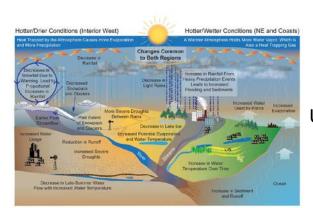


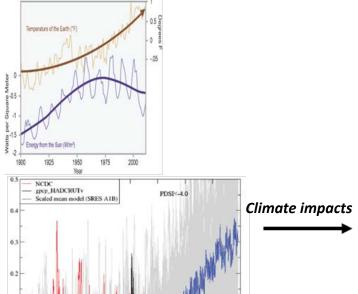
Water System Adaptation to Hydrological Changes

Module 1 Introduction to Water System Adaptation


Y. Jeffrey Yang, Ph. D.

U.S. Environmental Protection Agency

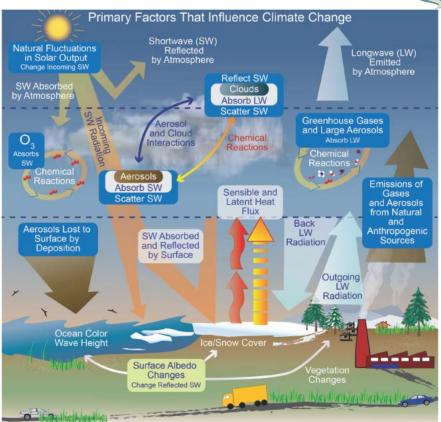
Audrey Levine, Ph.D.


University of California, Santa Cruz James A. Goodrich, Ph.D.

U.S. Environmental Protection Agency

Key Topics: Module 1

IPCC (2013)


- Course overview
- Learning objectives
- Format

Climate

Process

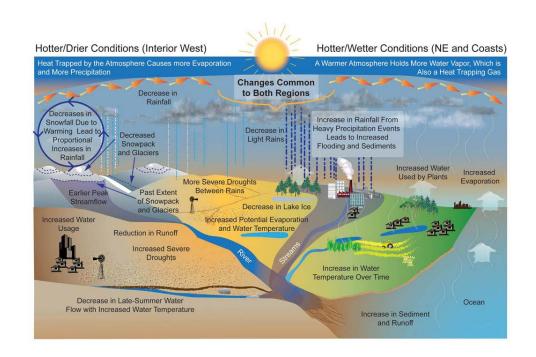
- Expectations
 - Participation
 - Assignments
 - Project
 - Feedback
- Topical preview
- Keys for success

Atmospheric and hydrologic responses

Water infrastructure condition, development/urbanization, and socio-economic patterns

Adaptation and feedback

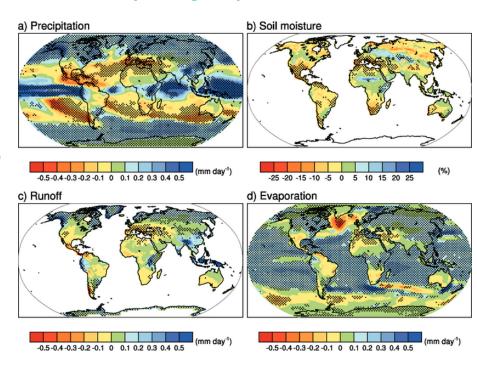
Course Roadmap



Case Studies to illustrate	Region-specific applications			
specific water system stressors and adaptation considerations Research and data needs (Modules 1-6)	Adaptation Principles: Definition and application to different scenarios Assignment 1 (Module 7)	Policy considerations: Examples of current policy frameworks. Opportunities and challenges for systematizing water system adaptation. Research and data needs for decision support Assignment 2 (Module 8)	Methods, models, and tools relevant to individual and combined effects from water system stressors Research and data needs Assignment 3 (Modules 9-14)	Knowledge about water system stressors Adaptation principles Governance Strengths and limitations of models Research directions

Water System Adaptation: Guiding Principles

- Develop framework for systematic and comprehensive analysis of the source, intensity, duration, and frequency of hydrologic disruptions at local, regional, and watershed scales
- Establish short-, medium-, and long-term goals, benchmarks, and milestones
- Evaluate and triage integrity, resilience, and security of water systems
- Define vulnerability to hydrologic threats and identify points-of-control
- Review literature and available decisionsupport tools
- Determine data and information needs and sources
- Develop actionable short-, medium-, and long-term adaptation plan



Learning Objectives

- Linkages between water systems, multiple stressors, and actionable adaptation plans
- Water system resilience under stressors that vary in intensity, duration, frequency, and uncertainty
- Constraints and opportunities related to regulatory policies and governance
- Capacity reserve and adaptive planning
- Methods, techniques, and models to examine watershed hydrology and develop water system engineering solutions

Multi-model mean changes in 4 principle hydrological parameters

https://www.ipcc.ch/publications and data/ar4/wg1/en/figure-10-12.html

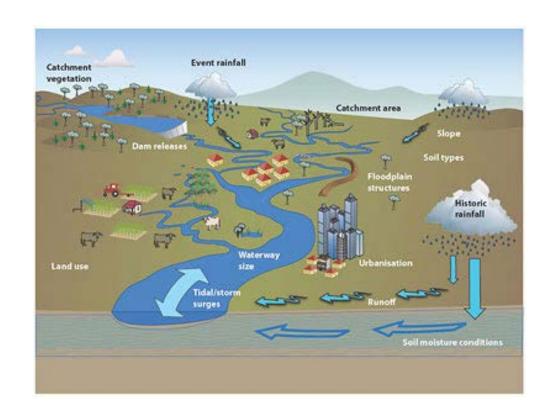
Course Format and Expectations

- Thematic presentations:
 - Case studies (modules 1-6)
 - Adaptation principles (module 7)
 - Policy considerations (module 8)
 - Models, methods and tools (modules 9-14)
- Course project
- Assignments
- Supplemental reading (optional)

Course Project

Scope

- Individual or group effort
- Topic and approach must be approved by course instructor
- Example topics
 - Local or regional adaptation case study
 - Literature review of specific topic
 - Data analysis and modeling
 - Other topic relevant to course content


Milestones

- Topic selection and approval (prior to module 3)
- Proposal (prior to module 6)
- Progress update (prior to module 14)
- Presentation (module 15)

Water System Stressors to Be Covered

- Intense storms
- Prolonged drought
- Land-use changes/Urbanization
- Storm-surge
- Sea level changes
- Salt water intrusion

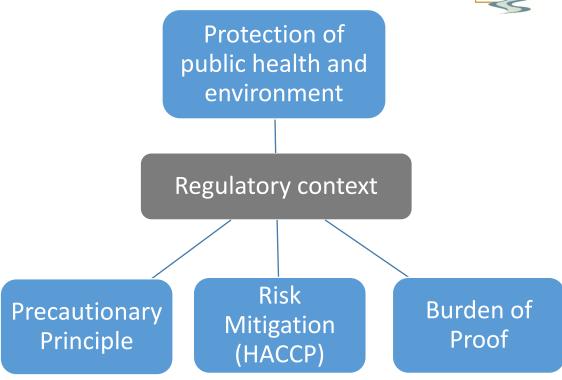
Case Studies

- Recurring floods in urban environments
- Prolonged drought conditions
- Urbanization and fragmented land-use planning
- Coastal infrastructure vulnerabilities
- Multiple concurrent threats

Water System Adaptation Goals

- Public health protection and emergency response
- Water system integrity
 - Infrastructure resilience to:
 - Sewer overflows
 - Water main breaks
 - Water use variability
 - Continuity of flow
- Water quality management
 - Monitoring
 - Upstream controls
 - Treatment system reliability and multiple barriers

Risk Assessment/Risk Management of Water Systems

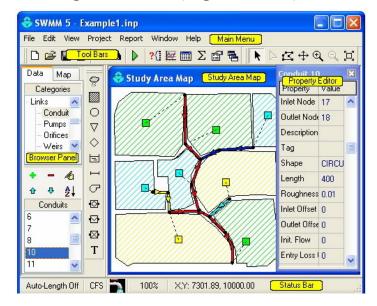

- Engineered water systems
 - Provisioning water
 - Drinking water
 - Irrigation
 - Industrial and commercial water use
 - Collection, treatment, and reuse
 - Wastewater
 - Storm water
 - Storage
 - Surface storage
 - Managed underground storage
- Ecosystem protection and enhancement
- Managing chemicals and wastes to protect public health and the environment

Regulatory Philosophies

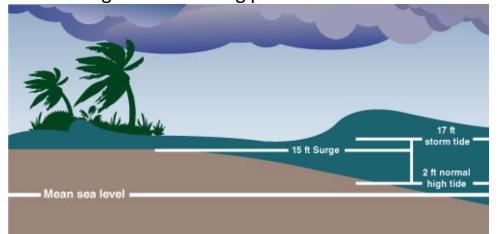
- Data requirements
- Baseline conditions
- Control points
 - Source/Upstream
 - Multiple Barriers
 - Critical Points
 - Point-of-use
- Enforcement

Risk Management Framework Example: Hazard Analysis and Critical Control Points (HACCP)

- Systematic review of physical, chemical, and biological threats/hazards
- Seven Principles
 - Hazard Identification and preventive measures
 - Identify Critical Control Points (CCP)
 - Establish Critical Limits
 - Establish Monitoring system for each CCP
 - Establish Corrective Actions
 - Documentation and record keeping
 - Verification/validation

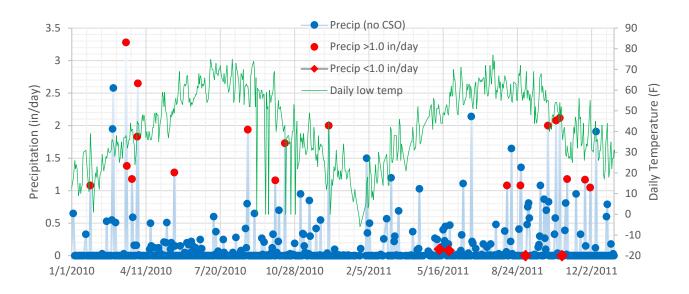


Models

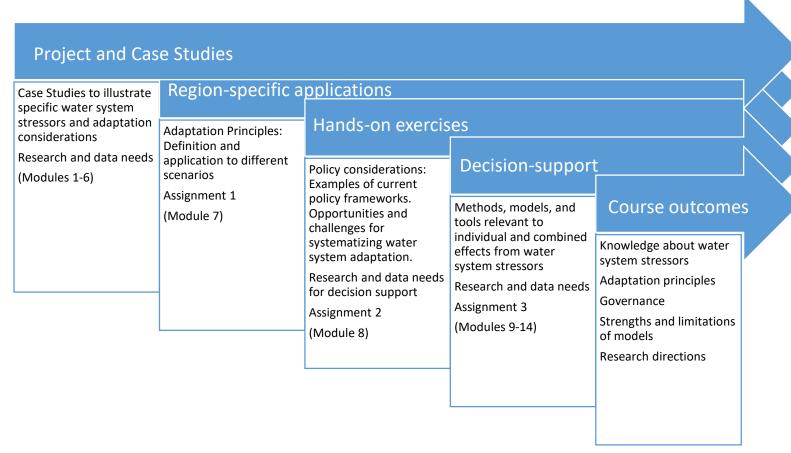


- Watershed Hydrology
 - Storm water
 - Storm surge
 - Sea level rise
 - Drought
- Water quality
 - Surface water
 - Groundwater
 - Salt water intrusion
- Water infrastructure
 - Integrity
 - Quality
- Process engineering

Design software (e.g., SWMM)


Storm surge and modeling platforms

Data and Information Needs


- Scale
 - Temporal (frequency)
 - Spatial (specific locations)
- Baseline (historic data availability, statistics)
- Parameters
 - Water quantity and availability
 - Water quality

Looking Ahead to the Next Module.....

- Identify locally-relevant climate stressors
- Initial scoping of project topic
- Review background resources

