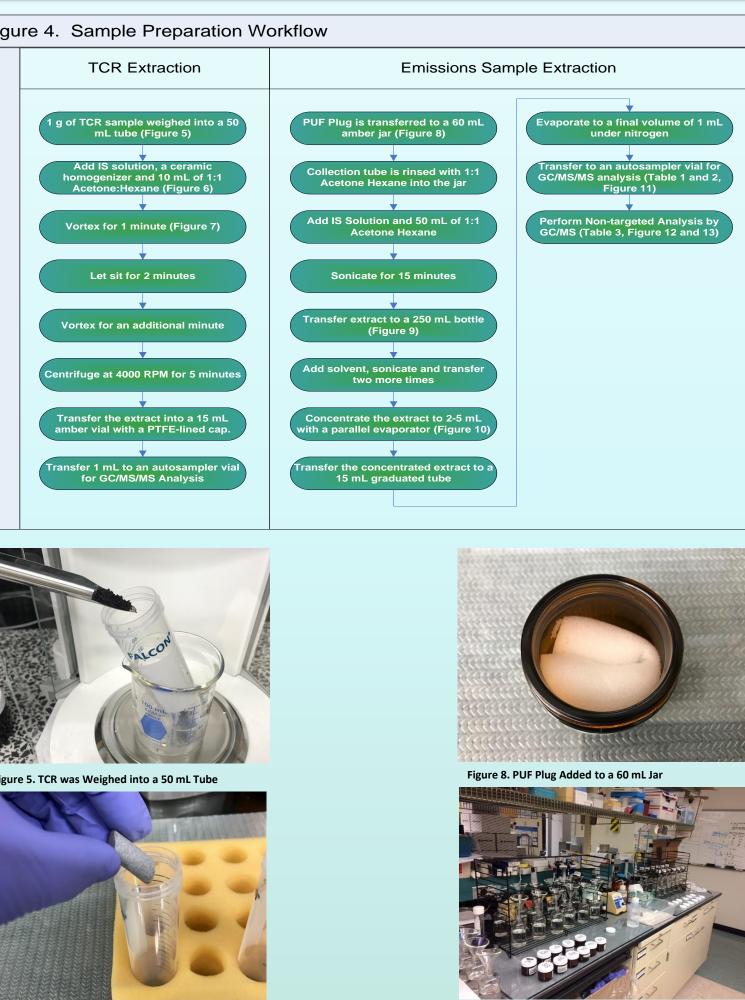


Characterization of Semi-Volatile Organic Chemicals from Tire Crumb Rubber Matthew S. Clifton¹, Dawn Mills², Xiaoyu Liu³, Kent Thomas¹

¹U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Research Triangle Park, NC ²National Student Services Contractor administered by Oak Ridge Associated Universities to U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Research Triangle Park, NC ³U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Research Triangle Park, NC

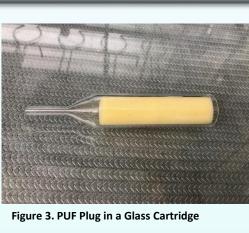
INTRODUCTION

- Recycled tire crumb rubber (TCR) is often used as infill material in synthetic turf playing fields as well as some playgrounds.
- Concerns have been raised about the safety of this material and a multi-agency Federal Research Action Plan on Recycled Tire Crumb Used on Playing Fields and Playgrounds was developed to investigate key factors that could impact the environment and human health
- Here we present work done to characterize semi-volatile organic compounds (SVOCs) from direct solvent extraction of TCR and airborne emissions experiments.
- A wide range of SVOCs (including PAHs, phthalates, and chemicals related to rubber manufacturing) were selected for targeted analysis.
- Solvent selection, extraction techniques, and instrument parameters were investigated in order to better understand the TCR material and to develop the methods and appropriate QAQC required for sample analysis.



GENERAL APPROACH

- TCR samples were collected from nine tire recycling plants and 40 synthetic turf fields across the U.S. and were divided into subsamples for characterization experiments (Figure 1).
- Emissions experiments were conducted at 25°C, 46 % Relative Humidity (RH) and 1 h⁻¹ air change (ACH) rate, and 60°C, 6.6 % RH, 1 h⁻¹ ACH in dynamic emission micro chambers (Figure 2)
- TCR and emissions samples collected on PUF (Figure 3) were extracted with 1:1 acetone:hexane and prepared for analysis (Figure 4).
- Data were acquired for all samples using GC/MS/MS in MRM mode with a calibration range of 0.1-500 pg/ μ L. MQLs, which were derived based on accuracy of standards compared to the calibration curves, ranged from 0.1-10 pg/ μ L.
- Non-targeted analysis was also performed by acquiring data by GCMS in scan mode (50-550 m/z) and then deconvoluting and library matching the spectra to tentatively identify components.
- Data obtained from the SVOC analyses will be used in conjunction with the other analyses that were conducted as part of the Federal Research Action Plan to identify key TCR chemical constituents, aid exposure assessment, and inform future studies related to TCR exposure.



SAMPLE COLLECTION

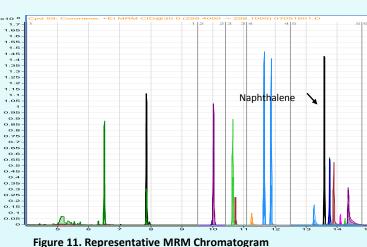
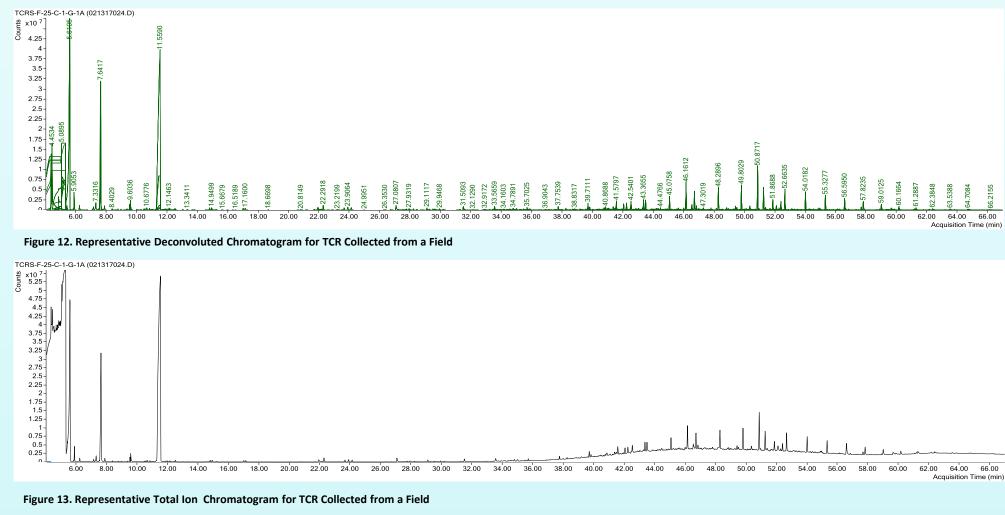

SAMPLE PREPARATION

Figure 10. Extracts Concentrated with a Parallel Evaporate


Time egment	Compound
	Cyclohexaneamine
1	Analine
1	n-Butylbenzene Naphthalene d8
2	Naphthalene
3	Benzothiazole
3	Cyclohexylisothiocyanate
4	Resorcinol 2-Methylnaphthalene
4	1-Methylnaphthalene
5	Dicyclohexamine
5 5	Dimethyl phthalate
5	Acenaphthalene d8 Acenaphthalene
5	Phthalimide
5	Acenaphthene d10
5	Acenaphthene 2,6-Di-tert-butyl-p-cresol
5	N,N-Dicyclohexylmethylamine
6	Diethyl phthalate d4
6	Diethyl phthalate
6 6	n-Hexadecane Fluorene d10
6	Fluorene
6	4-tert-Octylphenol
7	2-Bromomethylnaphthalene
7 8	2-Hydroxybenzothiazole Dibenzothiophene d8
8	Dibenzothiophene
8	Phenanthrene d10
8	Phenanthrene
8 9	Anthracene Diisobutyl phthalate
9	3-Methylphenanthrene
9	2-Methylphenanthrene
9	1-Methylphenanthrene
9 10	Dibutyl phthalate 2-Mercaptobenzothiazole
10	Fluoranthene d10
11	Fluoranthene
11 11	Pyrene d10
11	Pyrene Di-N-hexylphthalate (2)13C2
12	Benzyl butyl phthalate d4
12	Benzyl butyl phthalate
13 13	bis(2-Ethylhexyl) adipate Benz(a)anthracene d12
13	Benz(a)anthracene
13	Chrysene d12
13	Chrysene
13 13	Bis-2-ethylhexyl phthalate d4 Bis-2-ethylhexyl phthalate
13	1-Hydroxypyrene
14	Di-n-octyl phthalate
15	Benzo(b)fluoranthene d12
15 15	Benzo(b)fluoranthene Benzo(k)fluoranthene d12
15	Benzo(k)fluoranthene
15	Benzo(e)pyrene d12
15 15	Benzo(e)pyrene Benzo(a)pyrene d12
15	Benzo(a)pyrene
15	Perylene d12
16	Bis(2,2,6,6-tetramethyl-4piperidyl) sebecate
16 16	Indeno[1,2,3-cd]pyrene d12
16	Dibenz(a,h)anthracene d14 Indeno(1,2,3-cd)pyrene
16	Dibenz(a,h)anthracene
16	Benzo(g,h,i)perylene d12
16 17	Benzo(g,h,i)perylene Coronene
able 2.	Target Analytes and Transitions Monito

SAMPLE ANALYSIS PARAMETERS

Parameter	Value
GC System	Agilent 7890 Gas chromatograph
Injector	Capillary injector in splitless mode Pulsed splitless at 25 psi for 0.5 min, then split at 50 mL/min at 1 min. Temperature: 250°C Liner: Single gooseneck glass, deactivated Injection volume: 1 μL
Column	Agilent VF-5ms, 30 M x 0.25 mm x 0.25 μm, Column flow: 1.2 mL/min
Temperature Program	50° C for 2 min to 325° C at 10° C/min, hold 5 min.
Detector	Agilent 7010 Triple Quadrupole Mode: Electron Impact (EI) operating in MRM/Scan mode Electron Multiplier Voltage by Gain Curve Transfer Line: 300º
Table 1. GC/MS/N	IS Conditions

				Prod1		Prod				Prod3
Class	RT	Pre1	Prod 1	CE	Pre2	2	Prod2 CE	Pre3	Prod 3	CE
TCR	4.471	69.8	43.1	15	99.8	56	10			
TCR	6.521	92.7	66.1	15	65	39.1	15			
TCR	7.858	90.5	65.1	20	134	91.2	25			
PAH	9.956	136	108.1	10	136	84.1	30			
PAH	10.003	127.9	102.1	20	127.9	78.1	20			
TCR	10.62	135	82.1	30	135	108	20			
TCR	10.713	81.9	67	10	140.6	55.1	25			
TCR	11.241	109.8	82.1	15	109.8	69	20			
PAH	11.638	142.3	141.2	20	142.3	115.1	45	114.7	89.1	20
PAH	11.863	142.3	141.2	20	142.3	115.1	45	114.7	89.1	20
TCR	13.229	137.5	56.1	10	137.5	83.1	15			
Phthalate	13.584	163	77	30	163	135	15			
PAH	13.712	159.9	158.1	20	159.9	132.1	20			
PAH	13.743	151.9	126.1	30	151.9	102.1	30			
TCR	13.889	146.8	103.1	10	146.8	76.1	35			
PAH	14.092	164.1	162.1	30	162.1	160.1	15 30			
PAH TCR	14.169 14.241	152.1 144.5	126.1 105.1	30 15	152.1 144.5	102.1 129.1	20			
TCR	14.241	144.5	70.1	10	144.5	55.1	20			
Phthalate	15.252	151.5	69.1	50	151.5	97.1	30			
Phthalate	15.252	155	65	30	153	97.1	20			
TCR	15.322	85.1	43.1	10	98.9	57.1	10			
PAH	15.32	176	45.1	20	175	172.1	50			
PAH	15.401	166.1	165.1	15	165.1	164.1	15			
TCR	15.401	106.8	77.1	20	134.3	104.1	15			
PAH	16.29	140.6	115.1	20	219.8	141.1	10			
BT	16.396	150.7	96.1	25	150.7	123.1	20			
BT	17.34	191.5	146.1	50	191.5	160.1	30			
BT	17.385	183.4	139.1	25	183.4	152.1	50			
PAH	17.622	188.3	160.2	40	188.3	186.3	30			
PAH	17.678	177.9	152.1	25	176.1	150.1	25			
PAH	17.8	177.9	152.1	25	176.1	150.1	25			
Phthalate	18.249	149	65	25	149	93	15			
PAH	18.843	192.2	191.2	20	188.7	163.1	40	192.2	165.1	45
PAH	18.906	188.7	163.1	40	192.2	191.2	20	192.2	165.1	45
PAH	19.153	188.7	163.1	40	192.2	191.2	20	192.2	165.1	45
Phthalate	19.212	149	65	30	149	93	20			
TCR	19.45	166.5	123	10	166.5	109	30			
PAH	20.467	211.9	210.2	20	211.9	208.1	20			
PAH	20.51	202.1	200.1	30	202.1	152.1	30			
PAH	20.994	211.9	210.2	20	211.9	208.1	20			
PAH	21.036	201.1	200.1	15	200.1	174.1	30			
Phthalate	22.647	153	66	25	153	95.1	20			
Phthalate	22.756	153	69.1	25	153	97.1	5			
Phthalate	22.77	149	65	25	91	65	15			
Phthalate	23.017	147	55.1	25	111	55.1	15			
PAH	23.858	240.2	236.2	50	118.1	116.1	15			
PAH	23.911	228.1	226.2	30	114	101.1	10			
PAH	23.929	240.2	236.2	50	118.1	116.1	15			
PAH	23.989	228.1	226.2	30	114	101.1	10			
Phthalate	24.165	153	69.1	25	153	97.1	20			
Phthalate	24.184	149	65	30	149	93	20			
PAH	24.195	217.5	189.1	40	188.5	163.1	40			
Phthalate	25.65	149	65	30	149	93	20			
PAH	26.243	263.9	260.2	50	132.2	118.1	10			
PAH	26.297	126.1	113.1	10	252.1	250.2	35			
PAH	26.311	263.9	260.2	50	132.2	118.1	10			
PAH	26.355	252.1	250.2	35	126.1	113.1	10			
PAH	26.84	264	260.2	40	132.2	118.1	15			
PAH	26.86	252	250.2	50	125	112	20			
PAH	26.907	264	260.2	40	132.2	118.1	15			
PAH	26.959	252.1	250.1	35	125	124.2	10			
PAH	27.08	264	260.1	40	130.1	116.1	15			
TCR	28.153	123.6	107.1	10	97.6	42.1	20			
PAH	28.988	288	284.2	50	288	286.2	40			
РАН	29.022	288	284.2	50 10	288	286.2	40			
РАН	29.03	138.1	137.2	10	137	136.1	15			
РАН	29.075	138.1	137.2	10	125	124.2	10			
PAH PAH	29.43	288	284.2	50	288	286.2	20			
ГАП	29.473	276.1	274.1 298.1	45 30	138 299.4	125.1 298.1	15 30			
PAH	32.449	299.4								

- effectiveness without solvating the rubber itself.
- used due to the lack of a suitable TCR surrogate.

- analytical range of the GC/MS/MS system (0.1-500 ng/mL)
- quantification.
- stainless steel vessel by purging with carrier grade nitrogen.

- emissions
- exposure assessment

Parameter	Value
GC System	Agilent 6890 Gas chromatograph
Injector	Capillary injector in splitless mode, Split at 50 mL/min at 0.75 min.
	Temperature: 250ºC
	Liner: Single gooseneck glass, deactivated
	Injection volume: 1 μL
Column	Restek RTX-5 Sil MS, 60 M x 0.25 mm x 0.25 μm,
	Column flow: 1.0 mL/min
Temperature	40º C for 2 min to 340º C at 5º C/min, hold 5 min.
Program	
Detector	Agilent 5973 MSD, Transfer Line: 300 ^o
	Mode: Electron Impact (EI) operating in Scan mode
	Scan Range – 50-550 m/z
	Threshold = 1000
	Scan rate – 1.52 Scans/s
	Electron Multiplier - Tune + 400V

Table 3. GC/MS Conditions for Non-Targeted Analy

DISCUSSION

• Several solvent systems were evaluated and 1:1 Acetone Hexane was selected based on it's

• For TCR extraction, a composite TCR sample was prepared and was used as a reference sample to be prepared with all sample batches along with reagent blanks and spikes. The reference sample was

• For Emissions samples, matrix blanks and spikes and a recovery spike were used for QAQC samples. • Twenty-one isotopically labelled analogs were used as internal and surrogate standards.

• TCR extracts were diluted 1/10 and 1/100 following sample extraction in order to stay within the

• Several compounds, primarily amines and hydroxy PAHs, required LC/MS analysis for accurate

• Preliminary work indicated that PUF and other media need to be solvent cleaned and dried in a

• Tire crumb rubber is a complex matrix requiring careful choices of solvents and analytical approaches • Extractions result in a complex mixture of SVOCs requiring substantial data processing • Targeted analyte provide valuable information on tire crumb chemical constituents and potential

Further non-targeted assessment is required to fully elucidate chemical mixtures relevant for

Notice: Although this work was reviewed and approved by EPA for publication, it may not necessarily reflect official Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation by EPA for use.