP2,MYG,0-3}}$$
 Equation 1-47

2829

30

Table 1-36. Operating-mode distributions for running emissions, representing a "typical" car and truck on the hot-stabilized phase of the FTP (Bag 2).

opModeID	Cars (LDV)		Trucks (LDT)		
	Time in mode (sec)	Time in mode (%)	Time in mode (sec)	Time in mode (%)	
0	97	11.27	97	11.27	
1	155	18.00	155	18.00	
11	77	8.94	74	8.59	
12	121	14.05	112	13.01	
13	83	9.64	88	10.22	
14	59	6.85	66	7.67	
15	22	2.56	19	2.21	

16	4	0.46	7	0.81
21	42	4.88	41	4.76
22	111	12.89	102	11.85
23	62	7.20	69	8.01
24	18	2.09	21	2.44
25	7	0.81	7	0.81
27	2	0.23	2	0.23
28	0	0.00	0	0.00
29	0	0.00	0	0.00
30	1	0.12	1	0.12
33	0	0.00	0	0.00
35	0	0.00	0	0.00
37	0	0.00	0	0.00
38	0	0.00	0	0.00
39	0	0.00	0	0.00
40	0	0.00	0	0.00

Figure 1-64. Cycle-aggregate THC emission rates by age, projected from MOVES running-exhaust emission rates, for the hot-stabilized phase of the FTP, representing vehicles in I/M areas.

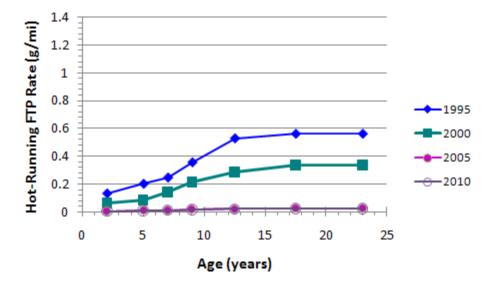
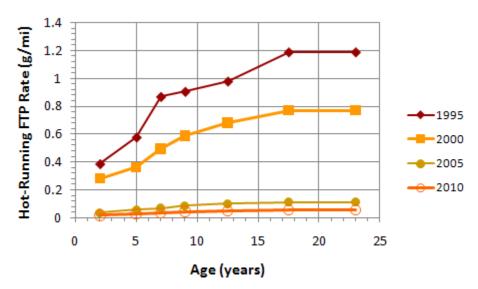



Figure 1-65. Cycle-aggregate NO_x emission rates by age, projected from MOVES running-exhaust emission rates, for the hot-stabilized phase of the FTP, representing vehicles in I/M areas.

For each model-year group, we divided cycle aggregate for each ageGroup ($E_{\rm FTP2,MYG,Age}$) by the estimate for the 0-3 year ageGroup ($E_{\rm FTP2,MYG,0-3}$), to obtain a deterioration ratio ($R_{\rm det,MYG,Age}$) as shown in Equation 1-47. As examples, ratios for cars are shown for THC in Figure 1-66 (I/M) and Figure 1-67 (non-I/M). Corresponding ratios for NO_x are shown in Figure 1-68 (I/M) and Figure 1-69 (non-I/M). The ratios show that, in relative multiplicative terms, the MOVES rates represent greater deterioration for running exhaust THC than for NO_x.

Figure 1-66. Deterioration Ratios for THC, representing the hot-stabilized phase of the FTP (Bag 2), representing vehicles in I/M areas.

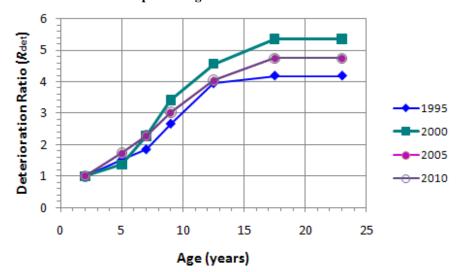


Figure 1-67. Deterioration Ratios for THC, representing the hot-stabilized phase of the FTP (Bag 2), representing vehicles in non-I/M areas.

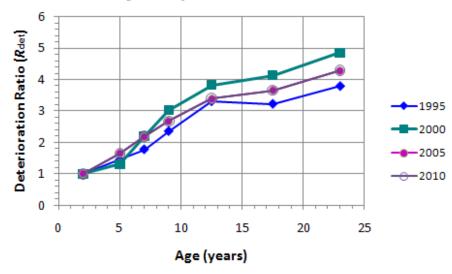


Figure 1-68. Deterioration Ratios for NO_x , representing the hot-stabilized phase of the FTP (Bag 2), representing vehicles in I/M areas.

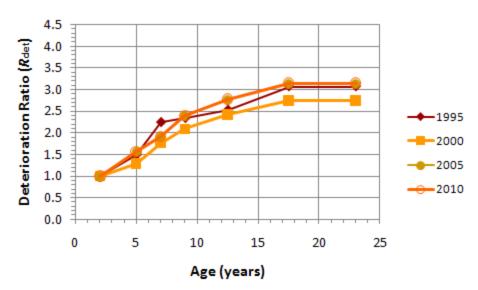
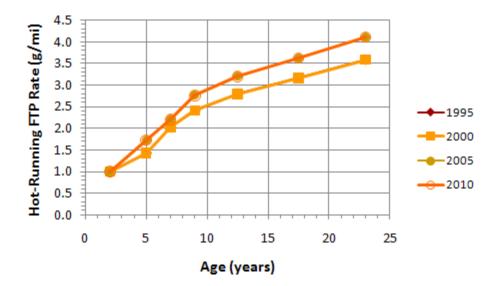



Figure 1-69. Deterioration Ratios for NO_x, representing the hot-stabilized phase of the FTP (Bag 2), representing vehicles in non-I/M areas.

5

6

12

At this point, projecting deterioration for start emissions is a simple matter of multiplying the start rate for the 0-3 year ageGroup in each relevant operating mode (opModeID =101-108) by the deterioration ratio (R_{det}) and the relative deterioration ratio (R_{rel}) for each ageGroup. The projected start rate in each agegroup ($E_{\text{start,age}}$) is

7 8

$$E_{\text{start, age}} = E_{\text{start, 0-3}} R_{\text{det, age}} R_{\text{rel, age}}$$
 Equation 1-48

10

13

15

Note that for NO_x the values of R_{rel} are 1.0 for all agegroups, i.e., relative multiplicative 9 deterioration for start emissions is the same as for running emissions. For THC and CO,

however, $R_{\rm rel}$ takes the values shown in Table 1-35, which reduces reduced relative start 11 12

emissions in comparison to relative running emissions. To illustrate the results, Figure 1-70 and

Figure 1-71 show deterioration for cold-start emissions (opModeID=108) for THC and NO_x,

14 respectively.

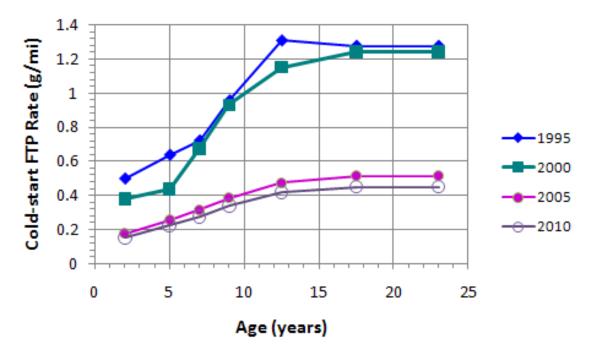
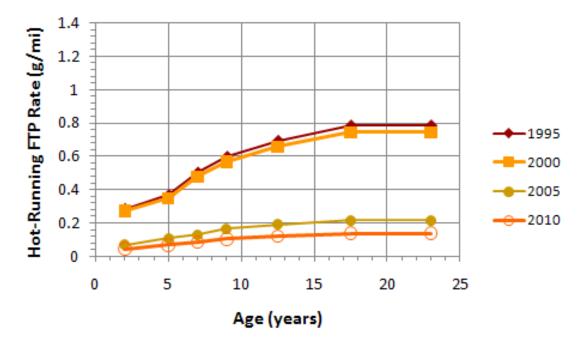



Figure 1-71. Projected deterioration for cold-start NO_x emissions (opModeID=108), in four model years, representing vehicles in I/M areas.

1 1.5 Incorporating Tier 3 Emissions Standards

- 2 Methods used to develop rates to represent emissions for vehicles certified to Tier 3 standards
- 3 were identical to those used to develop rates for vehicles certified to NLEV and Tier 2 standards,
- 4 with several specific modifications. Where no modifications to methods were made, we will
- 5 refer the reader to the appropriate section of this report. In particular, see Section 1.3.4.
- 6 As previously described, the goal of this process is to represent I/M reference rates for the 0-3
- 7 year ageGroup. The rates are estimated by Tier, model year and regulatory class. The process
- 8 involves six steps previously described, repeated below for convenience.

9

- 10 1. Average FTP results by standard level and vehicle class. As before, we made use of data
- measured on the FTP cycle in the course of the In-use Verification Program (IUVP).
- 12 2. Develop phase-in assumptions for MY 2017 2031, by standard level, vehicle class and
- model year.
- 3. Merge FTP results and Phase-in assumptions. For running emissions, calculate weighted
- ratios of emissions in each model year relative to those for cars (LDV) in MY2000, which
- 16 represent Tier-1 LDV.
- 4. Estimate Emissions by Operating Mode. We calculated emissions by operating mode in each
- model year by multiplying the MY2000 emission rates by the weighted ratio for each model
- 19 year. We assume that the emissions control at high power (outside ranges of speed and
- acceleration covered by Bag 2 of the FTP) would not be as effective as at lower power (within
- 21 the range of speed and acceleration covered by Bag 2).
- 5. Apply Deterioration to estimate emissions for three additional age Groups (4-5, 6-7 and 8-9).
- We assume that NLEV and Tier 2 vehicles will deteriorate similarly to Tier-1 vehicles, when
- viewed in logarithmic terms. However, for Tier 3 vehicles, we modified deterioration to
- 25 represent an extended useful life of 150,000 miles, as opposed to the 120,000 mile duration
- assumed for NLEV and Tier 2 vehicles. We therefore apply In-linear deterioration to the rates
- 27 developed in steps 1-4. For the remaining three age groups, emissions are assumed to stabilize
- as previously described in 1.3.3.8 (page 58).
- 29 6. Estimate non-I/M reference rates. The rates in steps 1-5 represent I/M references.
- 30 Corresponding non-I/M references are calculated by applying the ratios applied to the Tier-1 and
- 31 pre-Tier-1 rates.

32

- We followed steps 1-6, with specific modifications to represent Tier 3 rates. In step 1, we
- developed estimates of FTP results under Tier 3, including composite results, "cold-start"
- emissions" (Bag1-Bag3) and "hot-running" emissions (Bag 2 FTP and US06). For step 2, we
- developed phase-in assumptions representing the introduction of Tier 3 standards. Each of these
- 37 steps and modifications is described in greater detail in the sub-sections below.

1.5.1 Averaging FTP Results (Step 1)

- 2 Projecting emissions for Tier 3 vehicles is driven by the NMOG+NO_x standard, set at 30 mg/mi.
- 3 However, because MOVES projects NO_x and THC emissions separately, we apportioned the
- 4 aggregate standard into NMOG and NO_x components, which we will refer to as the "effective
- 5 standards" for each pollutant. For purposes of apportionment, we assumed that NMOG control
- 6 would pose a greater technical challenge than NO_x control. Accordingly, we assumed "effective
- 7 standards" for NMOG and NO_x of 20 mg/mi and 10 mg/mi, respectively. To implement this
- 8 assumption, we further assumed that for NO_x , vehicles would be effectively brought into Tier 2
- 9 Bin 2, and that for NMOG, vehicles would be brought to a level between Bin 2 and Bin-3, but
- 10 closer to Bin 2.
- In addition, MOVES models start and running processes separately. It is therefore necessary to
- 12 translate the composite standard into start and running components. One component represents a
- 13 "cold start" on the FTP cycle, represented as "Bag1 Bag3" emissions. A second component
- represents "hot-running" emissions, represented by the hot-running phase of the FTP (Bag 2). A
- third component represents emissions on the US06 cycle, representing emissions at high speed
- and power.
- 17 Estimated FTP and US06 emissions levels for hydrocarbons (NMOG and NMHC) are shown in
- Table 1-37, for several Tier 2 Bins and for Tier 3. Values for all standards except Tier 3 are
- identical to those used to develop rates in the default database. The values for Tier 3 are
- calculated as a weighted average of those for Bins 2 and 3, using Equation 1-49.

21

1

$$T3 = 0.775 \cdot B2 + 0.225 \cdot B3$$

Equation 1-49

22 23 24

Table 1-37. Hydrocarbons (HC): useful-life FTP standards and associated cold-start and hot-running results on the FTP and US06 cycles. Values for the FTP and US06 represent NMOG and NMHC, respectively.

Bin	Useful-life Standard	FTP Composite ¹	FTP Cold Start ¹	FTP hot Running ¹	US06 ²
	(mg/mi)	(mg/mi)	(mg)	(Bag 2)	(mg/mi)
				(mg/mi)	
8	125	41.3	591	3.56	35.8
5	90	35.5	534	2.63	35.8
4	70	24.8	383	2.28	35.8
3	55	21.5	329	1.74	35.8
2	10	5.6	87	0.42	2.60

¹ Values represent "non-methane organic gases" (NMOG).

25

26

27

Under a general assumption that CO standards are not forcing, but that CO emissions tend to

track NMOG emissions, corresponding values for CO were calculated in the same manner, and

are presented in Table 1-38.

² Values represent "non-methane hydrocarbons" (NMHC).

³ Values for Tier 3 calculated using Equation 1-49.

Table 1-38. CO: Useful-life FTP standards and associated cold-start and hot-running results on the FTP and US06 Cycles.

Bin	Useful-life Standard	FTP Composite	Cold Start	FTP hot Running	US06
	(mg/mi)	(mg/mi)	(mg)	(Bag 2)	(mg/mi)
				(mg/mi)	
8	4,200	861	6,680	451	2,895
5	4,200	606	5,510	238	2,895
4	4,200	537	5,500	201	2,895
3	2,100	463	3,470	119	2,895
2	2,100	235	1,620	70	948
T		20.5	- 0.40	0.4	

 Tier 3¹
 2,100
 286
 2,040
 81
 1,390

3 4

12

Corresponding results for NO_x are presented in Table 1-39. In contrast to HC and CO, the values

5 for Bin 2 were adopted for Tier 3, as the FTP composite of 5.5 mg/mi suggests that Bin-2

vehicles gives a compliance margin of about 50% with respect to the "effective standard" of 10 mg/mi.

789

10

6

Table 1-39. NO_x: Useful-life FTP standards and associated cold-start and hot-running results on the FTP and US06 cycles.

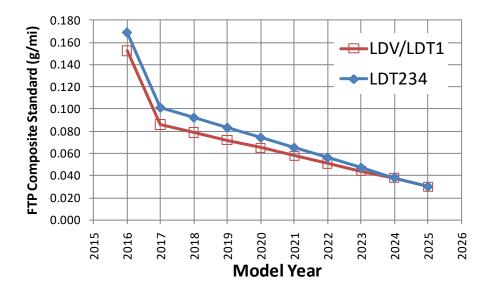
Bin	Useful-life Standard	FTP Composite	Cold Start	FTP hot Running	US06
	(mg/mi)	(mg/mi)	(mg)	(Bag 2)	(mg/mi)
				(mg/mi)	
8	200	64.2	418	35.1	61.3
5	70	21.2	165	8.2	45.9
4	40	8.7	90	4.7	30.6
3	30	5.7	71	3.8	30.6
2	20	5.5	67	0.4	18.4

Tier 3	10	5.5	67	0.4	18.4

1.5.2 Develop Phase-In Assumptions (Step 2)

- We designed phase-in assumptions so as to project compliance with the Tier 3 fleet average
- 13 NMOG+NO $_x$ requirements. The requirements are shown in Table 1-40 for cars and trucks. The
- phase-in begins in model year 2017 and ends in model year 2025.

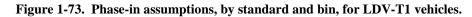
¹ Values for Tier 3 calculated using Equation 1-49.


Table 1-40. Target NMOG+NO_x fleet average requirements for the Federal Test Procedure.

Model year	FTP Composite, NMOG+NO _x (g/mi)					
	LDV/T1	LDT2 ¹				
2017	0.086	0.101				
2018	0.079	0.092				
2019	0.072	0.083				
2020	0.065	0.074				
2021	0.058	0.065				
2022	0.051	0.056				
2023	0.044	0.047				
2024	0.038	0.038				
2025	0.030	0.030				
¹ Throughout, these results applied to Federal truck classes						

¹ Throughout, these results applied to Federal truck classes LDT2, LDT3 and LDT4.

These results are also pictured in Figure 1-72. Note the sharp drop in emissions at the outset of the Tier 3 phase-in, also that the truck requirements (LDT2,3,4) are slightly higher than those for the lighter vehicles (LDV-T1). After 2017, the reduction in the fleet average is linear, and at the completion of the phase-in, the fleet averages for cars and trucks no longer differ.


Figure 1-72. NMOG+NO_x FTP fleet average requirements during phase-in of the Tier 3 exhaust emissions standards for light-duty vehicles.

In development of MOVES rates we translated the fleet requirements so as to develop phase-in assumptions representing the introduction of Tier 3 vehicles and concurrent replacement of Tier

- 2 vehicles. For purposes of model input development, we project phase-ins for four categories of
- 2 Federally-certified vehicles, LDV-T1, LDT2, LDT3 and LDT4.
- 3 These phase-in fractions give emission rates that reproduce the fleet requirements when FTP
- 4 composites are calculated by combining start and running rates. To represent the fleet
- 5 requirements, the phase-in assumptions are "linear" and "proportional."
- 6 By "linear" we mean that the fractions of Tier 2 vehicles, whether taken together, by vehicle
- 7 class or by Bin, decline linearly during the phase-in period. We represent them this way
- 8 because the fleet requirements also decline linearly.
- 9 By "proportional," we mean that during the phase-in, the various bins within a vehicle class
- maintain the same relative proportions as in MY 2016, at the outset of the phase-in. For
- example, in 2016, we assume that 89% and 3.5% of LDV-T1 vehicles are in Bins 5 and 3,
- respectively. This difference implies that the fleet comprises 25.43 times as many Bin-5 vehicles
- as Bin-3 vehicles (0.89/0.035). This ratio holds in any given model year during the phase-in. In
- 14 MY 2023, the remaining fractions of Bin 5 and Bin 3 are 10.18% and 0.40%, which give the
- same ratio as in MY 2016.

- 16 The same proportional approach was applied to LDT2, LDT3 and LDT4. Phase-in assumptions,
- 17 expressed as the relative composition of Bins within each vehicle class, are presented in Figure
- 18 1-73 through Figure 1-76 below.
- Note that in the final rule, the onset of the phase-in for LDT3 and LDT4 was delayed one year, to
- begin in 2018, as opposed to beginning in 2017, as for LDV, LDT1 and LDT2. The effect of this
- 21 delay is not depicted in Figure 1-72 above, but is shown in Figure 1-75 and Figure 1-76 below.

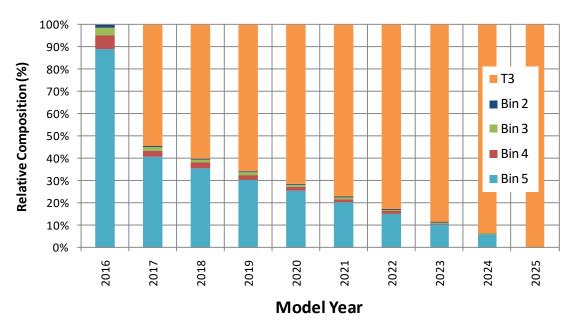
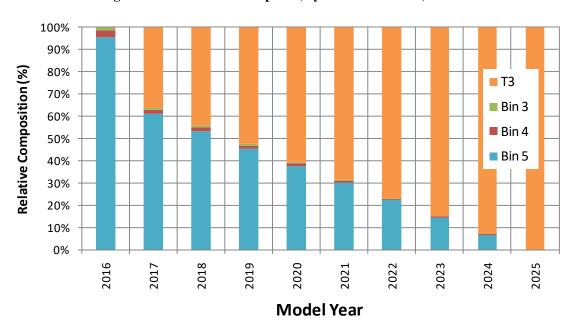



Figure 1-74. Phase-in assumptions, by standard and bin, for LDT2 vehicles.

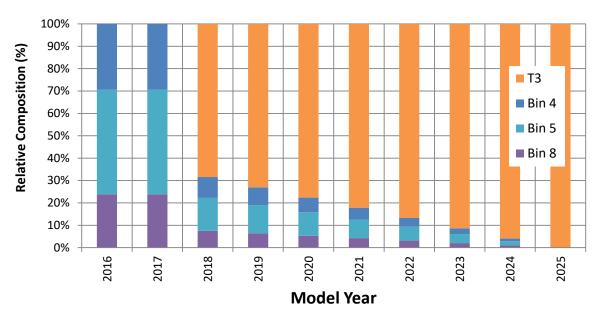
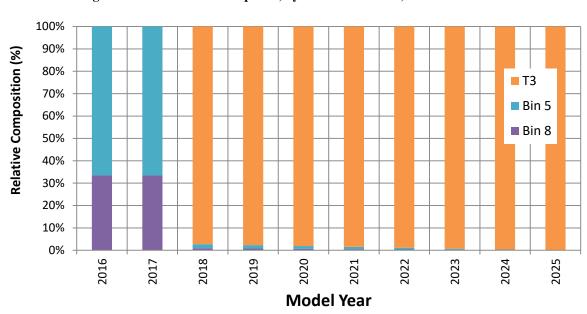



Figure 1-76. Phase-in assumptions, by standard and bin, for LDT4 vehicles.

1.5.3 Merge Cycle Results and Phase-In Assumptions (Step 3)

2 The goal of this step is to calculate weighted averages of the FTP (cold-start and hot-running)

3 results for all standards in each model year, with the emissions results weighted by applicable

4 phase-in fractions. We do this step for each vehicle class separately, then weight the four truck

5 classes together using a set of fractions also derived from the weighted sales estimates.

6 Figure 1-77 shows an example of the phase-in calculation for NO_x from cars between model

years 2016 and 2025. The figure shows cold-start and hot-running FTP values for Tier-1, Tier 2

and Tier 3 standards, as well as the phase-in fractions for each standard in each model year. Start

and running emissions in each model year are simply calculated as weighted averages of the

10 emissions estimates and the phase-in fractions. The resulting weighted start estimates are used

11 directly to represent cold-start emissions for young vehicles in each model year (ages 0-3). For

running emissions, however, the averages are not used directly; rather, each is expressed as a

ratio to the corresponding Tier-1 value.

13

Table 1-41 shows weighted average values for model-years 2016-2025 for simulated FTP

15 composites, cold-start and hot-running emissions. The start values, expressed as the cold-start

mass increment (g), are used directly in the MOVES emission rate table to represent cold-start

emissions (operating mode 108). The composites and running emissions, expressed as rates

18 (g/mi), are presented for comparison. For running emissions, however, the averages shown in

the table are not used directly; rather, each is expressed as a ratio to the corresponding Tier-1

value, as shown in Figure 1-78 to Figure 1-80 below.

21 22

1

7

8

9

12

14

16

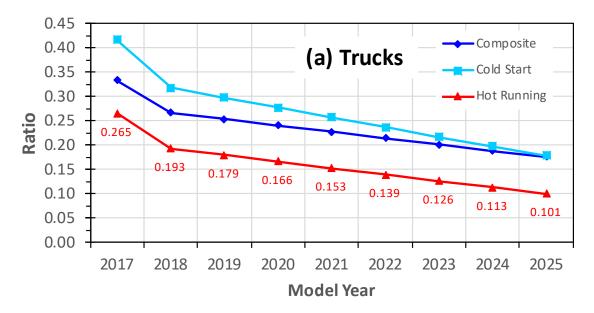
17

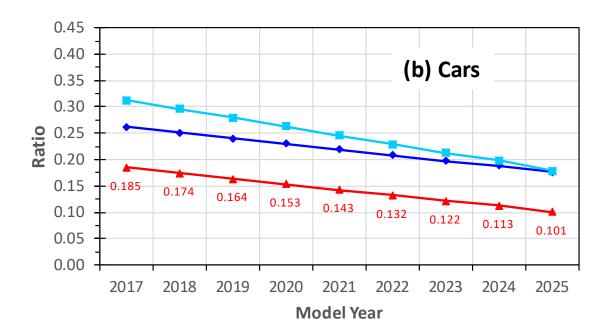
19

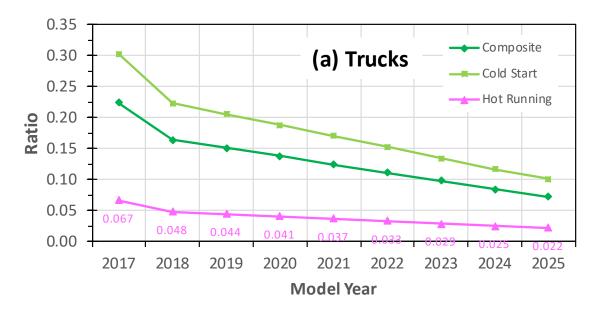
20

Figure 1-77. Example of phase-in calculation, for NO_x from LDV-T1, for MY 2016-2025.

Sta	ndard	Cold Start	Hot Running	Phase-In by Model Year									
		(mg)	(mg/mi)	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Tier 1	Tier 1	888.00	127.00	0	0	0	0	0	0	0	0	0	0
	Bin 8	417.87	35.07	0	0	0	0	0	0	0	0	0	0
	Bin 5	165.42	8.21	0.890	0.407	0.356	0.305	0.254	0.204	0.153	0.102	0.058	0
Tier 2	Bin 4	89.72	4.69	0.060	0.027	0.024	0.021	0.017	0.014	0.010	0.007	0.004	0
	Bin 3	70.89	3.78	0.010	0.016	0.014	0.012	0.010	0.008	0.006	0.004	0.002	0
	Bin 2	67.18	0.38	0.015	0.007	0.006	0.005	0.004	0.003	0.003	0.002	0.001	0
Tier 3	Tier 3	67.18	0.38	0.000	0.543	0.600	0.657	0.714	0.771	0.829	0.886	0.935	1.000
		Cold S	Start (mg)	154.32	107.85	102.76	97.69	92.60	87.52	82.43	77.35	72.99	67.18
	I	Hot Runnin	g (mg/mi)	7.64	3.74	3.32	2.90	2.48	2.06	1.64	1.22	0.86	0.38
	RATIO to Tier 1		0.0601	0.0295	0.0262	0.0228	0.0195	0.0162	0.0129	0.00961	0.00677	0.00299	


1 Table 1-41. Weighted average FTP values projected for trucks and cars for MY 2017-2025.


regClass	MY	CO			HC			NO_x		
		Composite (mg/mi)	Start (mg)	Running (mg/mi)	Composite (mg/mi)	Start (mg)	Running (mg/mi)	Composite (mg/mi)	Start (mg)	Running (mg/mi)
Ref. ¹	2000	1,620	11,400	805	126	1,530	57.1	209	888	127
Trucks	2017	541	4,749	213	28.3	462	3.82	19.6	154	8.24
	2018	434	3,625	155	20.7	341	2.76	13.1	114	4.45
	2019	412	3,395	144	19.0	314	2.54	12.0	108	3.86
	2020	391	3,164	134	17.3	287	2.32	10.9	101	3.27
	2021	369	2,934	123	15.7	260	2.10	9.82	93.9	2.68
	2022	348	2,704	112	14.0	233	1.88	8.72	87.0	2.09
	2023	327	2,474	101	12.3	206	1.66	7.62	80.2	1.50
	2024	305	2,246	91	10.7	179	1.45	6.53	73.4	0.91
	2025	286	2,037	81	9.2	154	1.25	5.54	67.2	0.38
Cars	2017	426	3,566	149	20.5	339	2.70	12.0	108	3.74
	2018	408	3,375	140	19.1	316	2.52	11.2	103	3.32
	2019	391	3,184	132	17.7	293	2.34	10.4	97.7	2.90
	2020	373	2,993	123	16.3	270	2.16	9.60	92.6	5.48
	2021	356	2,802	115	14.8	247	1.97	8.77	87.5	2.06
	2022	338	2,610	106	13.4	224	1.79	7.96	82.4	1.64
	2023	321	2,419	98	12.0	201	1.61	7.16	77.4	1.22
	2024	306	2,255	91	10.8	181	1.46	6.46	73.0	0.86
	2025	286	2,037	81	9.2	154	1.25	5.54	67.2	0.38


¹ The reference level represents Tier-1 LDV-T1.

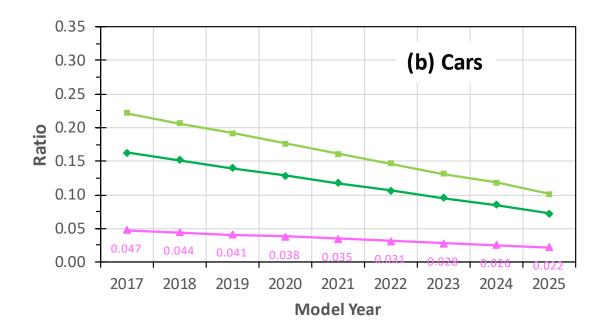
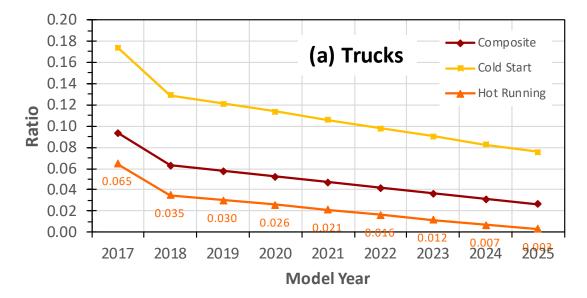

2

Figure 1-78. Weighted ratios for composite, start and running CO emissions, for (a) trucks and (b) cars.



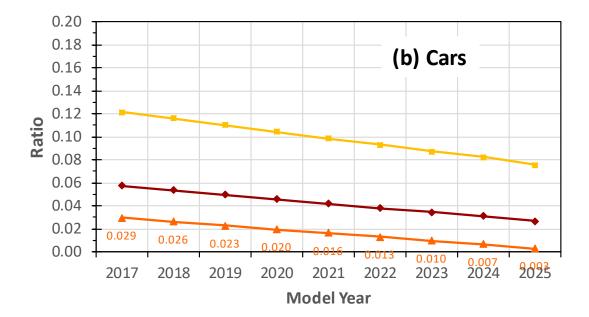
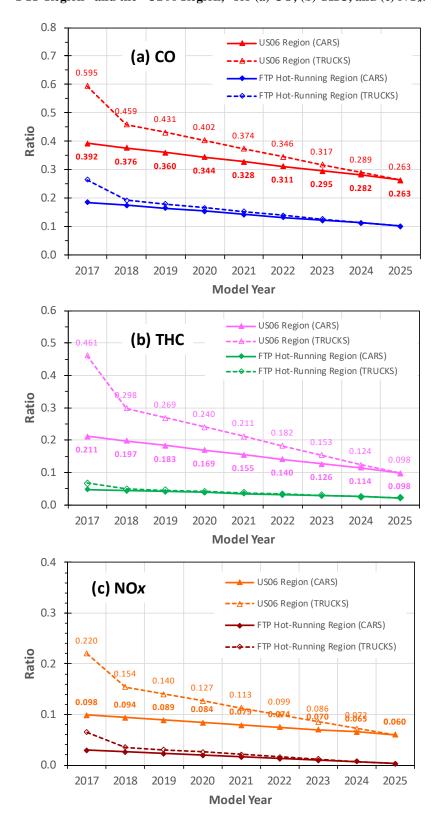
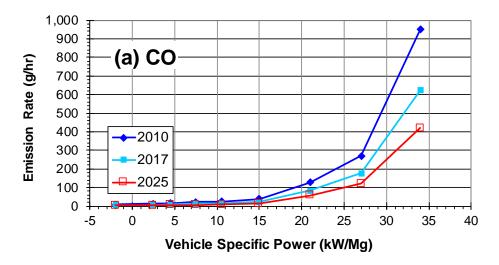
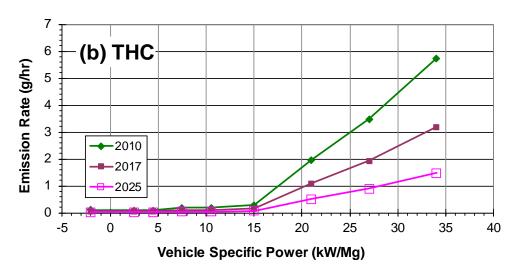
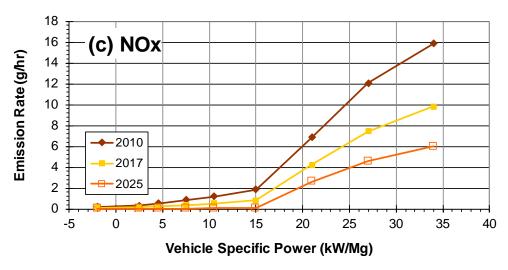
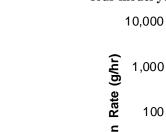


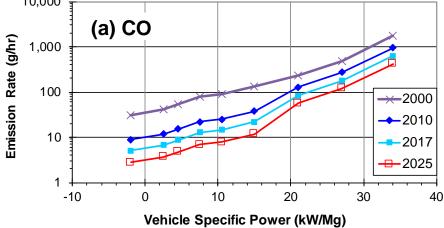
Figure 1-80. Weighted ratios for composite, start and running NO_x emissions, for (a) trucks and (b) cars.

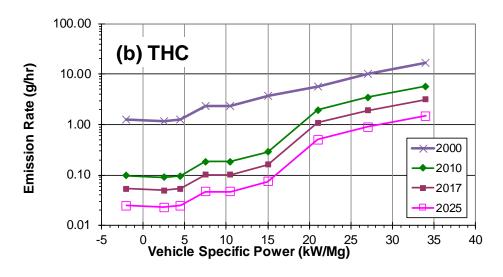
1.5.4 Estimating Emissions by Operating Mode (Step 4)

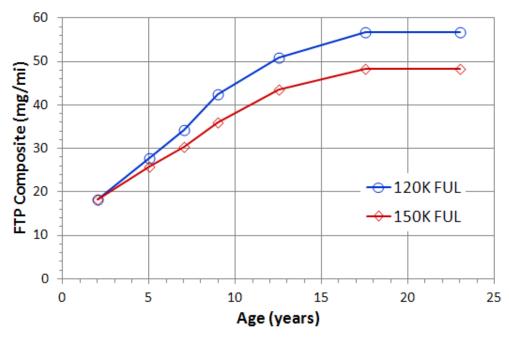
To project emissions for Tier 2 and Tier 3 vehicles, we divided the operating modes for running exhaust into two groups. These groups represent the ranges of speed and power covered by the hot-running phase (Bag 2) of the FTP standards (< ~20 kW/Mg), and the ranges covered by the SFTP standards (primarily the US06 cycle). For convenience, we refer to these two regions as "the hot-running FTP region" and "US06 region," respectively, as previously shown in Figure 1-37 (page 82). To estimate emissions by operating mode, the approach was to multiply the

- 1 emission rates for MY 2000, representing Tier 1, by a specific ratio for each model year from
- 2 2016 to 2025, to represent emissions for that model year. For the FTP operating modes, we
- 3 applied the ratios shown in Figure 1-78 to Figure 1-80 above.
- 4 To estimate rates for the US06 modes, we followed a procedure similar to that for the "FTP"
- 5 modes, but using the "US06" columns in Table 1-37 through Table 1-39. For HC and CO, we
- 6 used Equation 1-49, as before. For NO_x , we applied the Bin-2 values. Figure 1-81 shows
- 7 fractional reductions in the US06 rates along with similar reductions in "FTP" hot-running
- 8 operation, relative to levels for MY 2000 cars (Tier-1 levels). Note that the trends for "hot-
- 9 running" are identical to those in Figure 1-78 through Figure 1-80.
- Figure 1-82 and Figure 1-83 show application of the ratios for cars to the FTP and US06
- operating modes in model years 2010, 2017, and 2025, representing fully phased-in Tier 2
- standards, an interim year during the Tier 3 phase-in, and the fully phased-in Tier 3 standards,
- respectively. Rates for all three years are calculated with respect to rates for cars in model-year
- 14 2000 (using reduction ratios shown above in Figure 1-79 through Figure 1-81), applied to
- selected operating modes for running operation. In these figures, the results are presented on
- both linear and logarithmic scales. The linear plots display the differences in the high-power
- modes, but obscure those in the low-power modes. The logarithmic plots supplement the linear
- plots by making visible the relatively small differences in the lower power modes. They also
- illustrate the varying degrees of control between the "hot-running FTP" (< 20 kW/Mg) and the
- 20 "US06" (> 20 kW/Mg) modes. In addition, the logarithmic plots include the level for MY2000,
- 21 which represents Tier-1 standards. Thus, these plots display the degree of running-emissions
- reduction between Tier1 and Tier 2 (MY2000: MY2010), and between Tier 2 and Tier 3
- 23 (MY2010: MY2025), across the full range of vehicle-specific power. Note that for simplicity,
- 24 these figures represent rates for operating modes 21-30, covering a wide range of power for
- vehicles operating at speeds between 25 and 50 mph.


Figure 1-82. Projected emission rates for cars in operating modes 21-30, vs. VSP, in ageGroup 0-3 years, for three model years, for (a) CO, (b) THC and (c) NO_x (LINEAR SCALE).




1.5.5 Apply Deterioration (Step 5)

- 1 Based on review and analysis of data from the Phoenix Inspection-and-Maintenance Program,
- 2 we assume that deterioration for different technologies is best represented by a multiplicative
- model, in which different technologies, represented by successive model-year groups, show
- 4 similar deterioration in relative terms but markedly different deterioration in absolute terms. We
- 5 implemented this approach by translating emissions for the 0-3 age Group, as calculated above,
- 6 into their respective logarithmic means and applying uniform logarithmic age trends to all
- 7 model-year groups. We derived logarithmic deterioration slopes for Tier-1 vehicles (MY 1996-
- 8 98) and applied them to Tier 2 vehicles. In this process we applied the same logarithmic slope to
- 9 each operating mode, which is an extension of the multiplicative deterioration assumption.
- 10 For Tier 3 vehicles, the deterioration assumptions were modified to represent an extension of the
- full useful life (FUL), which is increased from 120,000 mi to 150,000 mi. The extension of the
- useful life, which assumes improved durability, was expressed through a reduction in
- deterioration, i.e., a somewhat gentler deterioration trend.
- 14 To represent improved durability, differential reductions were applied to logarithmic
- deterioration for THC and NO_x . These reductions were applied such that when FTP composites
- were reconstructed from the resulting emission start and running emission rates, the reduction in
- deterioration was proportional to the increase in the useful life.
- Note that in the reconstruction of FTP composites for NMOG+NO_x, values for NMOG were
- 19 estimated from those for THC. In this step the fraction of THC representing NMOG for start
- 20 emissions was higher than that for running emissions³. In addition, start deterioration for THC
- 21 (and NMOG) followed lower relative rates than running deterioration, whereas start and running
- NO_x emissions deteriorate at the same relative rates (See 0, page 101).
- 23 The modification of the deterioration trend is shown in Figure 1-84. In MOVES, deterioration is
- 24 expressed in terms of vehicle age, rather than mileage. However, assuming typical mileage
- accumulation of 10,000 to 15,000 miles per year, we assume that vehicles reach the end of their
- useful lives between 10 and 15 years of age, or between the 8-9 year and the 10-14 year
- ageGroups. Accordingly, deterioration for THC and NO_x was modified so that the value of
- 28 NMOG+NO_x reached in the 8-9 year ageGroup under a 120K FUL assumption, would be
- reached in the 10-14 year ageGroup under a 150K FUL assumption. Note that in the plot the
- 30 value for each ageGroup is assigned to the midpoint of the group, i.e., the value for the 8-9 year
- 31 ageGroup is shown at 9 years, and that for the 10-14 year ageGroup is shown at 12.5 years.
- We do not assume that emission rates for young vehicles, i.e., in the 0-3 year ageGroup, would
- differ under either assumption, as vehicles meet the same levels at certification. Thus, the
- 34 deterioration trends for the two cases diverge as the vehicles age. We assume that the most rapid
- changes in fleet means occur during the first 10 years of life, or between the 0-3 year ageGroup
- and the 8-9 year ageGroup. After that point, we assume that the rate of change declines as the
- 37 fleet means tend to stabilize (especially in I/M areas, which are represented in the plot). The
- 38 ratio between values for the 150K FUL and 120K FUL starts at 1.0 and declines, stabilizing at a
- 39 value of 0.85 in the 8-9 year ageGroup, and remaining constant thereafter. Accordingly, we
- 40 assume that the around the end of the useful life, mean FTP emissions for vehicles certified at
- 41 150K mi would be approximately 85% of those certified at 120K mi.

-

 $^{^{3}}$ For start emissions, NMOG = 0.89×THC, and for running emissions NMOG = 0.57×THC.

Figure 1-84. Simulated FTP composites for NMOG+NO_x, calculated from MOVES start and running rates, under 120K and 150K FUL assumptions.

1.5.6 Recalculate the logarithmic mean

Starting with the values of the arithmetic mean (x_a) calculated as described in step 4 above, we calculate a logarithmic mean (x_l) , as previously described in 1.3.4.2.5.2 and shown in Equation 1-40 (page 86).

1.5.7 Apply a logarithmic Age slope

- 12 After estimating logarithmic means for the 0-3 age class ($x_{l,0-3}$), we estimate additional logarithmic means for successive age classes ($x_{l,age}$), by applying a linear slope in ln-space (m_l), using Equation 1-41 (page 86).
- The values of the logarithmic slope are adapted from values developed for the 1996-98 model year group. The values applied to Tier 2 and Tier 3 vehicles are shown in Table 1-42. The reduced slopes for Tier 3 were calculated by reducing the Tier 2 values by 27% for HC and CO and by 14% for NO_x. These values were estimated empirically so as to implement the assumption of reduced deterioration for the extended useful life. When calculating the age inputs
- for this equation, we subtracted 1.5 years to shift the intercept to the midpoint of the 0-3 year age Group.

Table 1-42. Values of the logarithmic deterioration slope applied to running-exhaust emission rates for MY following 2000.

Pollutant	Operating-Mode Group	Logarithmic Slope (m_l)				
		Tier 2	Tier 3			
CO	"hot-running FTP"	0.13	0.0949			
	"US06" ²	0.06	0.0438			
THC	"hot-running FTP"	0.09	0.0657			
	"US06"	0.09	0.0657			
NO_x	"hot-running FTP"	0.15	0.129			
	"US06"	0.15	0.129			
¹ Includes opModeID = $0,1, 11-16, 21-25, 27, 33,35,37$.						

3

4

1

2

1.5.8 Apply the reverse transformation

- 5 After the previous step, the values of $x_{l,age}$ were reverse-transformed, as shown in Equation 1-30
- 6 (page 36).

7 1.5.9 Estimate non-I/M References (Step 6)

- 8 Completion of the preceding steps provided a set of rates representing I/M reference rates for
- 9 MY 2016-2025. As a final step, we estimated non-I/M reference rates by applying the same
- 10 ratios applied to the I/M references for default rates (section 1.3.3.7, page 47).

1.5.10Start Emissions 11

- 12 The values for "FTP Cold-start" shown in Table 1-41 (page 131) were used to represent cold-
- start emissions (opModeID=108). Rates for "warm" or "hot" starts following a range of soak 13
- periods were estimated as for the default rates (see 1.4.2.1.1, page 94). Deterioration was 14
- applied to start emissions, relative to that for running emissions, also as described previously (see 15
- 16 0, page 101).

17

18

Development of Emission Rates representing California Standards

- 19 In general, the principle of pre-emption does not allow the states to promulgate or enact their
- 20 own vehicle emission standards. However, due to the unique severity of the air pollution issues
- 21 in Southern California, the Clean Air Act allows the state of California to seek waivers of
- 22 preemption. When granted by EPA, such waivers allow California to enact and enforce its own
- 23 emissions standards, under the condition that such standards are at least as stringent as applicable
- 24 Federal standards.
- 25 California has enacted several such programs, beginning with Tier 0 (c. 1977-1992) and Tier 1 in
- 1993. These were followed by the "Low Emission Vehicle" programs, beginning with "LEV-I" 26

 $^{^{2}}$ Includes opModeID = 28.29.30, 38.39.40.

- in 1994⁴ and continuing with "LEV-II" and "LEV-III" in 2001 and 2015, respectively. Under
- 2 the LEV programs, multiple standard levels were assigned, designated as "Transitional Low
- 3 Emission Vehicle" (TLEV), "Low Emission Vehicle" (LEV), "Ultra Low Emission Vehicle"
- 4 (ULEV) and "Super Ultra Low Emission Vehicle" (SULEV).
- 5 Although assigned the same labels, each standard level can be assigned different numeric values
- 6 for each vehicle class, i.e., LDV, LDT1, LDT2, LDT3 and LDT4. For simplicity, we have
- 7 assumed that the California "Medium-Duty" classes, MDV2 and MDV3, can be treated as
- 8 equivalent to Federal LDT3 and LDT4 classes, despite differences in loaded vehicle weights.
- 9 In addition, Section 177 of the Clean Air Act allows other states to adopt California emission
- standards, with the proviso that adopted standards are identical to standards for which waivers
- 11 have been granted. States do not need approval from EPA to adopt California standards. As of
- 12 2015, 15 states had elected to adopt California LEV-II standards for emissions of criteria
- pollutants from varying classes of light-duty motor vehicles.³⁹ Collectively, these states will be
- called the "CA/S177" states.⁵ In addition, 12 of these states have adopted the LEV-III
- 15 standards.⁴⁰
- 16 Effectively, then, two sets of emission standards are in place throughout the United States. One
- outcome of this situation is that many vehicles coming to market over the past 20 years have
- been certified to both CA and Federal standards. The analysis described in this section
- incorporates this reality by applying an assumption that the emissions behavior of vehicles with
- 20 multiple certifications would be governed by the "most stringent" certification. For example, a
- vehicle certified to Tier 2/Bin-5 Federally, but certified to LEV-II/SULEV in California, is
- assigned to "Bin-2" or "SULEV" for purposes of developing emission rates, rather than to Bin 5.
- 23 This section describes the process used to develop a set of emission rates representing the LEV
- programs, covering model years 1994-2031. The set of rates is stored in a segment of the
- emissionRateByAge table, available for use with MOVES2014, although not included in the
- default database.
- 27 The methods used are similar to those used to develop rates representing vehicles under the
- Federal standards (NLEV, Tier 2 and Tier 3). In general, as the implementation of LEV
- standards involved higher fractions of vehicles at lower standard levels than under the
- 30 corresponding Federal standards, rates for a LEV program in a given model year are equal to or
- 31 lower than corresponding "Federal" rates.
- To apply this assumption, we developed the CA/S177 rates by scaling down the Federal rates by
- 33 appropriate margins. The calculations were performed in a series of steps, with the first two steps
- identical to those used to develop the Federal rates. The following discussion assumes that the
- reader is familiar with the relevant sections of this report (See 1.3.4 (page 65), and 1.5 (page
- 36 123)). However, the final step differs from that used to generate the default rates, as described
- 37 below.

⁴ The "National LEV" (NLEV) program was a voluntary program modeled on the LEV-I program, and applicable to LDV, LDT1 and LDT2 vehicles.

⁵ These states include Connecticut, Delaware, Georgia, Maryland, Maine, Massachusetts, New Jersey, New Mexico, New York, North Carolina, Oregon, Pennsylvania, Rhode Island, Washington and Vermont.

1.6.1 Averaging IUVP Results

- 2 The calculation of CA/S177 rates uses the same set of average IUVP results as the default rates.
- 3 Equivalencies between Federal and corresponding LEV standards is shown in Table 1-43. Note
- 4 that the equivalences listed in the table are not exhaustive; they are limited to the subset that
- 5 were applied in developing emission rates.

6 7

1

Table 1-43. Selected equivalencies between Federal and corresponding CA/S177 standards.

Program		Vehicle	Class	Standard Level		
Fed.	CA/S177	Fed.	CA/S177	Fed.	CA/S177	
Tier 1 ¹	Tier 1 ¹	LDV-T1	LDV-T1	LDV-T1	LDV-T1	
		LDT2	LDT2	LDT2	LDT2	
		LDT3	MDV2	LDT3	MDV2	
		LDT4	MDV3	LDT4	MDV3	
NLEV	LEV-I	LDV, LDT1	PC, LDT1	TLEV	TLEV	
				LEV	LEV	
				ULEV	ULEV	
		LDT2	LDT2	TLEV	TLEV	
				LEV	LEV	
				ULEV	ULEV	
Tier 2 ²	LEV-II ²	LDV, LDT1,	PC, LDT1,	Bin 5	LEV	
		LDT2,3,4	LDT2,3,4	Bin 3 ³	ULEV ³	
				Bin 2	SULEV	

¹ Under Tier 1, each vehicle class was assigned a specific standard.

8 9

1.6.2 Develop Phase-In assumptions

- 10 Differences between the CA/S177 and Federal programs are expressed primarily through the
- phase-in assumptions. For this step we developed phase-in assumptions representing the phase-in
- of California Tier-1, LEV-I and LEV-II programs. These assumptions cover model-years from
- 13 1994 through 2016. Starting in model year 2017 for cars, and 2018 for trucks, Federal rates are
- harmonized with CA rates during the Tier 3/LEV-III phase-in and thereafter.
- As with the default Federal phase-in assumptions, the CA/S177 phase-in was based on fractions
- of sales, grouped by standard level and model year. The LEV phase-in, however, is simplified in
- that, as in the LEV-II standards, the three largest truck classes, LDT2, 3 and 4, were consolidated
- into a single class, which we will refer to as LDT234.

² Under this program, there was no assigned correspondence between vehicle class and standard level for the FTP standards, however, such an assignment remains in effect for the SFTP standards.

³ This equivalence is exact for HC and CO only, for NO_x , LEV-II/ULEV is equivalent to Bin 5 (LEV-II/LEV).

- 1 Phase-in assumptions for passenger cars (PC) and light trucks (LDT1) are shown in Figure 1-85.
- 2 In model year 2009 and later, the CA/S177 fleet is dominated by ULEV, SULEV and LEV
- 3 vehicles, in that order. The phase-in for trucks (LDT234) is shown in Figure 1-86.
- 4 As a final step, a distinct "simplified" Federal phase-in was also developed. In this version, the
- 5 truck classes LDT2, LDT3 and LDT4 were also pooled, to facilitate comparison to the CA/S177

6 version.

7 8

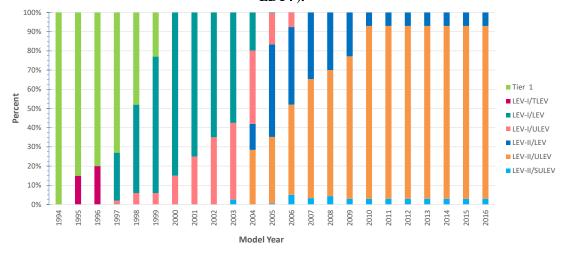

9

Figure 1-85. Phase-In assumptions for CA Tier-1, LEV-I and LEV-II standards for passenger cars and light-trucks (PC, LDV, LDT1).

10 11 12

Figure 1-86. Phase-In assumptions for CA Tier-1, LEV-I and LEV-II standards for trucks (LDT2, LDT3, LDT4).

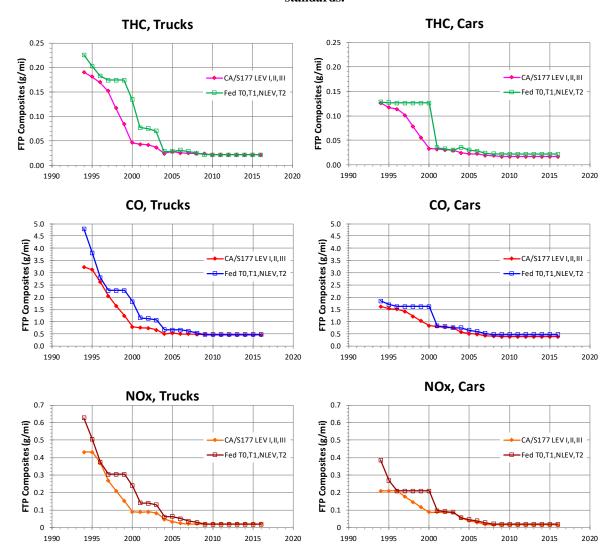
13 14

15

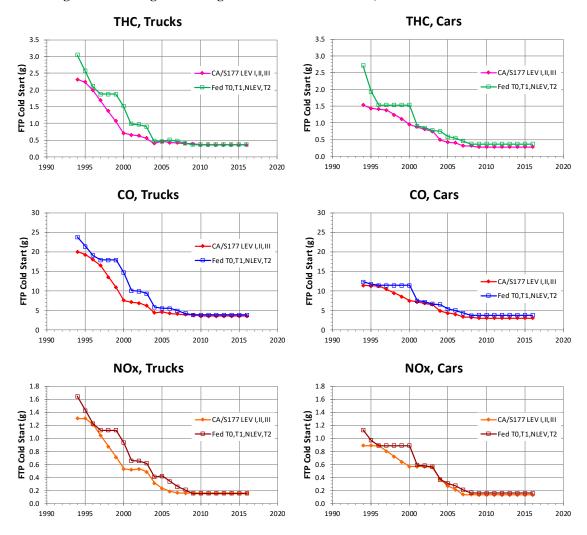
16 17

18

19


1.6.3 Merge FTP Results and Phase-In assumptions

In this step the FTP results and phase-in assumptions were merged so as to calculate weighted average results for composites, cold-start and hot-running emissions, as described in 1.3.4.2.3 (page 75). However, as the truck classes were pooled and assigned a uniform phase-in, calculating weighted averages by truck class did not play a role in these calculations as in the default calculations.


1 This step was repeated for the CA phase-in and for the "simplified" Federal phase-in.

Sets of weighted averages by model year are shown in for FTP Composite Emissions (Figure 1-87), FTP cold-start emissions (Bag 1 – Bag 3) (Figure 1-88), and FTP hot-running emissions (Bag 2) (Figure 1-89).

Figure 1-87. Weighted average FTP composite emissions for cars and trucks, for Federal and CA/S177 standards.

Figure 1-88. Weighted average FTP cold-start emissions, for Federal and CA/S177 standards.

0.10

0.05

0.00

1990

1995

5

6 7

8

9

10 11

14

15

0.10

0.05

0.00

1990

1995

2000

1 2

1.6.4 Scaling CA/177 rates to Federal Rates

2005

2010

2015

At this point the next step in the calculation differs from the approach used to generate the default Federal rates. As in the calculation of the default rates, we normalized hot-running emissions for both FTP and US06 to Federal T1 levels, represented by MY1998. However, in this calculation, we also performed this normalization for cold-start rates. The results were sets of ratios relative to Tier 1 for both running and start emissions.

2020

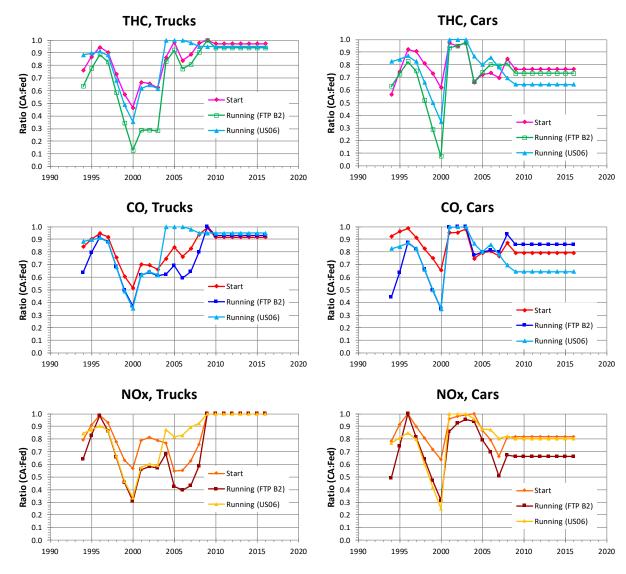
12 Next, we calculated ratios of the weighted CA ratio to its Federal counterpart, by model year, as 13 shown in Equation 1-50,

$$R_{\text{CA:Fed}} = \frac{R_{\text{CA}}}{R_{\text{End}}}$$
 Equation 1-50

2005

2015

2020


where $R_{\text{CA:Fed}}$ = the ratio of the CA/S177 weighted average to that for the Federal phase-in, and R_{Fed} and R_{CA} are ratios of respective weighted averages to that for MY1998, in the CA/S177 and

- Federal phase-ins, respectively. Note that if raw values of $R_{\text{CA:Fed}}$ were > 1.0, they were
- 2 adjusted to 1.0, under than assumption that fleet averages under the LEV program(s) would be ≤
- 3 corresponding averages under the Federal program(s).
- 4 Values of $R_{\text{CA:Fed}}$ are presented in Figure 1-90 below. Note that ratios were calculated and
- 5 applied separately for each of the three gaseous emissions (HC,CO,NO $_x$) and for start emissions
- 6 (opmodeid = 101-108), "FTP Bag-2" emissions (opmodeid = 0,1, 11-16, 21-27, 33-37) and
- 7 "US06" emissions (opmodeid = 28-30, 38-40).

12

- 8 In MY2017 and later, following the onset of the Tier 3/LEV-III phase-in, all ratios are set to 1.0,
- 9 to reflect an assumption that under T3, the Federal program is targeting the same NMOG+NO $_x$
 - fleet average requirements as LEV-III. See 1.5, page 123.

Figure 1-90. Ratios of relative emission levels by model year under CA/S177 and Federal standards, both individually normalized to "Tier-1" levels (See Equation 1-50).

1.6.5 Availability

1314

The emissionRateByAgeLEV table contains the CA/S177 rates and is incorporated into the default MOVES database. Instructions for how to use the applicable portions of this table in a MOVES run are available at https://www.epa.gov/moves/tools-develop-or-convert-moves-inputs.. See "Tools to develop special case MOVES inputs."

1.6.6 Early Adoption of National LEV Standards

 The National Low Emission Vehicle Standards program was adopted in 2001. However, a group of states in the "Northeast Trading Region" (NTR) adopted the standards early, in 1999. Using an approach identical to that used to develop the CA/S177 rates, we developed a table segment for the emissionRateByAge table representing the adoption of NLEV rates in model years 1999 and 2000. As with the national program, "early" NLEV applied only to the LDV, LDT1 and LDT2 vehicle classes.

As with the CA/S177 rates, we developed phase-in assumptions specific to "early" NLEV. Figure 1-91 shows that fractions of Tier-1 vehicles start declining markedly in MY1999, whereas in the default phase-in, the fractions for Tier 1 are 100% until MY2001 for LDV-T1 and LDT2. The fractions shown apply to LDT2, as well as to LDV-T1. Vehicle classes LDT3 and LDT4 remain in Tier 1 until the onset of Tier 2, in MY2004.

The NTR rates were developed by scaling default rates for start and running emissions down appropriately as implied by the differences in phase-in assumptions.

The table segment for early NLEV rates is stored at the same location as the CA/S177 rates (http://www.epa.gov/otaq/models/moves/tools.htm). It contains only model years 1999 and 2000, and can be used as a user-input table.

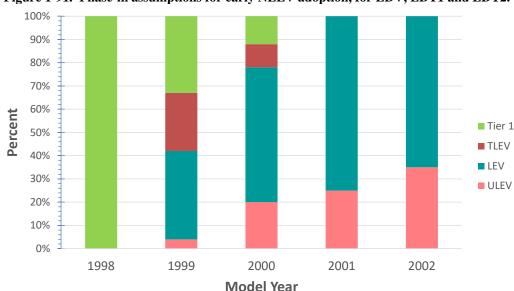


Figure 1-91. Phase-in assumptions for early NLEV adoption, for LDV, LDT1 and LDT2.

1.7 Replication of Rates

- 2 The rates developed as described in Section 1 represent gasoline-fueled conventional-technology
- 3 engines. For purposes of the inclusion in the emissionRateByAge table, we replicated these rates
- 4 to represent other fuels and technologies.
- 5 At the outset, we replicated the entire set of gasoline rates for high-level ethanol blends, i.e.,
- 6 "E77" through "E85." However, for lower-level ethanol blends (i.e., 0 20 vol.%), the effect of
- 7 ethanol (and other effects related to blending) is represented through fuel adjustments, rather
- 8 than through the base rates, as described in this document. The development and application of
- 9 fuel adjustments is described in a separate report.⁶⁹

10

11 12

13

1415

16

1

Table 1-44. Fuel types and engine technologies represented for gaseous-pollutant emissions from light-duty vehicles.

Attribute	sourceBin attribute	Value	Description
Fuel type	fuelTypeID	01	Gasoline
		02	Diesel
		05	Ethanol (E77, E85, etc.)
Engine Technology	engTechID	01	Conventional internal combustion (CIC)
		30	Electric

Particulate-Matter Emissions from Light-Duty Vehicles 2

3

- The emission rates for particulate matter described in this chapter are developed in two parts.
- 4 The first part (Section 2.1) derives modal emission factors and deterioration rates for vehicles
- 5 manufactured before 2004. The second part (Section 2.2) presents the updated rates in
- 6 MOVES201X for vehicles manufactured since 2004, by scaling the base modal emission rates in
- 7 MOVES2014 according to newer test data, and applies emission rate modifications for the
- 8 phase-in of future standards.

1 2

9

10

40

Particulate-Matter Emission Rates for Model Year 2004 and Earlier Vehicles

- The primary study that this chapter relies on is the "Kansas City Characterization Study" 11
- conducted in 2004-2005. 41 The Environmental Protection Agency and several research partners 12
- 13 conducted this study to quantify tailpipe particulate-matter emissions from gasoline-fueled light
- 14 duty vehicles in the Kansas City Metropolitan Area. During the summer and winter phases, 261
- 15 and 278 vehicles were measured, respectively, with some overlap between the phases. The
- 16 measurements were conducted on a portable dynamometer using the LA92 driving cycle under
- 17 ambient temperature conditions.
- 18 Analyses of some of the data from this program are presented in the report: "Analysis of
- 19 Particulate Matter Emissions from Light-Duty Gasoline Vehicles in Kansas City."⁴² This
- 20 "analysis report" (which is the partner to this chapter) presented preliminary emission rates for
- 21 PM, elemental carbon fraction (EC) and organic carbon fraction (OC), as well as temperature
- 22 adjustment factors for start and hot-running emissions processes. These preliminary results form
- 23 the basis for the emission rates developed in this chapter. The rates in the analysis report are
- 24 based on aggregate or "bag" emissions measured on the filters, and are thus, presented as
- 25 grams/start for start emissions and grams/mile for hot running operation.
- 26 The dataset included vehicles manufactured over several decades, measured at various ages
- 27 during CY2004-05. Thus, the program taken alone did not enable us to forecast emissions for
- 28 current vehicles as they age, or to backcast emissions of older vehicles when they were young.
- 29 This chapter describes the development of a deterioration model based on a comparison of
- 30 former PM studies with the 2005 Kansas City study. The rates from this deterioration model
- 31 allow both forecasting and backcasting as required by MOVES.
- In addition, the preliminary analyses⁴² did not attempt to translate results measured on the LA92 32
- 33 cycle (used in Kansas City) into terms of other cycles (such as the FTP) or to "real-world"
- 34 driving. As with the gaseous pollutants, MOVES has the capability to represent hot running
- 35 "modal" emission rates so that emissions vary depending on the driving pattern represented. The
- 36 operating modes defined for PM are the same as for the gaseous emissions (see Table 1-5). This
- 37 chapter describes how the continuous PM measurements collected in the study were used to
- 38 populate the modal rates for MOVES. Because of the reliance on continuous PM measurement,
- 39 it is worth describing the measurement procedures used in this program.

2.1.1 Particulate Measurement in the Kansas City Study

- 41 For measurements conducted on the dynamometer, vehicles were operated over the LA92
- Unified Driving Cycle (see Figure 2-1). The LA92 cycle consists of three phases or "bags." 42

Phase 1 ("bag 1") is a "cold start" that lasts the first 310 seconds (1.18 miles). "Cold start" is technically defined as an engine start after the vehicle has been "soaking" in a temperature controlled facility (typically \sim 72°F) with the engine off. In the Kansas City study, the vehicles were soaked overnight under ambient conditions. Phase 1 is followed by a stabilized Phase 2 or "hot running" (311 – 1427 seconds or 8.63 miles). At the end of Phase 2, the engine is turned off and the vehicle is allowed to "soak" in the test facility for ten minutes. At the end of the soak period, the vehicle is started again, and is driven on the same driving schedule as Phase 1. This Phase 3 is called a "hot start" because the vehicle is started when the engine and after-treatment systems are still hot. Criteria pollutants were measured both in continuous and aggregate modes. Particulate was collected during each of the three phases on 47 mm Teflon filters at 47°C \pm 2°C.

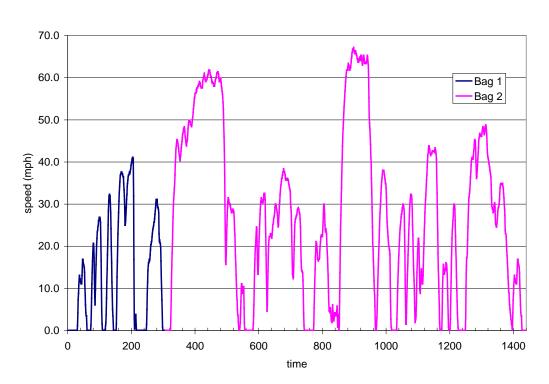


Figure 2-1. Phases 1 and 2 of the LA92 Cycle, representing "cold-start" and "hot-running" operation, respectively.

In addition to the gaseous pollutants measured via the constant-volume sampler (CVS), continuous measurements of total PM mass were taken using two instruments. The first was a Booker Systems Model RPM-101 Quartz-crystal microbalance (QCM) manufactured by Sensors, Inc.; the second was a Thermo-MIE Inc. DataRam 4000 Nephelometer. In addition to total mass, estimated black carbon was measured continuously with a DRI photoacoustic instrument. In addition, integrated samples were collected and analyzed by DRI for PM gravimetric mass, elements, elemental and organic carbon, ions, particulate and semi-volatile organic compounds, and volatile organic air toxics. All sampling lines were heated and maintained at $47^{\circ}\text{C} \pm 2^{\circ}\text{C}$. The samples were extracted from the dilution tunnel through a low particulate loss 2.5 μ m cutpoint pre-classifier. Further details and a schematic of the sampling instrumentation are shown in Figure 2-2 and Figure 2-3.

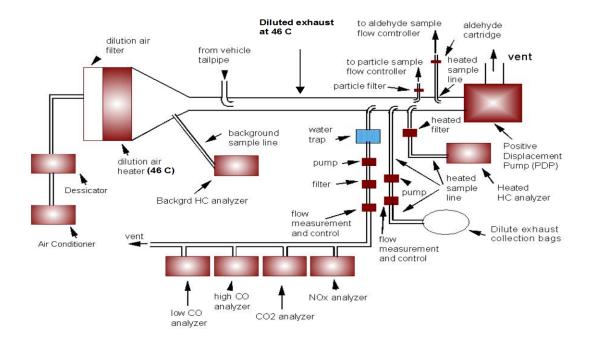


Figure 2-2. Schematic of the constant-volume sampling system used in the Kansas-City Study.

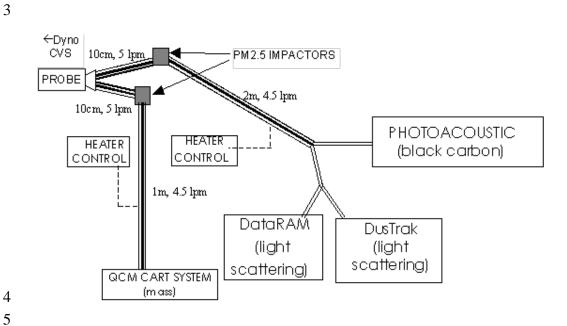


Figure 2-3. Continuous PM analyzers and their locations in the sample line.

- 1 It is worth briefly describing the apparatus used to measure PM on a continuous basis. A more
- thorough description may be found in the contractor's report.⁴¹ As of the date of this program, 2
- 3 measuring continuous particulate was a daunting technical challenge. Each technique has
- 4 specific advantages and disadvantages. For this study, the cumulative mass as measured on the
- 5 Teflon filters was treated as a benchmark. Thus, prior to using the continuous measurements to
- 6 estimate modal emissions, the sums of the time series for the continuous measurements were
- 7 normalized to their corresponding filter masses to compensate for systematic instrument errors.
- 8 The Quartz Crystal Microbalance measures the cumulative mass of the PM deposited on a crystal
- 9 face by measuring the change in its oscillating frequency. It is highly sensitive to many artifacts
- 10 such as water vapor and desorption of lighter organic constituents. Due to the high degree of
- noise in the continuous time series, the measurements were averaged over 10 seconds, thus 11
- 12 damping the temporal effects of transients. The QCM can accurately capture cumulative PM
- 13 over time, however, measurement uncertainties increase for successive points in time because the
- 14 values depend on a calculated difference between two sequential, and similar, measurements.
- 15 Due to the resulting high variability, including large and rapid fluctuations from positive to
- 16 negative emissions at any given instant, and vice versa, use of the QCM measurements was not
- 17 viewed as a practical option for use in emission rate development for MOVES, except as a check
- 18 on the other instruments.
- 19 The Dustrak and Dataram both work on light-scattering principles. As such, they have very
- 20 rapid response times and can measure larger PM volumes with reasonable accuracy. However,
- their accuracy degrades when measuring low PM volumes. Since most PM mass lies within the 21
- 22 larger particles, the instruments should be able to capture most of the continuous mass
- 23 concentrations though it may miss a substantial portion of the smaller (nano) particles. To
- 24 provide a qualitative check on this supposition, the time-series for the OCM and optical
- 25 instruments were aligned and checked to ensure that significant mass was not missed. Based on
- 26 this analysis, the Dustrak instrument was observed to be the most reliable of the 3 instruments.
- 27 and mass correction at low loads was not judged to be worth the effort given the uncertainties
- 28 involved. This time-consuming analysis was done by eye for each test and the results are not
- 29 presented in this chapter.
- 30 The photoacoustic analyzer (PA) is unique among the continuous instruments in its ability to
- 31 capture only the soot or elemental carbon components of PM. The fast analyzer detects the
- resonances coming off the carbon-carbon bonds in soot. Unfortunately, there were insufficient 32
- 33 Thermal Optical Reflectance (TOR) elemental carbon (EC) measurements from quartz filters to
- normalize the PA data, but some comparisons are shown in the contractor's report.⁴¹ In this 34
- 35 study, the PA data were compared qualitatively with the Dustrak and Dataram and found to be
- 36 consistent with expected ratios of elemental to total carbon during transient events, leading to the
- 37 conclusion that these instruments were largely consistent. These results are also not presented in
- 38
- this chapter as every single trace was compared by eye. The data is used to determine the modal
- 39 relationship of elemental to total PM.
- 40 Due to the uncertainty of experimental measurement techniques for continuous PM at the time of
- 41 the Kansas City study, these instruments were employed only as a semi-qualitative/quantitative
- 42 means of determining modal emission rates, and the use of such data does not qualify them as
- 43 EPA recommended or approved devices or processes.

2.1.2 New Vehicle or Zero Mile Level (ZML) Emission Rates

In this section, we develop an approach to extend the PM results from the Kansas City Study to estimate average emissions across the fleet. The section also compares the new vehicle results from many different studies in order to estimate "zero mile" level (ZML) emission rates for all model years. Before modeling deterioration, it is first necessary to capture ZML emission rates.

In constructing a model of emissions from the Kansas City data (Figure 2-4), the greatest challenge is distinguishing between model-year and age effects. As with most datasets, this issue arises because the program was conducted over a two-year period. As a result, it is very difficult to distinguish the reduction in emissions with model year from the increase in emission with age. Emissions tend to decrease as technologies are introduced on vehicles (with later model years) in order to comply with more stringent emissions standards. However, these technologies and vehicles tend to deteriorate over time, thus for the same model year vehicle, older vehicles (greater age) will have higher emissions (on average) than newer vehicles.

1 2

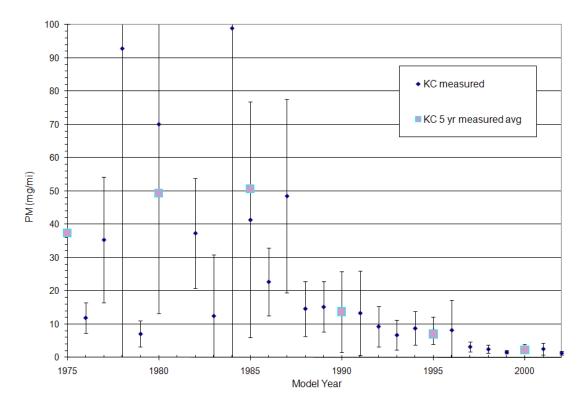


Figure 2-4. Average particulate emission rates from the Kansas City study, by model year, shown as cycle aggregates on the LA92 The five year averages (e.g. 1988-1991,1993-1997, 1998-2002) are also shown without error bar.

In concept, the most accurate means of quantifying emissions from vehicles over time is to conduct a longitudinal study, where emissions are measured for the same vehicles over several (or many) years. However, implementing such a study would be costly. Moreover, it is impossible to obtain recent model year vehicles that have been significantly aged. In the following sections, we will describe some limited longitudinal studies conducted in the past.

Then, we will present our modeling methodology to isolate model year (technology) in this chapter from age (deterioration) in the next.

2.1.2.1 Longitudinal Studies

There have been a few longitudinal studies conducted in the past that are relevant for PM emissions. Unfortunately, they are all limited in their ability to conclusively distinguish model-year effects from age effects.

Gibbs et al. (1979) measured emissions from 56 vehicles with mileage ranging from 0 to 55,000 miles (odometer) on 3 different cycles. 43 Hydrocarbon emissions were analyzed, but unfortunately, PM results were not reported as a function of mileage. The authors state that "emission rates of measured pollutants were not found to be a consistent function of vehicle mileage," however, the following figure shows that some increasing trend seems to exist for HC (Figure 2-5).

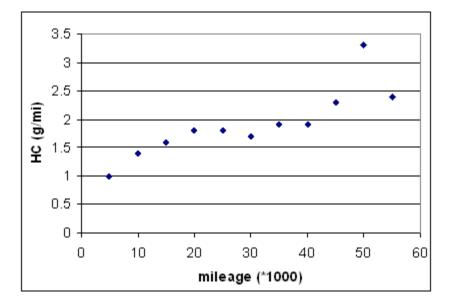


Figure 2-5. Hydrocarbon emissions as a function of mileage (Gibbs et al., 1979).

Hammerle *et al.* (1992) measured PM from two vehicles over 100,000 miles.⁴⁴ However, their results for PM deterioration are somewhat inconclusive, as the following figure shows, since the deterioration seems to occur mainly in the beginning of life, with very little occurring after 20,000 miles. Also, the study is limited to two specific vehicle models.

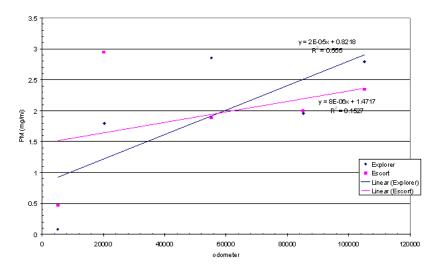


Figure 2-6. Particulate emissions as a function of odometer for two Ford vehicles (Hammerle et al., 1992).

Both of these studies assume that odometer is a surrogate for age. While there are some deterioration mechanisms that worsen with mileage accumulation, there are others that deteriorate with effects that occur over time, such as corrosion due to the elements, deposits and impurities collecting in the gas tank and fuel system, etc. Therefore, we believe that any study that describes deterioration as a function of odometer (alone) may not account for all causes of deterioration.

Whitney (2000) re-recruited 5 vehicles that had been measured in previous study 2 years prior (CRC-E24). There are two significant limitations of this follow-up study: (1) the interval between studies was only 2 years, though the odometers had increased 22,200 miles (on average) and (2) these vehicles were tested on a different drive cycle, the LA92 compared to the previous study, which used the FTP. We will explore the potential cycle differences on PM later, but assuming the cycles give similar PM results, the PM emissions were only 8% higher (on average). This increase is due to a single vehicle, which had significantly increased PM emissions (the rest were the same or slightly lower). Unfortunately, this is not a large enough sample and time period on which to resolve age effects, but it may be sufficient to conclude that the differences between PM from the FTP and LA92 drive cycles are minimal for PM.

The three longitudinal studies described above are inconclusive, though they do hint that deterioration does occur.

2.1.2.2 New Vehicle, or ZML Emission Rates and Cycle Effects

In order to isolate the effect of model year (technology) from age (deterioration), it is useful to look at the model-year effect independently. This goal can be achieved by analyzing emissions from new vehicles from historical studies. New vehicle emission rates tend to have lower variability than older vehicles (in absolute terms) since they have lower emissions that comply with more stringent HC standards. These standards, which decrease over time, tend to affect PM emissions as well since many of the mechanisms for HC formation also form PM.

Several independent studies have measured PM emissions from nearly new vehicles. For our purposes, we will define "new" as a vehicle less than 3 years old, i.e., vehicles within the 0-3 year age Group. Table 2-1 lists the 15 studies employed for this analysis.

Table 2-1. Historical gasoline PM studies including new vehicles at time of study.

Program	Year of study	No. vehicles	Drive cycle
Gibbs et al. ⁴³	1979	27	FTP
Cadle et al. ⁴⁶	1979	3	FTP
Urban & Garbe ^{47,48}	1979, 1980	8	FTP
Lang et al.49	1981	8	FTP
Volkswagen ⁵⁰	1991	7	FTP
CARB ⁵¹	1986	5	FTP
Hammerle <i>et al.</i> , 1992 ⁴⁴	1992	2	FTP
CRC E24-1 (Denver) ⁵²	1996	11	FTP
CRC E24-2 (Riverside) ⁵³	1997	20	FTP
CRC E24-3 (San Antonio) ⁵⁴	1998	12	FTP
Chase et al. ⁵⁵	2000	19	FTP
Whitney (SwRI) ⁴⁵	1999		LA92
KC (summer) ^{41,42}	2004	13	LA92
EPA (MSAT) ⁵⁶	2006	4	FTP
Li et al., 2006 ⁵⁷	2006	3	FTP, LA92

2

1

3 Before we examine these emissions, we should convince ourselves that the LA92 driving cycle

4 will not give substantially different PM emissions than the FTP so that we can compare these test

5 programs directly. As described above, the results from Whitney (2000) seem to indicate little

6 difference between the two cycles. Even though the tests were conducted 2 years apart, one

7 would expect that the aging effects in combination with the slightly more aggressive LA92 cycle

8 (used later) would have given higher PM emissions. However, this was not the case, and only

9 one of the 5 vehicles showed significantly increased emissions.

10 Li et al., (2006) measured three vehicles on both cycles at the University of California,

11 Riverside.⁵⁷ The PM emissions from the LA92 were 3.5 time larger (on average) than the FTP

results. However, the HC emissions were only 1.2 times higher. These results seem rather

13 contradictory and inconclusive. The 3.5 factor also seems excessive in relation to other results,

such as the one conducted by Whitney (2000).

15 Finally, the California Air Resources Board conducted an extensive program over several years

16 comparing many different drive cycles. Unfortunately, PM was not measured in this program.

17 However, Figure 2-7 shows the HC emissions compared for the two cycles. The trends indicate

18 little difference on average between the LA92 and FTP cycles for HC.

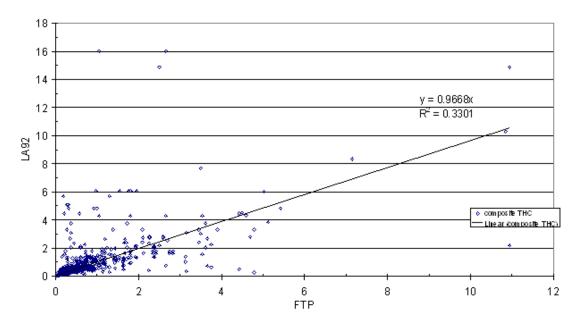


Figure 2-7. Hydrocarbon emissions on the LA92 versus corresponding results on the FTP cycle.

Based on these studies, we conclude that there is little difference in PM emissions between the LA92 and FTP cycles on an aggregate basis (though their bag by bag emissions may differ). We shall demonstrate that, for the purposes of ZML analysis, the overall results will be nearly identical even if we omit the LA92 data, thus minimizing the significance of this issue.

Figure 2-8 shows the new-vehicle emission rates from the studies listed in Table 2-1. The data points represent each individual test, and the points with error bars represent the average for each source. The plot presents evidence of an exponential trend (fit included) of decreasing emissions with increasing model year. The fit is also nearly identical if we omit the two programs that employed the LA92 cycle. We will use this exponential ZML relationship as the baseline on which to build a deterioration model. However, the measurements from the older programs primarily measured total particulate matter. These have been converted to PM_{10} (for the plot), which is nearly identical (about 97% of total PM is PM_{10}). We also assume that 90% of PM_{10} is $PM_{2.5}$ (EPA, 1981). For the older studies, we accounted for sulfur and lead directly if they were reported in the documentation. In those cases where sulfur was not reported, the levels were approximated using sulfur emission factors from MOBILE6 and subtracted as an adjustment.

Unfortunately, many of the older studies used a variety of methods for measuring particulate matter. There were many differences in filter media, sampling temperature, sample length, dilution, dynamometer load/settings etc. It is beyond the scope of this project to normalize all of the studies to a common PM metric. It is likely that documentation is not sufficient to even attempt it. Therefore, no attempts at adjustment or normalization were made except for size fraction, lead and sulfur, as described above.

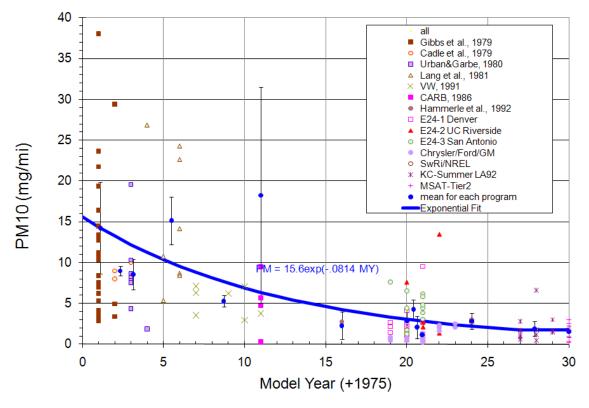


Figure 2-8. Particulate emission rates for new vehicles compiled from 11 independent studies.

To estimate the ZML emission rates from these data, the next step was to separate results for cars and trucks, and to separate cold-start from hot-running emissions. Unfortunately, the historical data does not present PM results by cycle phase. Therefore, the 2005 hot-running ZMLs for cars vs. trucks were calculated from the KC dataset, and the model-year exponential trend from the aggregate trendline (-0.08136) is used to extend the ZMLs back to model year 1975. The base hot running ZML emission rate for cars (LDV) ($E_{HR,y}$) is:

$$E_{{
m HR},y} = E_{{
m HR},2005} {
m e}^{{
m -0.814}\,y}$$
 Equation 2-1

where y = model year - 1975, and $E_{\text{HR},2005} = \text{hot running ZML rate for MY 2005}$.

To estimate equivalent rates for trucks, we multiplied this expression by a factor of 1.43. This value is based on an average of all the studies with new vehicles from 1992 onward (before this model year, there were no trucks measured). It is also multiplied by 0.898 to give hot running bag 2 rates and 1.972 to give the cold start emission rate (here defined as bag 1-bag 3 in units of g/mi). These values were estimated by running a general linear model of bag 2 and bag1-3 with respect to composite PM, respectively, using SPSS statistical software. The averages of these

ratios by model year are shown in Figure 2-9, in which no clear trend is discernible. The parameters of the model are summarized in Table 2-2.

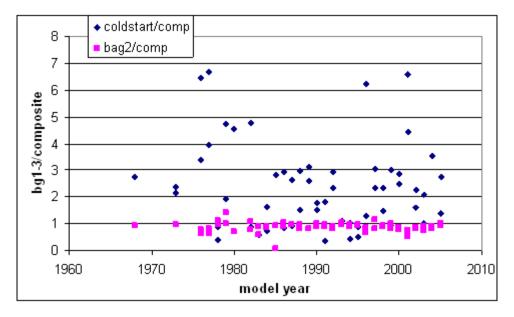


Figure 2-9. Ratios of hot-running/composite and cold-start/composite, Bag2 and Bag1-Bag3, respectively, averaged by model year.

Table 2-2. Best-fit parameters for cold-start and hot-running ZML emission rates.

Parameter	Value	
LDV hot-running ZML (g/mi)	0.01558	
Exponential slope	0.08136	
Truck/car ratio	1.42600	
Bag-2 coefficient	0.89761	
Cold-start coefficient	1.97218	

Figure 2-10 shows the ZML emission rates. The rates are assumed to level off for model years before 1975.

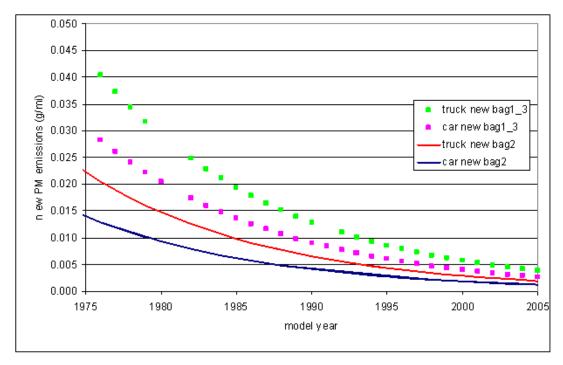


Figure 2-10. Particulate ZML emission rates (g/mi) for cold-start and hot-running emissions, for LDV and LDT.

2.1.2.3 Aging or Deterioration in Emission Rates

In this section, a deterioration model is introduced that captures how new vehicles in all model years deteriorate over time so that gasoline PM in any given calendar year can be modeled in MOVES. The purpose of this model is to characterize the PM emissions from the fleet and to backcast the past as well as forecast the future, as required in MOVES

The ZMLs determined in the previous section represent baseline emissions for new vehicles in each model—year group. By comparing the emissions from the "aged" Kansas City vehicles in calendar year 2005, to the new rates determined earlier, we can deduce the "age effect" for each corresponding age. However, simple an approach as this seems, there are many ways to connect the two points. This section describes the procedure and the assumptions made to determine the rate at which vehicle PM emissions age.

We first break the data into ageGroups. We use the MOVES age groups which correspond to the following age intervals: 0-3 (new), 4-5, 6-7, 8-9, 10-14, 15-19, 20+.

As a first step, the bag measurements from all of the vehicles measured in Kansas City were adjusted for temperature using the equation derived in the analysis report.⁴² The equation used is:

$$E_{\text{PM},72} = E_{\text{PM},T} e^{-0.03344~(72-T)}$$
 Equation 2-2

where $E_{PM,72}$, is the adjusted rate at 72°F for cold-start or hot-running emissions, $E_{PM,T}$ is the corresponding measured emissions for cold-start or hot-running, respectively, at temperature T, respectively.

1 The temperature-adjusted measurements are the "aged" rates, i.e., the rates in each model-year

2 group represent emissions for that group at the age of measurement in 2004-05, at 72°F rather

3 than at the actual ambient temperature.

4 The method adopted is to ratio the aged rates with the new rates so that the changes with

5 deterioration rates are all proportional. This approach will be referred to as the "multiplicative"

6 deterioration model," and is analogous to the approach used with the gaseous emissions (Section

7 1.3.4.2.5).

10

11

12 13

14

15

16 17

18

21 22

23

24 25

26

27

8 It is likely that some of the same mechanisms that cause HC and CO to increase over time would 9

also result in PM increases. These factors include deterioration in the catalyst, fuel control,

air:fuel-ratio control, failed oxygen sensors, worn engine parts, oil leaks, etc. Figure 2-11 shows

trends in the natural logarithm of THC rates over approximately 10 years, based on random-

evaluation samples in the Phoenix I/M program. On a log-linear scale, the deterioration trends

appear approximately linear over this time period, suggesting that the deterioration rates are

exponential. This observation, combined with the approximate parallelism of the trends for

successive model years, implies that emissions follow a multiplicative pattern across model-year

or technology groups, calling for a multiplicative deterioration model. In such a model, the aged

rates and the new rates are converted to a logarithmic scale, after which the slopes are estimated

by fitting a general linear model. The average slope is estimated, with the ZMLs determined

19 earlier defining the y-axis offsets. The result is a series of ladder-like linear trends in log scale as 20

shown in Figure 2-12. The lines fan out exponentially on a linear scale as shown in Figure 2-13.

The dotted lines and the points with uncertainty bars represent the Kansas City data overlaid onto

the model and indicate that the model is consistent with the data.

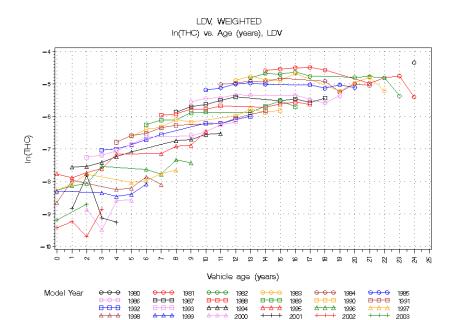


Figure 2-11. The natural logarithm of THC emissions vs. Age for LDV in the Phoenix (AZ) Inspection and Maintenance program over a ten-year period (1995-2005).



Figure 2-12. The multiplicative deterioration model applied to PM results from Kansas City. The y-axis offsets represent ZML rates. The dotted line represents the Kansas-City Data.

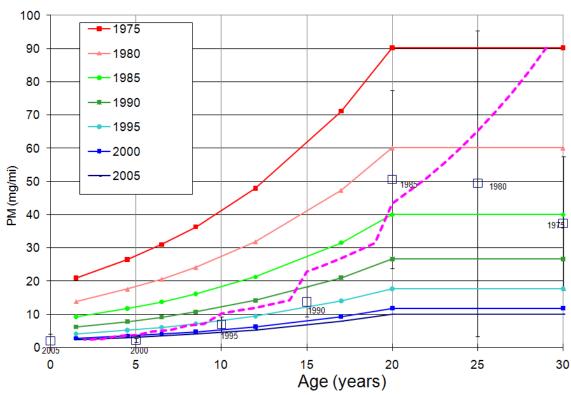


Figure 2-13. The multiplicative deterioration model shown on a linear scale. The y-axis offsets capture the new-vehicle ZML rates. The dotted lines and points with error bars represents the Kansas-City results (with 95% confidence intervals).

We applied the multiplicative deterioration factors directly to both cars and trucks, cold start, hot-running, EC, and OC emissions, assuming that the deterioration factors are independent of

- these effects. The estimation of the elemental carbon fractions, modal emission rates, and modal
- 2 start rates are discussed in the next sections.

3 **2.1.3** Estimating Elemental Carbon Fractions

- 4 After performing the analyses described above to estimate total particulate (PM_{2.5}), we
- 5 partitioned the total into components representing elemental carbon (EC) and non-elemental
- 6 carbon (nonECPM), respectively. Following this step, the values for EC and nonECPM were
- 7 loaded into the emissionRateByAge table, using the pollutant and process codes shown in Table
- 8 2-3. Non-elemental carbon particulate matter (NonECPM, or pollutantID 118), represents
- 9 particulate species other than elemental carbon. For light-duty exhaust, NonECPM is primarily
- 10 composed of organic carbon (pollutantID 112), and small amounts of inorganic ions and
- elements. Background and further detail on the speciation of PM_{2.5} is discussed in greater detail
- in the MOVES TOG and PM Speciation Report.⁵⁹

1314

Table 2-3. Combinations of pollutants and processes for particulate emissions.

pollutantName ^a	pollutantIDa	processName ^b	processID ^b	polProcessID ^c
Primary PM _{2.5} - Non-elemental carbon particulate matter	Running exhaust		1	11801
		Start exhaust	2	11802
Primary PM _{2.5} - Elemental Carbon	112	Running exhaust	1	11201
		Start exhaust	2	11202

Notes:

- ^a As shown in the database table "pollutant." Note that MOVES will aggregate the particulate components to
- 17 construct "Primary Exhaust PM₁₀" (pollutantID 100) and "Primary Exhaust PM_{2.5}" (pollutantID 110).
- 18 b As shown in the database table "emissionProcess."
- 19 c As shown in the database table "emissionRateByAge."
- 20 The initial analysis of the EC composition of the light-duty exhaust is documented in the Kansas
- 21 City analysis report. 42 In the Kansas City study, EC was measured using two different methods.
- 22 The first was the technique of thermal optical reflectance (TOR). This procedure also measured
- OC and total PM, but unfortunately, not all the vehicles in the study were measured using this
- 24 technique. Elemental carbon was also measured using the photoacoustic analyzer, which
- 25 measures EC on a continuous basis. More information can be found on these techniques and their
- 26 calibration and comparison results in the contractor's report⁴¹Error! Bookmark not defined.
- and Fujita et al. (2006). ⁶⁰ The former reference indicates that the photoacoustic analyzer has
- 28 good correlation with TOR EC measurement especially at higher PM levels, however, at lower
- 29 levels (in bag 3 for example), the correlation is poorer. This is not surprising since all
- 30 instruments have limited ability to measure small signals. To accentuate the full range of
- operation, Figure 2-14 shows a plot of a comparison of the two instruments on a natural-log
- 32 scale. The plot reinforces the excellent agreement between the two instruments in bag 1 of the
- test, when emissions levels are at their highest. The correlation (and slope) is also good for the

high values in Bag 2, however, as the measurements get smaller there is relatively more variability (in log-space) between the two measurements.

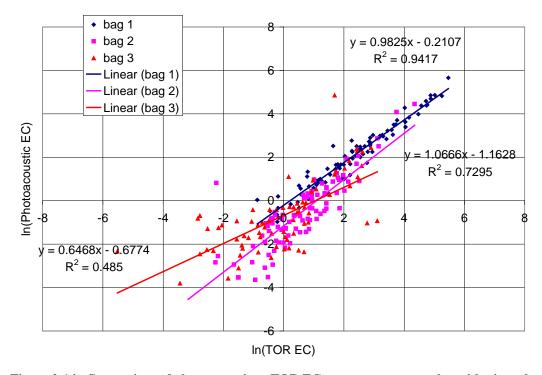


Figure 2-14. Comparison of photoacoustic to TOR EC measurements on a logarithmic scale.

We explored the EC/PM fraction for the four measurement techniques employed in the Kansas-City study: photoacoustic analyzer (PM, continuous EC), Dustrak analyzer (DT, continuous optical PM), gravimetric filter (PM), and thermal optical reflectance (TOR, which measured both EC and total carbon, TC). Table 2-4 shows the comparison of the 3 different fractions using results from these instruments. The values were calculated as fractions of average values in the numerator and denominator. The TOR fractions have two major limitations: the ratios are unexpectedly high and, after eliminating bad data points, only 75 valid measurements remain. Due to the latter condition (primarily), the TOR fractions will not be used in subsequent analysis. The photoacoustic to Dustrak ratios present a reasonable approach, however, since the Dustrak and PM are not strongly correlated⁴¹, we elected to use the photo-acoustic to gravimetric filter ratios for EC/PM fraction estimation.

Table 2-4. Elemental to total PM ratio for 4 different measurement techniques.

Instruments	All	Start	Running
PA/DT	0.128	0.188	0.105
PA/PM	0.197	0.340	0.164
EC/TC (TOR)	0.382	0.540	0.339

2

1

- 3 In MOVES, the EC/PM fractions for light-duty gasoline vehicles are consistent with detailed
- 4 PM_{2.5} speciation profiles developed for all the measured PM species in the Kansas City Study. 61
- 5 The EC/PM fractions are estimated using the photoacoustic analyzer to filter-based PM
- 6 emissions. The MOVES speciation analysis confirmed our previous analysis⁴² that the EC/PM
- 7 fraction is relatively consistent across the range temperatures measured in Kansas City study, and
- 8 across the ranges of model years in the study. For this reason, no differentiation in the EC/PM
- 9 fraction is modeled in relation to temperature or model year of vehicles in MOVES.
- 10 In developing speciation profiles for light-duty gasoline vehicles from the KCVES,⁶¹ we
- discovered high concentrations of silicon in the particulate matter samples. Upon further
- investigation, we determined that the silicone rubber couplers used in the sampling system
- probably contributed to the filter-measured mass. The resulting contamination of filter masses
- with silicon substantially impacted the Bag 2 PM_{2.5} emission rates, which had the highest
- exhaust temperatures. No significant contribution of silicon was found in the PM_{2.5} start
- emissions. The adjustment to the MOVES running PM_{2.5} emission rates based on the silicon
- measurements is discussed in Appendix A. Revisions to the pre-2004 model year PM_{2.5} emission
- rates between MOVES2010b and MOVES2014.
- 19 The silicon contamination in these measurements resulted in a positive bias in the values for OC.
- 20 In consequence, the EC and nonECPM emission rates in MOVES were revised to account for the
- 21 updated data analyses used to derive the PM_{2.5} profile (e.g. VMT-weighted means), and to
- compensate for the silicon contamination in the PM_{2.5} emission rates. Upon removal of the
- 23 silicon contamination, the EC/PM fractions are not significantly different between light-duty cars
- and trucks. The data from cars and trucks were pooled as documented in the speciation
- 25 analysis. 61 The EC/PM_{2.5} fractions in MOVES are presented in Table 2-5. The EC/PM_{2.5} ratio is
- 26 constant across all operating modes for start and running processes.

27 28 Table 2-5. EC/PM_{2.5} fractions by start and running emissions processes for pre-2004 light-duty gasoline vehicles.

, 011101050			
Emission Process	EC/PM _{2.5}		
Running	14.0%		
Start	44.4%		

2.1.4 Modal Running Emission Rates

- 2 As mentioned in section 2.1.1, the Dustrak instruments was selected as the most reliable second-
- 3 by-second PM time-series data measurement from the Kansas City Study. The Dustrak PM_{2.5}
- 4 measurements were used to develop the PM_{2.5} emission rates by operating mode. The following
- 5 two figures show Dustrak PM emissions binned by VSP and classified by model year Groups.
- 6 Figure 2-15 shows this relationship on a linear scale and Figure 2-16 shows the relationship on a
- 7 logarithmic scale. It is clear from the latter plot that VSP trends for PM tend to be exponential
- 8 with VSP load, i.e. they are approximately linear on a log scale, showing similar patterns to the
- 9 gaseous emissions, particularly CO. Thus, we assume smooth log-linear relations when
- 10 calibrating our VSP based emission rates.

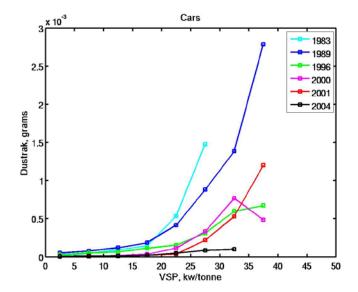


Figure 2-15. Particulate emissions, as measured by the Dustrak, averaged by VSP and model-year group (LINEAR SCALE).

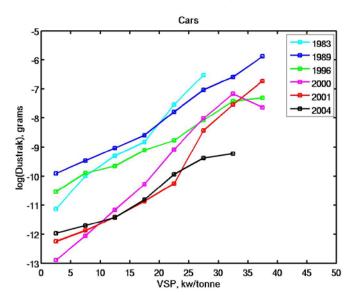


Figure 2-16. Particulate emissions, as measured by the Dustrak, averaged by VSP and model-year group (LOGARITHMIC SCALE).

In order to calculate VSP-based modal rates, we followed seven steps:

- 1. The LA92 equivalent hot-running emission rate (g/mi) is calculated for each age group within each model-year group, using the deterioration model described in section 2.2.
- 2. Continuous emission rates (g/sec) are calculated from the Dustrak measurements for cars and trucks. These trends are then extrapolated to higher VSP levels where data is missing.

3. The VSP operating-mode distribution is calculated for Bag 2 of the LA92 drive cycle for cars and trucks separately – this step is equivalent to determining the number of seconds in each mode.

- 4. The set of continuous measurements (Step 2) are then classified into the operating-mode distribution and summed to give an aggregate emission rate representing Bag 2 of the LA92.
- 5. The results from Step 4 are divided by those from Step 1 to calculate a ratio for each combination of the model-year and age groups. The ratios are used to normalize the modal emission rates to the aggregate filter measurements.
- 6. The rates from step 5 are then apportioned into EC and nonEC components to give final rates for the hot-running process. These rates are stored in the emissionRateByAge table under polProcessID 11201 and 11801, respectively.

The output from step 3 (operating-mode distribution) for cars and light trucks is shown in Figure 2-17. For operating-mode definitions, see Table 1-5.

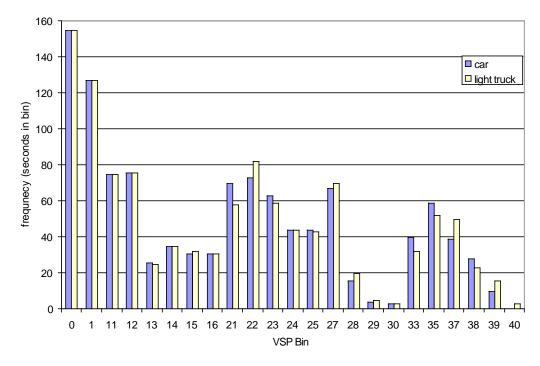


Figure 2-17. Operating-mode distribution for cars and light trucks representing the hot-running phase (Bag 2) of the LA92 cycle.

The output of step 5 for the ZML (0-3 year age Group) in each model year is shown in Figure 2-18.

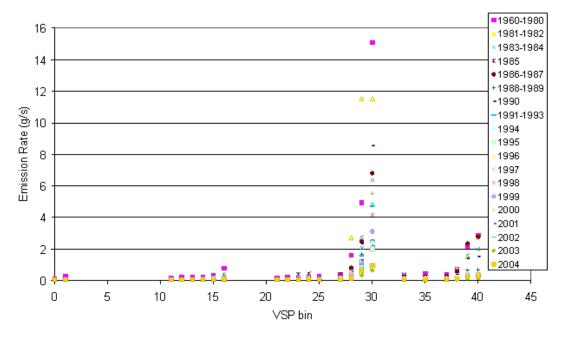


Figure 2-18. Particulate emissions for passenger cars (LDV) from Kansas City results, by model year Group, normalized to filter mass measurements.

After the rates were calculated, a quality check was performed to ensure that the aged rates in any particular mode were not too high. A multiplicative model with exponential factors risks excessively high emission rates under extreme conditions. For example, any rate over 100 g/sec was considered too high, this would be an extremely high-smoking vehicle. This behavior was corrected in only two cases for cars and trucks in the 1975 model-year group in operating mode bin 30. In these cases, the value from operating mode 29 was replicated for operating mode 30.

2.1.5 Modal Start Emission Rates

The development of the cold start emission rates (opMode 108; soak time > 12 hours), is discussed in Section 2.1.2.2. The cold start emission rates (g/start), as estimated using Bag1 – Bag3 of the LA92, were estimated to be a factor of 1.972 times the reported LA92 composite g/mile emission rate from the Kansas City study. This factor was then used to estimate cold start emissions from the zero mile level emission rates. Subsequently, the impact of deterioration on starts was incorporated as discussed in detail in Section 2.1.2.3.

In MOVES, the start rates by operating mode, account for the different soak times preceding the start as shown in Table 1-27. Section 1.4.2.1.1 discusses how the start emission rates for hot starts (opModeID 101-107; soak times < 12 hours) are estimated as a fraction of the cold start emission rates (opModeID 108). Due to limited data on PM emissions at different soak lengths, we apply the same ratios between start operating modes for hydrocarbon start emissions as for PM emissions presented in Table 1-28.

2.2 Particulate-Matter Emission Rates for Model Year 2004 and Later

2 Vehicles

1

3

20

2.2.1 Introduction

- 4 This section addresses PM running emission rates for gasoline light-duty vehicles for model
- 5 years 2004 through 2060. Previously, MOVES2014 used the same PM emission rates for model
- 6 years 2003 through 2016 and then applied phase-in assumptions to account for Tier 3 standards.
- 7 This section, therefore, represents an update to the MOVES emission rates for vehicles subject to
- 8 Tier 2 and Tier 3 standards. Since 2004, gasoline direct injection (GDI) vehicles have entered the
- 9 market. In 2016, GDI vehicles represented roughly half of new vehicles sold in the United
- 10 States. 62 Additionally, several studies of vehicle emissions have been conducted since the Kansas
- 11 City study using Tier 2 vehicles. The emission rates derived in this section are based on the data
- from six such studies, including studies of GDI vehicles. The adoption of GDI engines has been
- taken into account by separately calculating PM emission rates for PFI and GDI vehicles, and
- then combining them to form population-weighted average rates by model year. However, the
- datasets used in these analyses do not contain enough information to derive completely new
- modal emission rates or deterioration rates for these model years. Therefore, to determine the
- 17 new modal rates, we rescaled the existing modal rates used for model year 2003 in MOVES
- using the new data, and retained the deterioration behavior described in Section 2.1.2.3. Finally,
- we applied the phase-in of Tier 3 standards to the newly derived rates.

2.2.1.1 Dataset Description

- 21 Data from six studies was used to develop the 2004 and later PM emission rates. The dataset for
- each study includes PM filter weight measurements collected on FTP or LA-92 three-phase or
- 23 "bag" test cycles. Phase 1 (bag 1) is a cold start where the vehicle has been "soaking" at a
- controlled temperature for 12 or more hours with the engine turned off. Typically, vehicles are
- soaked at room temperature (~72°F). Phase 2 follows Phase 1 and is used to characterize
- temperature-stabilized or "hot running" conditions. At the end of Phase 2, the engine is shut off,
- and the vehicle is allowed to soak for 10 minutes under the ambient test cell conditions. Finally,
- 28 the engine is restarted and Phase 3 follows the same driving cycles as Phase 1. For the LA92
- 29 cycle, Phases 1 and 3 last for 310 seconds, and Phase 2 lasts for 1,135 seconds. Phases 1 and 3 of
- 30 the FTP cycle are longer than for the LA92, taking 505 seconds. Phase 2 of the FTP cycle is
- 31 shorter at 867 seconds. PM filters were collected and weighed for each phase of the test cycles
- 32 providing a measure of the total PM mass emitted during each phase. The studies selected for
- analysis are summarized in Table 2-6.

Table 2-6 Summary of PM studies analyzed for model year 2004 and later vehicles

Study name	Engine Type	Number of vehicle models	Number of unique vehicles
EPA Tier 2 Fuel Sulfur Study ⁶³	PFI	17	72
EPAct Phase 1 FTP ⁶⁴	PFI	6	6
EPAct Phase 3 ⁶⁵	PFI	15	15
EPAct Phase 4 ⁶⁶	PFI	6	6
CARB LEV III PM Emissions Study ⁶⁷	GDI	6	6
EPA Tier 3 Certification Fuel Impacts Study ⁶⁸	GDI	7	8

2

10

1

- 3 Altogether, the dataset for PFI vehicles consists of measurements from 99 vehicles representing
- 4 19 different models. The dataset for GDI vehicles is composed of measurements from 14
- 5 vehicles, and 13 models. Only the tests conducted at room temperature were included in this
- 6 analysis in order to eliminate influences from hot or cold temperature tests. Measurements
- 7 conducted with greater than 20 percent ethanol fuels were omitted from analysis because
- 8 MOVES only handles fuel with ethanol content less than or equal to 15 percent for gasoline
- 9 vehicles.

2.2.1.2 Fuel Considerations

- 11 The four studies used to generate PM emission rates for PFI vehicles used a combined total of 27
- different fuels with ethanol content less than 20 percent. In order to minimize the effects of these
- fuels on the emission rate calculations, the measured rates were corrected to the equivalent rates
- 14 for Tier 2 certification fuel. The corrected rates were calculated using the EPAct fuel effects
- calculator, which uses the same method used by MOVES to calculate fuel-effect adjustments. ⁶⁹
- 16 The EPAct calculator applies the set of statistical models developed using the EPAct Phase 3
- dataset, also used for developing the particulate matter emission rates in the current analysis.
- Additionally, the EPA Tier 2 sulfur study used Tier 2 based fuels and as such required negligible
- 19 correction. 63 The corrections were applied to all three phases of the FTP and LA92 PM mass
- 20 measurements. The effects on the distribution of measured start and running emissions for each
- 21 test program are summarized in Figure 2-19.

Figure 2-19 Boxplots of start (a) and running (b) emissions measurements with and without fuel corrections applied

2.2.2 Calculating FTP and LA92 Cycle Rates Using MOVES Emission Rates

The six datasets used for this analysis are not adequate to develop revised running modal emission rates *de novo* for vehicles with model years 2004 and later. Therefore, the modal rates for model year 2003 vehicles are rescaled to generate the emission rates for 2004 and later model years. In order to develop the appropriate rescaling factors, Bag 2 emission rates are calculated for both the FTP and LA92 drive cycles using MOVES model year 2003 emission rates.

The Bag 2 rates of both the FTP and LA92 cycles for both MOVES light-duty regulatory classes (light-duty cars, and trucks) are calculated using the MOVES operating mode distribution calculated for the hot running phase of each test cycle, and multiplying the time in each operating mode with its associated emission rate. To generate an emission rate, the emission masses calculated for each operating mode are summed, and the total is divided by the distance driven. The MOVES operating mode distribution for Bag 2 of both the FTP and the LA92 cycles are shown in Figure 2-20.

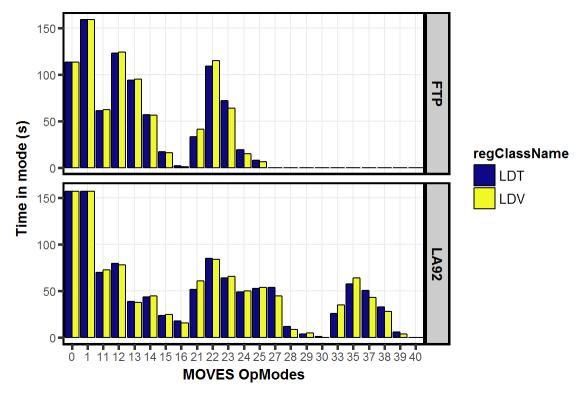


Figure 2-20 MOVES operating mode distributions for the hot-running phase (Bag 2) of the FTP and LA92 drive cycles

As the figure illustrates, Bag 2 of the LA92 cycle is more aggressive than Bag 2 of the FTP cycle. As a result, different average running emission rates result from each cycle. For cold starts, based on the analysis presented in Section 2.1.2.2, it is assumed that both the LA92 and FTP cycles will have the same PM mass emitted for each vehicle type. The cold-start masses and Bag 2 hot running rates calculated using MOVES model year 2003 emission rates are summarized in Table 2-7. These calculated cycle rates are used as a basis for comparison to the measured rates in the datasets that are analyzed in Sections 2.2.3 and 2.2.4. Additionally, these calculated cycle rates are used in Section 2.2.5 to determine the rescale factors used to develop the model year 2004 and later PM emission rates used in MOVES.

Table 2-7 Modeled FTP and LA92 start and bag 2 running rates for model year 2003 light-duty vehicles

Test cycle	regClassID	Cold-start mass (mg)	Hot-running rate (mg/mi)
FTP	LDT	8.781	1.444
FTP	LDV	6.158	2.090
LA92	LDT	8.781	2.133
LA92	LDV	6.158	1.924

3 4

2.2.3 Estimating Start Emissions for Particulate Matter

- 5 Start emissions from three-phase test cycles are calculated by comparing the measured masses of
- 6 the Phase 1 and Phase 3 PM filters. For both the LA92 and FTP drive cycles, the speed trace for
- 7 Phases 1 and 3 are identical. The difference in measured PM masses between the two phases is
- 8 attributed to the change in engine condition from cold start to hot stabilized running. Typically,
- 9 this transition results in higher Phase 1 PM mass. If the value of the Phase 1 minus the Phase 3
- mass is negative, it suggests that the hot stabilized engine emitted more particulate matter than it
- did when it was warming up. We observed this behavior in some of the test results. Because we
- found no technical reason to exclude these points, they are included in the averaged rates. For
- 13 this analysis, we assume that cold-start PM emissions are independent of the test cycle. The
- 14 average rates from the data discussed in this section are used in Section 2.2.5 to develop the
- scaling factors for constructing the PM start rates.

2.2.3.1 Start Emissions for Vehicles with Port Fuel Injection (PFI)

- 17 Figure 2-21 summarizes the cold-start results from all of the PFI vehicles used in this analysis.
- 18 The solid horizontal lines show the average cold-start mass for light-duty cars and trucks, as
- 19 averaged by vehicle model. The dashed horizontal line shows the cold start mass for new
- vehicles with model year 2003 in MOVES. For PFI light-duty cars, the average cold start mass is
- 2.06 mg and for PFI light-duty trucks, it is 3.75 mg. On average, the measured PM cold start
- 22 emission masses for the analyzed data were substantially lower than modeled for model year
- 23 2003 vehicles in MOVES.

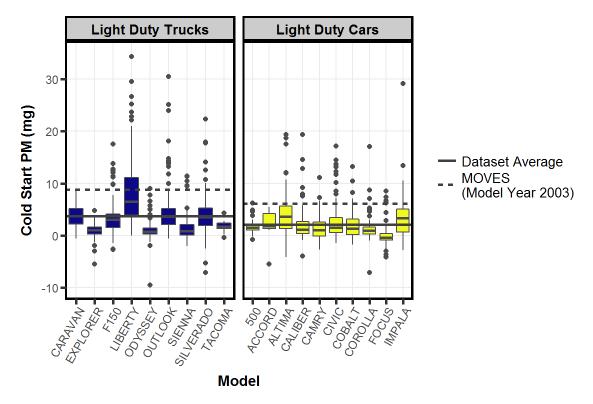


Figure 2-21 Measured PFI PM start emission masses

2.2.3.2 Start Emissions for Vehicles with Gasoline Direct Injection (GDI)

Figure 2-22 summarizes the cold-start results from all of the GDI vehicles used in this analysis. The solid horizontal lines show the cold-start mass for light-duty cars and trucks, as averaged by each unique vehicle. The dashed horizontal line shows the cold start mass for new vehicles with model year 2003 in MOVES. For GDI light-duty cars, the average cold start mass is 20.92 mg. While only data from two GDI trucks is available in these studies, the average cold start mass for these two vehicles is 38.34 mg. Generally, the measured PM start emission masses for GDI vehicles in the analyzed dataset were significantly higher than modeled for model year 2003 vehicles in MOVES.

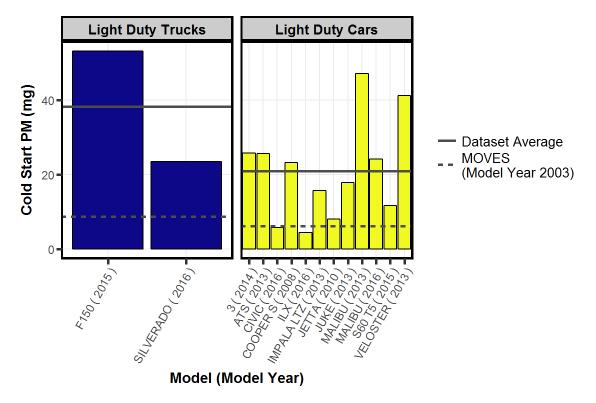


Figure 2-22 Measured GDI PM start emissions

2.2.4 Estimating Running Emissions for Particulate Matter (PM)

1 2

Running emission rates were calculated for each test in units of milligrams per mile. Because the FTP and LA92 cycles cover different engine power ranges as shown in Figure 2-20, the average emission rate for each vehicle model was calculated separately for each test cycle. In general, the results for both PFI and GDI vehicles show substantially lower running PM rates than modeled for model year 2003 in MOVES. The average rates from the data discussed in this section are used in Section 2.2.5 to develop rescale factors for constructing the MOVES PM running rates.

2.2.4.1 Running Emissions for Vehicles with Port Fuel Injection (PFI)

For the four test programs used in the PFI analysis (Table 2-6), the running PM rates are grouped by vehicle model. Figure 2-23 summarizes the results. The solid horizontal lines show the average Phase 2 running mass for light-duty cars and trucks, as averaged by vehicle model. The dashed horizontal line shows the Phase 2 running mass for new vehicles with model year 2003 in MOVES. As Figure 2-20demonstrates, the LA92 drive cycle has a more aggressive Phase 2 than the FTP cycle. This difference results in a higher average emission rate for the LA92 cycle than for the FTP cycle. This difference is reflected in both the measured datasets and the cycle average rates calculated by combining model year 2003 emission rates and operating-mode distributions for the two cycles.

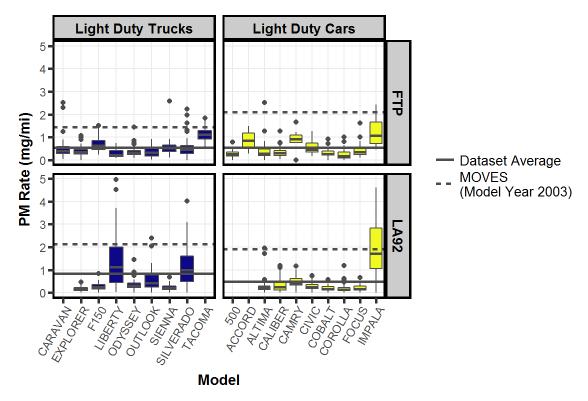


Figure 2-23 Measured PFI PM running emission rates

2.2.4.2 Running Emissions for Vehicles with Gasoline Direct Injection (GDI)

The summary of running emission rate results for the GDI vehicles used in this analysis are shown in Figure 2-24. Because the GDI vehicles were tested only using the FTP drive cycle, the results are not split by test procedure. As with the GDI start emissions, the averages rates are calculated weighted by test vehicle. While there is significant variation in the PM rates for the GDI vehicles, the average running emission rates fall below the model year 2003 MOVES average.

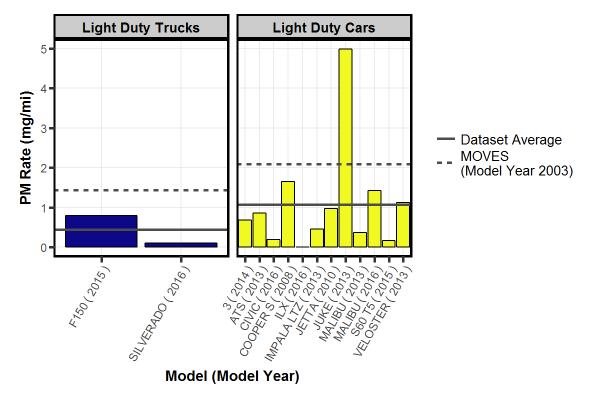


Figure 2-24 Measured GDI PM running emission rates

2.2.5 Developing Base Emission Rates for Model Year 2004 and Later

As mentioned previously, the six datasets, used to develop light-duty PM rates for 2004 and later vehicles, do not contain the data necessary to assemble new modal running emission rates. Therefore, the modal running emission rates for model year 2003 are scaled to represent the observed emission rates from these studies. The scaling factors are calculated by taking the ratio of the running emissions rate for each measurement to the rate for the same drive cycle calculated using the model year 2003 MOVES emission rates (Section 2.2.2). For PFI vehicles, these ratios are calculated as an average weighted by model. For GDI vehicles, the averages are weighted by unique test vehicle. Table 2-8 summarizes the average scaling factors for both start and running emissions.

Table 2-8 Cold-start and hot-running scaling factors for PFI and GDI vehicles

Engine type	regClassID	Cold-start scaling factor	Hot-running scaling factor
PFI	LDT	0.427	0.382
PFI	LDV	0.335	0.260
GDI	LDT	4.367ª	0.312a
GDI	LDV	3.398	0.515

Note: ^a See Section 2.2.5.1 for the final scaling factors for GDI LDT.

2

4

5

1

2.2.5.1 Additional Assumptions Used to Determine GDI Truck Scaling Factors

6 The data for the two GDI trucks included in the six datasets is not sufficient to form the basis for 7 revised emission rates in MOVES201X. To compensate, we developed an approximation of start 8 and running emission rates for GDI trucks using the data analyzed for PFI vehicles, and for the 9 GDI light-duty cars. We assume that the apparent difference in PM emissions between GDI and 10 PFI vehicles are due to the change in injection technology. Additionally, we assume that the 11 change in injection technology will have a similar proportional emissions effect on engines in light-duty trucks as in light-duty cars. To calculate GDI truck start emissions, we use the 12 13 following equation:

$$Start_{LDT}(GDI) = Start_{LDT}(PFI) \frac{Start_{LDV}(GDI)}{Start_{LDV}(PFI)}$$
 Equation 2-3

- where LDV indicates light-duty cars, and LDT indicates light-duty trucks.
- 15 For running emissions, we used a slightly different approach. Because the datasets only contain
- results for GDI vehicles on the FTP cycle, it was difficult to directly compare them to the PFI
- 17 results where a significant proportion were measured on the LA92 test cycle. Therefore, we
- made the assumption that the scaling of the 2003 model year MOVES rates for GDI light-duty
- 19 trucks would be the same as the scaling for light-duty cars, i.e.:

$$Running_{LDT}(GDI) = Running_{LDT}(MOVES) \frac{Running_{LDV}(GDI)}{Running_{LDV}(MOVES)}$$
 Equation 2-4

- Table 2-9 contains the calculated start and running rescale factors using these assumptions as
- 21 well as the average measured values from the two trucks in the studies. For start emissions, the
- rates calculated from these assumptions are very similar to the measured rates from the two
- 23 trucks. The calculated running rates on the other hand show a more modest reduction relative to
- 24 the 2003 model year rate than suggested by the test results from the two trucks. The rescale
- 25 factors derived from these assumptions are the ones used to derive the final MOVES201X light-
- 26 duty truck emission rates.

Table 2-9 Scaling factors for light-duty trucks calculated from measured data and from modeling assumptions

	Cold-start	Hot-running
Dataset scaling factor	4.367	0.312
scaling factor calculated using assumptions	4.330	0.515

3

12

2.2.5.2 EC/NonECPM Fractions

- 5 In the MOVES EmissionRateByAge table, total PM emission rates are partitioned into elemental
- 6 carbon (EC) and non-elemental carbon (nonECPM). Section 2.1.3 describes the method for using
- 7 photo-acoustic to gravimetric filter mass ratio to determine the fraction of EC to total PM.
- 8 Because the datasets used for PFI vehicles did not have additional EC information, we retain the
- 9 EC/PM_{2.5} fractions calculated from the Kansas City study to represent light-duty PFI vehicles
- with model years 2004 and later. The CARB LEVIII PM study used as part of the GDI rates
- analysis, also included photo-acoustic PM mass measurements. As such, we used the same
- method to calculate EC/PM_{2.5} fractions for light-duty GDI vehicles. The resulting fractions show
- a significantly higher EC fraction for both start and running emissions from GDI vehicles as
- 14 compared to PFI vehicles. The start and running EC/PM_{2.5} fractions for both PFI and GDI
- vehicles are summarized in Table 2-9.

16 17

Table 2-10 Start and running EC/PM_{2.5} fractions for PFI and GDI vehicles

Engine type	Start EC/PM _{2.5}	Running EC/PM _{2.5}
PFI	0.44	0.14
GDI	0.70	0.67

18 19

20

2.2.6 Calculation of Fleet-Average PM Emission Rates in MOVES by Model Year

- 21 This section describes how the cold-start and hot-running rescale factors and the EC/PM_{2.5}
- fraction determined in Section 2.2.5 are combined to create the PM emission factors used in
- 23 MOVES for model years 2004 and later. Here, the emission rates are derived without accounting
- for the implementation of new emission standards. Sections 2.2.7 and 2.2.8, describe how the
- 25 Tier 3 and LEV-III standards are applied to the PM emission rates.
- 26 Thus far, the discussion of PM rates for light-duty vehicles for model years 2004 and later has
- 27 divided these vehicles by fuel injection technology, however, MOVES does not currently
- accommodate partitioning emission rates for a given regClass by engine technology. Rather,
- 29 fleet-average rates must be entered into the emissionRateByAge table. Therefore, average PM
- 30 emission rates were calculated for each model year using weights for the PFI and GDI emission
- 31 factors determined from vehicle production volumes.

2.2.6.1 Vehicle Population Data for Model Years 2004 – 2016

- 2 For model years 2004 through 2016, the annual EPA Light-Duty Automotive Technology,
- 3 Carbon Dioxide Emissions, and Fuel Economy Trends Report provides data on the relative
- 4 production volumes of vehicles with different engine technologies. ⁷⁰ Tables 5.3.2 and 5.3.3 of
- 5 the report include the proportions of the light-duty car and truck populations that have PFI and
- 6 GDI engines. This data is shown by the symbols plotted Figure 2-25. These proportions were
- 7 used directly to weight the fleet-average PM emission rates from PFI and GDI vehicles.

8 2.2.6.2 Modeling Vehicle Populations for Model Years After 2016

- 9 The rapid adoption, and expected continued growth of the GDI portion of the light-duty vehicle
- population make it inappropriate to use the 2016 population fractions to represent the light-duty
- vehicle population into the future. Therefore, the relative PFI and GDI vehicle populations were
- extrapolated for model years 2017 and later. To make this projection, a simple sigmoidal
- function was fit to the data for years 2004 through 2016. A sigmoidal function was used because
- 14 it reasonably reproduced the trend of GDI adoption, and created a smooth transition from one
- technology to the other. The functions used for this fit are:

$$GDI(MY) = \frac{1}{1 + e^{-K(MY - MY_0)}}$$
 Equation 2-5

$$PFI(MY) = 1 - GDI(MY)$$
 Equation 2-6

- Where GDI(MY) and PFI(MY) are the fractions of the light-duty vehicle population with GDI
- and PFI engines respectively, and MY is the vehicle model year. The fitted terms of the functions
- are K, which represents the rate of change of the populations, and MY₀ indicates when the
- modeled PFI and GDI populations are equal. The fitted values of K and MY₀ are given in Table
- 20 2-11.

Table 2-11 Fitting parameters for future GDI and PFI populations

regClassName	K	MY ₀
LDT	0.421	2016.27
LDV	0.375	2015.17

22

21

- 23 The fit values of MY_0 have the populations of light-duty GDI and PFI vehicles becoming equal
- in 2017 for trucks, and in 2016 for cars. The symbols in Figure 2-25 show the population
- 25 fractions of GDI and PFI vehicles from the trends report.⁷⁰ The fitted sigmoidal curves are shown
- as dashed lines, and the combined curves used to model the population fractions are shown as
- 27 solid lines.

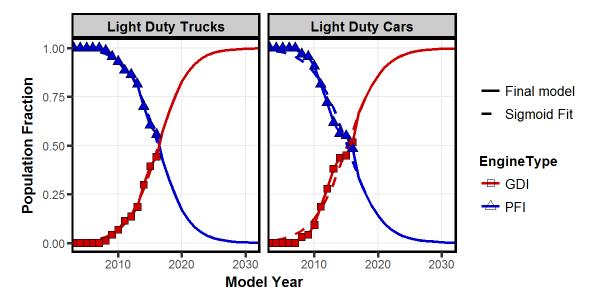


Figure 2-25 Population fractions of GDI and PFI vehicles by model year

2.2.6.3 Combining Rates by Model Year

The MOVES EmissionRateByAge table was populated for model year 2004 and later light-duty vehicles (regClassID 20,30) using the start and running average rates, EC/PM_{2.5} fractions, and population fractions determined above for GDI and PFI vehicles. The rates were determined by scaling the model year 2003 modal emission rates in MOVES using these factors. First, the scaling factors for the start and running total PM emission rates for each model year were calculated using the scaling factors developed in Section 2.2.5 combined with the GDI and PFI population fractions for that year as described in Equation 2-7.

$$RS_{Fleet}(MY) = S_{GDI} * P_{GDI}(MY) + S_{PFI} * P_{PFI}(MY)$$
 Equation 2-7

- Where S is the scaling factor for the fleet of the given engine type, and P is the population
- 14 fraction of PFI or GDI engines for each model year (MY).
- Next, the EC/PM_{2.5} fractions for each model year were calculated as a population and emission
- 16 rate weighted sum of the EC/PM_{2.5} fractions for PFI and GDI vehicles using the following
- 17 equation:

$$\begin{split} EC/PM_{2.5\ Fleet} &= \frac{EC/PM_{2.5\ GDI}(P_{GDI}*S_{GDI})}{(P_{GDI}*S_{GDI}) + (P_{PFI}*S_{PFI})} \\ &+ \frac{EC/PM_{2.5\ PFI}(P_{PFI}*S_{PFI})}{(P_{GDI}*S_{GDI}) + (P_{PFI}*S_{PFI})} \end{split}$$
 Equation 2-8

Where EC/PM_{2.5} is the EC fraction, P is the population fraction. The subscripts indicate the values associated with the combined fleet, and for GDI and PFI vehicles. Finally, the scale

factors and new EC/PM_{2.5} fractions were applied to the start and running modal emission rates for MOVES model year 2003 light-duty cars and light-duty trucks to generate a complete set of revised emission rates in MOVES201X. This method thus preserves the modal rate structure as well as the deterioration effects modeled for earlier model years. Figure 2-26 through Figure 2-28 illustrate how these emission rates change with model year. Note that these rates do not yet account for the phase-in of the Tier 3 standards, which is handled in Section 2.2.7. Figure 2-26 shows how the PM cold start mass for light-duty cars and trucks changes with model year, showing increases in both EC and nonECPM as the percentage of GDI vehicles increases.

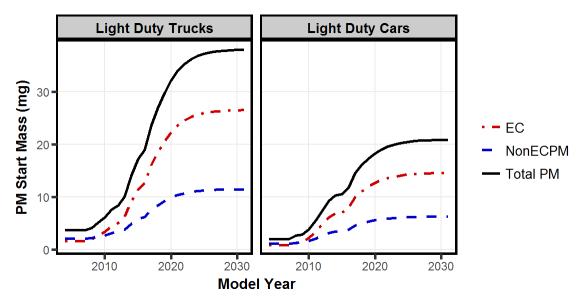


Figure 2-26 Modeled cold start PM emissions by model year

Figure 2-27 shows calculated FTP Bag 2 running rates to illustrate how the MOVES rates for light-duty cars and trucks change with model year. For these rates, the nonECPM portion of the emissions decrease with GDI phase in while the EC portion increases. Together, the changes in EC and nonECPM rates result in a net increase in Total PM with increasing model year.

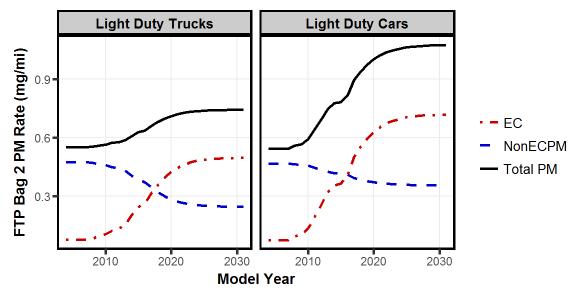


Figure 2-27 Modeled FTP bag 2 PM emission rate by model year

Finally, Figure 2-28 shows the calculated combined FTP cycle average PM rates. For the FTP cycle, the overall PM rates increase with model year largely due to an increase in the EC rates, while the nonECPM rates only increase slightly.

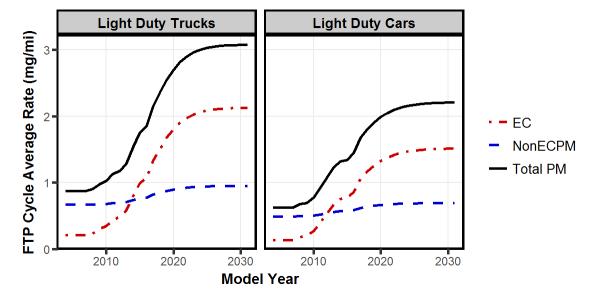


Figure 2-28 Modeled FTP cycle average PM emissions by model year $\,$

2.2.7 Incorporating Tier 3 Emissions Standards for Particulate Emissions

Under the Tier 3 exhaust emissions standards, finalized in April, 2014, the FTP standard for particulate emissions was reduced from its level under the Tier 2 standard (10.0 mg/mi) to a new value of 3.0 mg/mi.⁷¹

Developing rates to represent particulate emissions from gasoline-fueled vehicles under the Tier 3 standards involved scaling down rates representing vehicles under the Tier 2 standard to a level

- 1 that assumes a reasonable compliance margin with respect to the lower standard. More
- 2 specifically, we assumed that average FTP emissions for new light-duty vehicles (age 0-3 years)
- 3 would be 1.5 mg/mi in MY 2025, corresponding to a compliance margin of 50 percent, when the
- 4 new standard was fully phased in. This assumption is independent of engine and fuel-injection
- 5 technology. The reduced rates assume that additional controls are needed to meet the new
- 6 standard for vehicles employing gasoline direct-injection technologies, but not for the declining
- 7 fraction of vehicles in the market employing port-fuel-injection. The analysis above shows that
- 8 new PFI vehicles start at about this level, and thus can virtually meet the new standard without
- 9 modification.
- Additionally, as with the gaseous emissions, the regulatory useful life was increased from
- 11 120,000 to 150,000 miles. The concomitant assumption of increased durability was expressed
- 12 through a reduction in the assumed deterioration rate.
- We applied these modifications to the MOVES EmissionRateByAge table in a series of three
- 14 steps.

2.2.7.1 Apply Phase-in Assumptions

- 16 The first step was to apply the phase-in assumptions applicable to PM. The phase-in begins with
- model year 2017 and ends with model year 2021 for cars (LDV) and trucks (LDT). Fractions of
- 18 new vehicles meeting the new standard during the phase-in are shown in Table 2-12. The table
- 19 also shows simulated FTP composites during the phase-in. These projections were simply
- 20 calculated as averages of the Tier 2 and Tier 3 baselines, with the phase-in fractions used as
- 21 weights. Figure 2-29 shows how the simulated Tier 3 FTP composite rates compare against the
- base rates derived in Section 2.2.6.3, and to the rates used in MOVES2014.

232425

Table 2-12. Phase-in Fractions and simulated FTP composites projected for the introduction of the Tier 3 exhaust particulate-matter standard.

Model year	Fraction meeting Tier 3 standard	Simulated FTP composite (mg/mi)		
		Cars (LDV) Trucks (LD7		
2016	0.0	1.56	2.03	
2017	0.10	1.78	2.28	
2018	0.20	1.86	2.39	
2019	0.40	1.84	2.30	
2020	0.70	1.70	1.95	
2021+	1.00	1.50	1.50	

26

Figure 2-29 Simulated FTP composite rates for Tier 2 base line and Tier 3 phase-in

2.2.7.2 Apply Scaling Fractions

The second step was to apply the fractions to the emission rates for running and start emissions in the EC and nonECPM pollutant processes (11201, 11202, 11801, 11802). The fractions were applied uniformly to rates in all operating modes, for both cars and trucks.

Figure 2-30 shows an example of scaling, for a subset of non-elemental-carbon (nonECPM, 11801) rates for three model years, 2016, 2019 and 2021. Model year 2016 represents Tier 2 standards prior to the onset of the phase-in, 2021 shows fully phased-in Tier 3 standards, and 2019 shows an intermediate year during the phase-in period. In (a), the rates are shown on a linear scale to show the steepness and non-linearity of the trends against power, whereas in (b), rates are shown on a logarithmic scale to make clear that the multiplicative scaling is uniform across the power range. Although not pictured, note that rates for elemental-carbon (ECPM, 11201) show an identical scaling pattern. Note also, that for convenience, emissions in the plot are presented in mg/hr, whereas rates in the emissionRateByAge table are provided in g/hr.

The uniformity of the multiplicative scaling is also clear if the rates for a single model year are viewed against age for a set of operating modes, as shown in Figure 2-31. The plot shows rates for six modes of running operation, including idle (mode 1), with the remaining five modes spanning a range from low to moderate power. As previously described in 2.1.2.3, the deterioration trends are exponential (or log-linear).

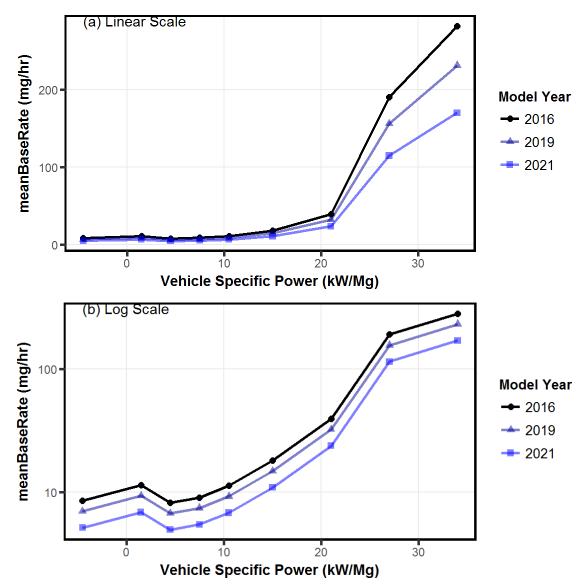


Figure 2-30 Non-elemental-carbon (nonECPM) running rates for cars vs. vehicle-specific power for three model years on (a) linear, and (b) logarithmic scales (NOTE: rates are presented for operating Modes 21-30, with each mode represented by VSP at its respective midpoint)

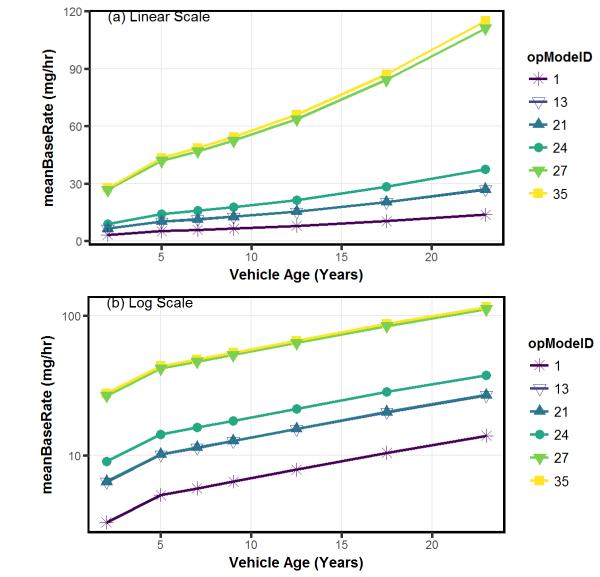


Figure 2-31 Non-elemental-carbon rates for trucks vs. Age for selected running operating modes in model year 2016, presented on (a) linear and (b) logarithmic scales

2.2.7.3 Simulate the Extended Useful Life

The third and final step was to reduce deterioration for vehicles under Tier 3, relative to those for Tier 2. As with the gaseous emissions (Section 1.5.5), the deterioration trends were scaled down such that the fleet is 1.25 times as old when a given emissions level is reached under the extended useful life as under the original useful life. The value of the fraction, 1.25, was calculated as 150,000 mi/120,000 mi, or 15/12.

The reduction in the deterioration trend is illustrated in Figure 2-32, which shows age trends for cold-start non-elemental-carbon before and during the phase-in period. The upper pane (a) shows the moderation of the exponential trend, whereas the lower pane (b) shows the reduction in the logarithmic slope starting in model year 2017. As before, these rates are presented in mg/start, as opposed to g/start in the database table. Note again that a similar chart for elemental carbon would show an identical pattern.

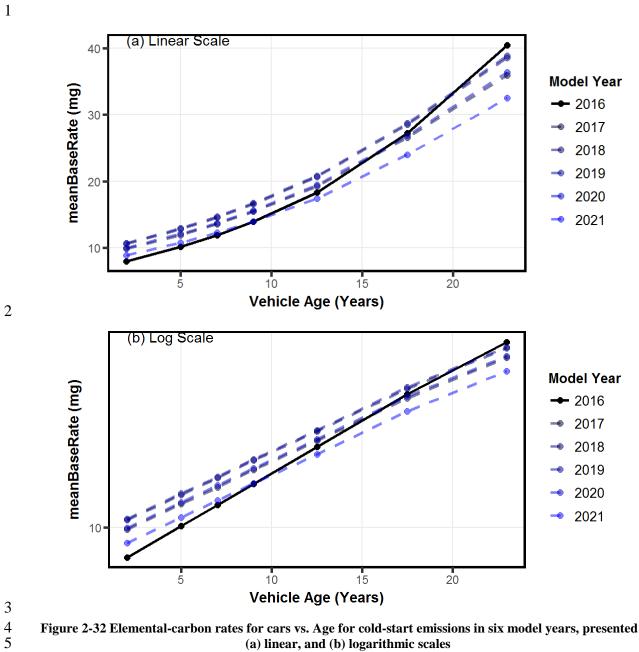


Figure 2-32 Elemental-carbon rates for cars vs. Age for cold-start emissions in six model years, presented on (a) linear, and (b) logarithmic scales

1 2.2.8 Incorporating the LEV-III Standard for Particulate Matter

- 2 The Tier 3 and LEV-III standards are harmonized with respect to the light-duty standard for
- 3 particulate matter through MY 2024, at which point, a 3.0 mg/mi FTP standard will be fully
- 4 phased in. However, after MY 2025, the LEV-III program goes further, enacting a further
- 5 phased-in reduction to a 1.0 mg/mi FTP standard. This reduction is incorporated into the
- 6 emissionRateByAgeLEV table applicable to California and Section 177 states.
- 7 The assumptions used to express the transition from rates at the 3.0 mg/mi level to the 1.0 mg/mi
- 8 level are shown in Table 2-13. We assume a linear phase-in over the three years. The
- 9 calculations assume a 50 percent compliance margin with respect to the 3.0 mg/mi standard in
- 10 MY 2024, transitioning to a 25 percent compliance margin in MY 2028.
- 11 These assumptions were modeled in MOVES by applying the reduction fractions shown in the
- right-most column in Table 2-13 to default MOVES rates for the LEV-III phase-in model years.
- 13 These fractions were applied uniformly to start and running emissions of EC and nonECPM, for
- 14 cars and trucks, across all operating modes.
- 15 The emissionRateByAgeLEV table including these rates is incorporated into the default MOVES
- database. Instructions for use of the applicable portions of this table in a MOVES run are
- available at https://www.epa.gov/moves/tools-develop-or-convert-moves-inputs. Section 1.6
- details how the emission rates representing California standards were developed for criteria
- 19 pollutants.

2021

22

Table 2-13. Phase-in assumptions and reduction fractions used to represent a transition to the 1.0 mg/mi PM standard under LEV-III

Model year	Phase-in fraction		FTP composite	Reduction fraction ¹			
	At 3.0 mg/mi	At 1.0 mg/mi	(mg/mi)				
2024	1.00	0.00	1.50	1.000			
2025	0.75	0.25	1.31	0.873			
2026	0.50	0.50	1.13	0.753			
2027	0.25	0.75	0.94	0.627			
2028+	0.00	1.00	0.75	0.500			
¹ Applied to de	¹ Applied to default rates in listed model years.						

23

3 Gaseous and Particulate Emissions from Light-Duty Diesel Vehicles (THC, CO, NO_x, PM)

4 In MOVES, emission rates are calculated for each operating mode. However, for the diesel-

- 5 fueled passenger cars (LDV) and light-duty trucks (LDT), we lack the necessary continuous or
- 6 "second-by-second" measurements to directly calculate emission rates for running emissions in
- 7 relation to vehicle-specific power.
- 8 Upon additional review, we concluded that the diesel rates developed for draft MOVES and
- 9 retained in MOVES2010 were not plausible in relation to corresponding rates for gasoline
- 10 vehicles. We concluded that these rates were not adequate to retain in MOVES2014. However,
- we also did not consider it a tenable option to release MOVES2014 without rates representing
- diesel vehicles.

1

2

- 13 Consequently, we decided to allow rates for light-duty gasoline vehicles to represent those for
- light-duty diesel vehicles. While not an exact parallel and not desirable from a technical
- standpoint, we considered it an acceptable solution, as vehicles running on both fuels would be
- 16 certified to similar standards. Also, as there are very few light duty diesel vehicles in the U.S.
- 17 fleet, their contribution to the inventory is very small.
- However, in contrast to the gasoline rates, we did not incorporate a difference in the base rates
- 19 attributable to Inspection and Maintenance. That is to say, values for meanBaseRate (non-I/M
- condition) were substituted for both the meanBaseRate and meanBaseRateIM. Note, however,
- 21 that for rates representing diesel emissions, the model does not apply the fuel adjustments
- 22 applied to gasoline emissions.⁶⁹
- The level of detail for the rate substitution is shown in Table 3-1.

Table 3-1. Level of detail for substitution of light-duty gasoline Rates onto light-duty diesel rates.

| Description | Description | Table 26

Parameter	Description	Identifier
Pollutant	THC	1
	CO	2
	NO_x	3
	EC-PM	112
	NonECPM	118
Process	Running Exhaust	1
	Start Exhaust	2
Regulatory Class	Passenger Car (LDV)	20
	Light Truck (LDT)	30
Model-year Group	All	1960-2031
Data Source	Replicated from corresponding	4910
	Rates for light-duty gasoline	

25

24

4 Crankcase Emissions

4.1 Background

1

2

14

- 3 In an internal combustion engine, the crankcase is the housing for the crankshaft. The enclosure
- 4 forms the largest cavity in the engine and is located below the cylinder block. During normal
- 5 operation, a small amount of unburned fuel and exhaust gases escape around the piston rings and
- 6 enter the crankcase, and are referred to as "blow-by." These unburned gases are a potential
- 7 source of vehicle emissions.
- 8 To alleviate this source of emissions, the Positive Crankcase Ventilation (PCV) system was
- 9 designed as a calibrated air leak, whereby the engine contains its crankcase combustion gases.
- 10 Instead of the gases venting to the atmosphere, they are fed back into the intake manifold where
- they reenter the combustion chamber as part of a fresh charge of air and fuel. A working PCV
- valve should prevent virtually all crankcase emissions from escaping to the atmosphere.
- 13 PCV valve systems have been mandated in all gasoline vehicles, since model year 1969.

4.2 Modeling Crankcase Emissions in MOVES

- 15 Crankcase emissions are calculated by chaining a crankcase emissions ratio to the calculators for
- start, running, and extended-idle processes. Crankcase emissions are calculated as a fraction of
- tailpipe exhaust emissions, which are equivalent to engine-out emissions for pre-1969 vehicles.
- 18 Crankcase emissions are calculated for selected pollutants, including THC, CO, and NO_x, and the
- elemental-carbon and non-elemental-carbon particulate fractions of PM_{2.5}. For each of these
- 20 pollutants, ratios are stored in the CrankcaseEmissionRatio table.
- 21 For vehicles with working PCV valves, we assume that emissions are zero. Based on EPA
- tampering surveys, MOVES assumes a failure rate of 4% for PCV valves. ⁷² Consequently, for
- fuelType/model-year combinations equipped with PCV valves, we assume a crankcase ratio of
- 24 0.04; i.e., emission fractions for the crankcase process are estimated as 4% of the emission
- fractions assumed for uncontrolled emissions. While this 4% estimate may be pessimistic for
- 26 new vehicles, and optimistic for old vehicles, available data does not support a more detailed
- 27 estimate. As older vehicles have higher overall emissions due to deterioration effects, use of the
- aggregate rates may understate the impacts of crankcase emissions.

4.3 Light-duty Gasoline Crankcase Emissions

- Wery little information is available on crankcase emissions, especially those for gasoline
- 31 vehicles. A literature review was conducted to identify available data sources for emission
- 32 fractions for gasoline vehicles (Table 4-1).

33 34

29

Table 4-1. Selected Sources of published data on hydrocarbon crankcase emissions from gasoline vehicles.

Authors	Year	Fuel	No. Vehicles	Estimate	Units
Heinen and Bennett ⁷³	1960	Gasoline	5	33	% of exhaust
Bowditch ⁷⁴	1968	Gasoline		70	% of exhaust
Montalvo and Hare ⁷⁵	1985	Gasoline	9	1.21-1.92	g/mi

- Based on these sources, we estimated emission fractions for model years without mandated PCV
- valves. In absence of better information, gasoline emission fractions are a reflection of diesel
- research, with the exception of the gasoline HC ratio. Given that the diesel vehicles studied are
- 39 largely heavy duty, and that most gasoline vehicles are light duty, there is a potential mismatch

between the data sources, which is unavoidable due to the paucity of data. As noted previously, model years with PCV valves were assigned emission fractions calculated as 4% of the fractions shown in Table 4-2.

4 5

Table 4-2 Emission fractions for vehicles without PCV systems (percent of exhaust emissions).

Pollutant	Gasoline (uncontrolled, pre-1969)	Gasoline (1969 and later)
НС	0.33	0.013
CO	0.013	0.00052
NO _x	0.001	0.00004
PM (all species)	0.20	0.008

The crankcase emission fractions for HC, CO and NO_x may underestimate emissions. These percentages of exhaust emissions are generally based on engine- out, uncontrolled exhaust, which is not estimated by MOVES. MOVES produces exhaust estimates based on a number of control technologies (such as catalytic converters). Uncontrolled exhaust in the 1970s was considerably higher than current tailpipe exhaust.

4.4 Light-duty Diesel Crankcase Emissions

After 2001, all light-duty vehicles, including diesels, are required to avoid venting crankcase emissions into the atmosphere. This requirement differs from turbocharged and supercharged heavy-duty diesel engines, which are allowed to vent crankcase emissions, as long as the crankcase emissions are included in the certification tests. As such, we modeled crankcase emissions from light-duty diesel emissions with two model-year groups, pre-2001, and post-2001. The values used for the pre-2001 are the same as the pre-2007 heavy-duty diesel fractions. For 2001 and later, we multiply the pre-2007 by 4% (our assumed PCV failure rate). These crankcase emission ratios are located in Table 4-3.

Table 4-3. Light-duty diesel crankcase emission fractions (% of exhaust emissions).

Pollutant	Light-duty diesel 1960-2000)	Light-duty diesel (2001-2060)	
НС	0.037	0.00148	
СО	0.013	0.00052	
NO_x	0.001	0.00004	
PM _{2.5} (all species)	0.2	0.008	

5 Nitrogen Oxide Composition

- 3 Nitrogen oxides (NO_x) are defined as NO + NO₂. In MOVES, NO_x includes NO, NO₂, and a
- 4 small amount of HONO. The rationale for including HONO in NO_x emissions is discussed in the
- beavy-duty report. The HONO/NO_x ratio is estimated as 0.8% of NO_x emissions
- 6 based a study that measured concentrations of NO_x and HONO from a highway tunnel in
- 7 Europe. ⁷⁸ The NO/NO_x and NO₂/NO_x fractions were developed from a report by Sierra
- 8 Research.⁶

5.1 Light-Duty Gasoline Vehicles

1011

9

1 2

- The NO_x and HONO fractions for light-duty gasoline vehicles are presented in Table 5-1. The
- 12 HONO fraction of NO_x, was subtracted from the original NO₂ fraction, because the HONO likely
- 13 interferes with the estimated NO₂ fraction when measured with a chemiluminescent analyzer, as
- discussed in the heavy-duty report.

15

Table 5-1. NO_x and HONO fractions for light-duty gasoline vehicles.

Model Year	Running			Start		
	NO	NO ₂	HONO	NO	NO_2	HONO
1960-1980	0.975	0.017	0.008	0.975	0.017	0.008
1981-1990	0.932	0.06	0.008	0.961	0.031	0.008
1991-1995	0.954	0.038	0.008	0.987	0.005	0.008
1996-2050	0.836	0.156	0.008	0.951	0.041	0.008

16

17

5.2 Motorcycles

- 18 The NO/NO₂ fractions for motorcycles were also developed by Sierra Research.⁶ The values are
- based on measurements on light-duty gasoline vehicles, but apply to different model year groups,
- 20 to correspond to similar exhaust emission control technologies. The NO_2 fractions reported by
- 21 Sierra Research were adjusted to account for the HONO measurements. Development of the
- NO_x, CO, HC, and PM emission rates for motorcycles, is documented in the same report.⁶

23

Table 5-2. NO_x and HONO fractions for motorcycles.

Model Year		Running			Start	
	NO	NO_2	HONO	NO	NO_2	HONO
1960-1980	0.975	0.017	0.008	0.975	0.017	0.008
1981-2000	0.932	0.06	0.008	0.961	0.031	0.008
2001-2005	0.939	0.053	0.008	0.97	0.022	0.008
2006-2009	0.947	0.045	0.008	0.978	0.014	0.008
2010-2060	0.954	0.038	0.008	0.987	0.005	0.008

24

5.3 Light-duty Diesel Vehicles

26

- 1 The NO_x and HONO fractions for light-duty diesel vehicles are the same as those for heavy-duty
- diesel. Discussion of the heavy-duty diesel fractions is presented in the corresponding report.⁷⁷
- 3 These values are presented in Table 5-3 for completeness.

5

Table 5-3. NO $_{x}$ and HONO fractions for Light-duty Vehicles.

Model Year	NO	NO_2	HONO
1960-2006	0.935	0.057	0.008
2007-2009	0.764	0.228	0.008
2010-2060	0.594	0.398	0.008

6 Appendix A. Revisions to the pre-2004 model year PM_{2.5} emission rates between MOVES2010b and MOVES2014

- 3 We corrected the PM_{2.5} light-duty gasoline emission rates between MOVES2014 and
- 4 MOVES2010 to account for the silicon contamination measured in the Kansas City study, using
- 5 our best available estimates. The PM_{2.5} exhaust emission rates for pre-2004 model year light-duty
- 6 vehicles are unchanged between MOVES2014 and the current version, MOVES201X. The PM_{2.5}
- 7 emission rates in MOVES2010 were based on a meta-analysis of multiple studies and programs.
- 8 The Kansas City study was used to estimate deterioration from the estimated zero-mileage
- 9 emission rates, to estimate the modal PM_{2.5} emission rates, and the PM_{2.5} temperature
- dependency. In MOVES201X, we maintain the temperature relationship, the relative
- deterioration, and the power trends developed for MOVES2010. However, we reduced the
- running PM_{2.5} emission rates across all age groups and operating modes by the values shown in
- 13 Table 2-6.

1

2

- 14 Table 2-6 contains the estimated contribution of silicon to the start (bag 1-bag 3) and the running
- 15 (bag 2) PM_{2.5} emissions measured in Kansas City. The silicone rubber contains silicon, oxygen,
- carbon, and hydrogen which contribute to the measured particulate and organic carbon mass. We
- estimated the contribution of the silicon to the PM_{2.5} emission rates by using the elemental
- silicon emission rates from the set of 102 tests analyzed for elements. Additionally, we estimated
- 19 that the silicone rubber contributed particulate mass equal to 4.075 times the measured silicon
- emission rates, as documented in the speciation profile analysis by Sonntag et al. (2013).⁶¹ We
- 21 applied these estimates to average silicon emission rates measured for each model year group,
- and for trucks and cars. The trucks have a higher silicon contribution which is expected due to
- 23 higher exhaust temperatures and larger exhaust tailpipes which expose more silicone rubber to
- 24 the hot exhaust. The updated emission rates in MOVES2014 and MOVES201X reflect both the
- reduction in total PM from the silicon in Table 2-6 and the revised EC/PM ratios in Table 2-5.

Table 6-1. Reductions to PM_{2.5} in MOVES2014 compared to MOVES2010b due to silicon contamination.

Stratum	Vehicle type	Model group	Start	Running
1	Truck	pre-1981	0%	35.3%
2		1981-1990	0%	25.3%
3		1991-1995	0%	34.5%
4		1996-2005	0%	19.1%
5	· Car	pre-1981	0%	14.6%
6		1981-1990	0%	3.5%
7		1991-1995	0%	6.1%
8		1996-2005	0%	8.5%

28

2627

7 References

2

1

¹ USEPA Mobile Source Emissions Modeling Workgroup. *EPA's New Generation Mobile Source Emissions Model: Initial Proposal and Issues*. EPA420-R-01-007. Office of Air and Radiation, Office of Research and Development, Region 4. April, 2001. (http://www.epa.gov/otaq/models/ngm/r01007.pdf).

² USEPA Office of Transportation and Air Quality. *Draft Design and Implementation Plan for EPA's Multi-Scale Motor Vehicle and Equipment Emission System (MOVES)*. EPA420-P-02-006. Assessment and Standards Division, Ann Arbor, MI. October, 2002. (http://www.epa.gov/otaq/models/ngm/p02006.pdf).

³ Computational Laboratory for Energy, Air, and Risk. *Methodology for Developing Modal Emission Rates for EPA's Multi-Scale Motor Vehicle and Equipment Emission System*. EPA420-R-02-027. Department of Civil Engineering, North Carolina State University, Raleigh, NC. October, 2002. (http://www.epa.gov/otaq/models/ngm/r02027.pdf).

⁴ USEPA Office of Transportation and Air Quality. *EPA's Onboard Emissions Analysis Shootout: Overview and Results*. EPA420-R-02-026. Assessment and Standards Division, Ann Arbor, MI. October, 2002. (http://www.epa.gov/otaq/models/ngm/r02026.pdf).

⁵ USEPA (2014). *MOVES2014 Software Design Reference Manual*. EPA-420-B-14-056. Ann Arbor, MI, Office of Transportation and Air Quality. US Environmental Protection Agency. December, 2014 http://www.epa.gov/otaq/models/moves/documents/420b14056.pdf).

⁶ USEPA (2012). *Use of Data from "Development of Emission Rates for the MOVES Model," Sierra Research, March 3, 2010.* EPA-420-R-12-022. Ann Arbor, MI, Office of Transportation and Air Quality. US Environmental Protection Agency. August, 2012. (https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100F1A5.pdf).

⁷ USEPA Office of Transportation and Air Quality. *Cars and Light Trucks: Vehicle Standards and Regulations*. http://www.epa.gov/otaq/standards.htm.

⁸ Calvert, J.G.; Heywood, J.B.; Sawyer, R.F.; Seinfeld, J.H. 1993. Achieving acceptable air quality: some reflections on controlling vehicle emissions. *Science*. 261:37-44.

⁹ Sawyer, R.F.; Harley, R.A.; Cadle, S.H.; Norbeck, J.M.; Slott, R.; Bravo, H.A. 2000. Mobile sources critical review: 1998 NARSTO assessment. *Atmospheric Environment*. 34: 2161-2181.

¹⁰ Harley, R.A.; Marr, L.C.; Lehner, J.K.; Giddings, S.N. 2005. Changes in motor vehicle emissions on diurnal to decadal time scales and effects on atmospheric composition. *Environ. Sci. Technol.* 39:5356-5362.

¹¹ Harley, R.A.; Hooper, D.S.; Kean, A.J.; Kirchstetter, T.W.; Hesson, J.M.; Balberan, N.T.; Stevenson, E.D.; Kendall, G.R. 2006. Effects of Reformulated Gasoline and Motor Vehicle Fleet Turnover on Emissions and Ambient Concentrations of Benzene. *Environ. Sci. Technol.* 40: 5084-5088.

¹² Bishop, G.A.; Stedman, D.H. 2008. A decade of on-road emissions measurements. *Environ. Sci. Technol.* 42:1651-1656.

¹³ Ban-Weiss, G.A.; McLaughlin, J.P.; Harley, R.A.; Lunden, M.M.; Kirchstetter, T.W.; Kean, A.J.; Strawa, A.W.; Stevenson, E.D.; Kendall, G.R. 2008. Long-Term Changes in Emissions of Nitrogen Oxides and Particulate Matter from On-Road Gasoline and Diesel Vehicles. *Atmospheric Environment*. 42: 220-232.

¹⁴ USEPA Office of Transportation and Air Quality. *Emission Adjustments for Temperature, Humidity, Air Conditioning, and Inspection and Maintenance for On-road Vehicles in MOVES2014*. EPA-420-R-14-012. Assessment and Standards Division, Ann Arbor, MI. December, 2014.

¹⁵ Wenzel, T. 2001. Reducing emissions from in-use vehicles: an evaluation of the Phoenix inspection and maintenance program using test results and independent emissions measurements. *Environmental Science & Policy*. 4:359-376.

- ¹⁷ USEPA Office of Transportation and Air Quality. *Evaporative Emissions from On-road Vehicles in MOVES2014*. EPA-420-R-14-014. Assessment and Standards Division, Ann Arbor, MI. September, 2014.
- ¹⁸ USEPA Office of Transportation and Air Quality. *Fuel Consumption Modeling of Conventional and Advanced Technology Vehicles in the Physical Emission Rate Estimator* (PERE). EPA420-P-05-001. Assessment and Standards Division, Ann Arbor, MI. February, 2005. (http://www.epa.gov/otaq/models/ngm/420p05001.pdf).
- ¹⁹ USEPA Office of Transportation and Air Quality. *Population and Activity of On-road Vehicles in MOVES2014: Draft Report*. EPA-420-D-15-001. Assessment and Standards Division, Ann Arbor, MI. July, 2015. (http://www.epa.gov/otaq/models/moves/moves-reports.htm).
- ²⁰ USEPA Office of Air and Radiation, Office of Transportation and Air Quality. *IM240 and Evap Technical Guidance*. EPA420-R-00-007. Transportation and Regional Programs Division, Ann Arbor, MI. April, 2000. (http://www.epa.gov/oms/regs/im/r00007.pdf). (page 106).
- ²¹ Heirigs, P.; Dulla, R.; Crawford, R.W. *Processing of IM240 Data for Use in MOVES*. SR007-05-02. Sierra Research, Inc., Sacramento, CA. May, 2007.
- ²² Singer, B.C.; Harley, R.A.; Littlejohn, D.; Ho, J.; Vo, T. 1998. Scaling of infrared remote sensor hydrocarbon measurements for motor vehicle emission inventory calculations. *Environ. Sci. Technol.* 32(21) 3241-3248.
- ²³ Bishop, G.A.; Stedman, D.H. *On-road Remote Sensing of Automobile Emissions in the Denver Area: Year 6, January 2007.* Department of Chemistry and Biochemistry, University of Denver, Denver, CO. June 2007.
- ²⁴ Kish, L. *Survey Sampling*. John Wiley & Sons, New York. 1965.
- ²⁵ Neter, J.; Kutner, M.H.; Nachtsheim, C.J.; Wasserman, W. *Applied Linear Statistical Models*. Irwin, Chicago. Fourth Edition. 1996.
- ²⁶ Barth, M.; An, F.; Younglove, T.; Scora, G.; Levine, C.; Ross, M.; Wenzel, T. *Development of a Comprehensive Modal Emissions Model: Final Report*. National Research Council, Transportation Research Board, National Cooperative Highway Research Program. NCHRP Project 25-11. April, 2000. (http://www.cert.ucr.edu/cmem/docs/NCHRP Final Report.pdf).
- ²⁷ McClement, D.; Dulla, R.G. *Identification of Non-I/M Vehicles in I/M Program Vehicle Emission Datasets*. Draft Report, Sierra Research, Sacramento, CA. October, 2007.
- ²⁸ Air Quality Group, Aerospace, Transportation and Advanced Systems Laboratory, Georgia Technical Research Institute. *Biennial Evaluation of the Emissions Reduction Effectiveness of the Atlanta Vehicle Inspection and Maintenance Program for 2003-2004*. Prepared for the Air Protection Branch, Environmental Protection Division, Georgia Department of Natural Resources, Atlanta. September, 2007.
- ²⁹ DeHart-Davis, L.; Corley, E.; Rodgers, M.O. 2002. Evaluating vehicle inspection/maintenance programs using on-road emissions data. *Evaluation Review*. 26(2) 111-146.
- ³⁰ Annual Certification Test Results & Data: Cars and Light Trucks. http://www.epa.gov/otaq/crttst.htm.
- ³¹ Engine and Vehicle Compliance System (VERIFY): http://www.epa.gov/otag/verify/index.htm.
- ³² USEPA, Office of Transportation and Air Quality. Mobile Source Observation Database (MSOD): User Guide and Reference. Assessment and Standards Division, Ann Arbor, MI. EPA420-B-08-017. December, 2008. (http://www.epa.gov/otaq/models/msod/420b08017.pdf).

¹⁶ USEPA Office of Transportation and Air Quality. *Greenhouse Gas and Energy Consumption Rates for On-road Vehicles: Updates for MOVES2014.* Assessment and Standards Division, Ann Arbor, MI. September, 2015. (http://www.epa.gov/otaq/models/moves/moves-reports.htm).

³³ USEPA Office of Transportation and Air Quality. *Emission Adjustments for Temperature, Humidity, Air Conditioning, and Inspection and Maintenance for On-road Vehicles in MOVES2014*. EPA-420-R-14-012. Assessment & Standards Division, Ann Arbor, MI. December, 2014. (http://www.epa.gov/otaq/models/moves/moves-reports.htm).

- ³⁴ Enns, P.; Brzezinski, D. *Comparison of Start Emissions in the LA92 and ST01 Test Cycles*. EPA420-R-01-025. (M6.STE.001), USEPA Office of Transportation and Air Quality, Ann Arbor, MI. April, 2001.
- ³⁵ Glover, E.; Carey, P. *Determination of Start Emissions as a Function of Mileage and Soak Time for 1981-1993 Model-year Light-Duty Vehicles*. EPA420-R-01-058 (M6.STE.003). USEPA Office of Transportation and Air Quality, Ann Arbor, MI. November, 2001.
- ³⁶ Stump, F.D.; Dropkin, D.L.; Tejada, S.B.; Loomis, C.; Pack, C. *Characterization of Emissions from Malfunctioning Vehicles Fueled with Oxygenated Gasoline-Ethanol (E-10) Fuel Part III.* EPA/600/R-01/053 (NTIS PB2004-106735). USEPA National Exposure research Laboratory (NERL). July, 2002.
- ³⁷ Whitney, K.A. *Collection of In-Use Mobile Source Emission Samples for Toxicity Testing*. 08.02602. Southwest Research Institute, San Antonio, Texas. October, 2000.
- ³⁸ Sabate, S. *Methodology for Calculating and Redefining Cold and Hot Start Emissions*. California Air Resources Board, El Monte, CA. March, 1996. *As cited in*: Glover, E.; Carey, P. *Determination of Start Emissions as a Function of Mileage and Soak Time for 1981-1993 Model-year Light-Duty Vehicles*. EPA420-R-01-058 (M6.STE.003). November, 2001 (Reference 15).
- ³⁹ USEPA Office of Transportation and Air Quality. *Sales of California Vehicles for 2011 Model Year and Beyond (Cross-Border Sales Policy)*. Memorandum CISD-11-06 (LDV/LDT/HD). Compliance and Innovative Strategies Division, Ann Arbor, MI. May 3, 2011. (http://iaspub.epa.gov/otaqpub/display_file.jsp?docid=24724&flag=1).
- ⁴⁰ USEPA Office of Transportation and Air Quality. Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards; Final Rule. *Federal Register*. Vol. 79, No. 81. April 28, 2014. Page 23417.
- ⁴¹ USEPA (2008). *Kansas City PM Characterization Study. Final Report*. EPA Contract No. GS 10F-0036KEPA420-R-08-009, Assessment and Standards Division Office of Transportation and Air Quality U.S. US EPA. Environmental Protection Agency Ann Arbor,. October 27, 2006, Revised April 2008a by EPA staff http://www.epa.gov/oms/emission-factors-research/420r08009.pdf
- ⁴² Nam E.; Fulper, C.; Warila, J.E.; Somers, J.; Michaels, H.; Baldauf, R.; Rykowski, R.; Scarbro, C. *Analysis of Particulate Matter Emissions from Light-Duty Vehicles in Kansas City*. EPA420-R-08-010. USEPA, Office of Transportation and Air Quality, Ann Arbor, MI; Office of Research and Development, Research Triangle Park, NC. April, 2008.
- ⁴³ Gibbs, R.E.; Wotzak, G.P.; Byer, S.M.; Kolak, N.P. *Sulfates and Particulate Emissions from In-Use Catalyst Vehicles. Regulated/Unregulated Emissions and Fuel Economy*. EPA-600/9-79-047. US Environmental Protection Agency, 1979.
- ⁴⁴ Hammerle, R.H.; Korniski, T.J.; Weir, J.E.; Cladek, E.; Gierczak, C.A.; Chase, R.E.; Hurley, R.G. *Effect of Mileage Accumulation on Particulate Emissions from Vehicles Using Gasoline with Methylcyclopentadienyl Manganese Tricarbonyl.* SAE920731. Society of Automotive Engineers. 1992.
- ⁴⁵ Whitney, K.A. *Collection of In-Use Mobile Source Emission Samples for Toxicity Testing*. SwRI 08.02602. Southwest Research Institute, San Antonio, TX. October, 2000.
- ⁴⁶ Cadle, S.H.; Nebel, G.J.; Williams, R.L. *Measurement of Unregulated Emissions from General Motors' Light-Duty Vehicles*. SAE790694. Society of Automotive Engineers. 1979.
- ⁴⁷ Urban, C.M.; Garbe, R.J. *Regulated and Unregulated Exhaust Emissions from Malfunctioning Automobiles*. SAE790696. Society of Automotive Engineers. 1979.

⁴⁸ Urban, C.M.; Garbe, R.J. *Exhaust Emissions from Malfunctioning Three-Way Catalyst Equipped Automobiles*. SAE800511. Society of Automotive Engineers. 1980.

- ⁴⁹ Lang, J.M.; Snow, L.; Carlson, R.; Black, F.; Zweidinger, R.; Tejeda, S. *Characterization of Particulate Emissions from In-Use Gasoline-Fueled Motor Vehicles*. Society of Automotive Engineers. SAE 811186. 1981.
- Volkswagen AG. *Unregulated Motor Vehicle Exhaust Emission Gas Components*. Volkswagen Aktien Gesellschaft, Forschung und Entwicklung [Research and Development], Wolfsburg, Germany. 1991.
- California Air Resources Board. *Particulate Exhaust Emissions: Gasoline Powered Vehicles*. Emissions Studies Section, El Monte, CA. Project No. 2R8618. 1986.
- ⁵² Cadle, S.H.; Mulawa, P.; Hunsanger, E.C.; Nelson, K.; Ragazzi, R.A.; Barrett, R.; Gallagher, G.L.; Lawson, D.R.; Knapp, K.T.; Snow, R. *Measurement of Exhaust Particulate Matter Emissions from In-use Light-duty Motor Vehicles in the Denver, Colorado Area*. CRC E-24-1. Coordinating Research Council, Alpharetta, GA. NTIS PB98-136401. March, 1998.
- Norbeck, J.M.; Durbin, T.D.; Turex, T.J. *Measurement of Primary Particulate Matter Emissions from Light-Duty Motor Vehicles*. 98-VE-RT2A-001-FR. University of California, College of Engineering, Center for Environmental Research and Technology, Riverside, CA. CRC E-24-2. Coordinating Research Council, Alpharetta, GA. NTIS PB99-151755. 1998.
- Whitney, K. *Measurement of Primary Exhaust Particulate Matter Emissions from Light-duty Motor Vehicles*. CRC E-24-3. Coordinating Research Council, Alpharetta, GA. 1998. NTIS PB99-121279. November, 1998.
- ⁵⁵ Chase, R.E.; Duszkiewicz, G.J.; Jensen, T.E.; Lewis, D.; Schlaps, E.J.; Weibel, A.T.; Cadle, S.; Mulawa, P. Particle mass emission rates from current-technology light duty gasoline vehicles. *J Air & Waste Manage. Assoc.* 2000: (50) 930-935.
- ⁵⁶ Southwest Research Institute. *VOC/PM Cold Temperature Characterization and Interior Climate Control emissions/Fuel Economy Impact.* SwRI 03.11382.04. San Antonio, TX. Prepared for USEPA, Office of Transportation and Air Quality, Ann Arbor, MI. October, 2005.
- Li, W.; Collins, J.F.; Norbeck, J.M.; Cocker, D.R.; Sawant, A. Assessment of Particulate Matter Emissions from a Sample of In-Use ULEV and SULEV Vehicles. Society of Automotive Engineers. SAE 2006-01-1076. 2006.
- ⁵⁸ U.S. Environmental Protection Agency. *Study of Particulate Matter Emissions from Motor Vehicles.* 1981.
- ⁵⁹ USEPA (2014). *Speciation of Total Organic Gas and Particulate Matter Emissions from On-road Vehicles in MOVES2014*. EPA-420-R-14-020. Ann Arbor, MI. October, 2014 http://www.epa.gov/otaq/models/moves/reports.htm).
- ⁶⁰ Fujita, E.M.; Campbell, D.E.; Zielinska, B. *Chemical Analysis of Lubrication Oil Samples from a Study to Characterize Exhaust Emissions from Light-Duty Gasoline Vehicles in the Kansas City Metropolitan Area*. Desert Research Institute, Division of Atmospheric Sciences, Reno, NV. CRCE-69a. Coordinating Research Council, Alpharetta, GA. December, 2006.
- ⁶¹ Sonntag, D. B., R. W. Baldauf, C. A. Yanca and C. R. Fulper (2013). Particulate matter speciation profiles for light-duty gasoline vehicles in the United States. *Journal of the Air & Waste Management Association* 64(5): 529-545. 10.1080/10962247.2013.870096.
- ⁶² USEPA (2016). *Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 Through 2016.* EPA-420-R-16-00.
- ⁶³ USEPA (2014). The Effects of ultra-Low Sulfur Gasoline on Emissions from Tier 2 Vehicles in the In-Use Fleet Final Report. EPA 420-R-14-002.
- ⁶⁴ USEPA (2013). *EPAct Fuel Effects Study Pilot Phases 1 and 2*. Memorandum to Docket EPA-HQ-OAR-2011-0135.

⁶⁵ USEPA (2013). Assessing the Effect of Five Gasoline Properties on Exhaust Emissions from Light-Duty Vehicles Certified to Tier 2 Standards, Analysis of Data from EPAct Phase 3. EPA-420-R-13-002.

⁶⁶ NREL (2014). Effect of Gasoline Properties on Exhaust Emissions from Tier 2 Light-Duty Vehicles – Final report: Phases 4,5, & 6, Subcontract Report. NREL/SR-5400-61099.

⁶⁷ California Air Resources Board (2015). *Technical Support Document: An Update on the Measurement of PM Emissions at LEV III Levels.*

⁶⁸ USEPA (2017). Tier 3 Certification Fuel Impacts Test Program,

⁶⁹ USEPA (2016). Fuel Effects on Exhaust Emissions from On-road Vehicles in MOVES2014 Final Report. EPA-420R-16-001

⁷⁰ USEPA (2016). *Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 Through 2016.* EPA-420-R-16-00.

⁷¹ Title 40: Code of Federal Regulations. Parts 79, 80, 85, et al. Control of Air Pollution From Motor Vehicle Emission and Fuel Standards; Final Rule.

⁷² US Environmental Protection Agency. *EPA Motor Vehicle Tampering Survey*. EPA 420-A-90-001. 1990.

⁷³ Bennet, P.A. et al. Reduction of Air Pollution by Control of Emissions from Automotive Crankscase. SAE Paper 142A, January 1960.

⁷⁴ Bowditch, F.W. *The Automobile and Air Pollution*. SAE Paper No. 680242. Presented at SAE Mid-Year Meeting, Milwaukee, WI. May, 1968.

⁷⁵ Montalvo and Hare, 1985. *Crankcase Emissions with disabled PCV systems* EPA 460/3-84-011. Southwest Research Inst., San Antonio, TX. Environmental Protection Agency, Emission Control Technology Div.

⁷⁶ Title 40: Code of Federal Regulations. Part 86- Protection of Environment. Control of Emissions from New and In-Use Highway Vehicles and Engines. 86.1810-01 Subpart S—General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles. General standards; increase in emissions; unsafe conditions; waivers.

⁷⁷ USEPA (2015). *Exhaust Emission Rates for Heavy-Duty On-road Vehicles in MOVES2014*. EPA-420-R-15-015a. Ann Arbor, MI, Assessment and Standards Division. Office of Transportation and Air Quality. US Environmental Protection Agency. November, 2015 https://www.epa.gov/moves/moves-technical-reports

⁷⁸ Kurtenbach, R., K. H. Becker, J. A. G. Gomes, J. Kleffmann, J. C. Lörzer, M. Spittler, P. Wiesen, R. Ackermann, A. Geyer and U. Platt (2001). Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel. *Atmospheric Environment* 35(20): 3385-3394. http://dx.doi.org/10.1016/S1352-2310(01)00138-8.