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Introduction

 In order to address greater numbers of chemicals 
we collect in vitro, high throughput toxicokinetic 
(HTTK) data

 The goal of HTTK is to provide a human dose 
context for in vitro concentrations from HTS

• This allows direct comparisons with exposure

 A key application of HTTK has been reverse 
dosimetry

• Allows in vitro – in vivo extrapolation (What 
dose causes a bioactive concentration?)

• Allows exposure reconstruction (What dose is 
consistent with a biomarker?)
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need for TK data using in vitro methods

The Need for In Vitro 
Toxicokinetics
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High Throughput Toxicokinetics 
(HTTK)

 In vitro plasma protein 
binding and metabolic 
clearance assays allow 
approximate hepatic and 
renal clearances to be 
calculated

 At steady state this allows 
conversion from 
concentration to 
administered dose

 100% bioavailability 
assumed

Jamei et al. (2009)
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 Can calculate predicted steady-state concentration (Css) 
for a 1 mg/kg/day dose and multiply to get concentrations 
for other doses

Slope = Css for 1 mg/kg/day

Wetmore et al. (2012)

Steady-State is Linear with Dose
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HTTK Allows Steady-State 
In Vitro-In Vivo Extrapolation (IVIVE)
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 Swap the axes (this is the “reverse” part of reverse dosimetry)
 Can divide bioactive concentration by Css for for a 1 mg/kg/day dose to get oral equivalent dose

Slope = mg/kg/day per Css
1 mg/kg/day

Wetmore et al. (2012)
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Integrated Bioactivity:Exposure Ratio
(Wetmore et al. 2012, 2014, 2015)

IBER =
Bioactive Dose

Estimated exposure

(figure adapted from Wetmore et al. 2012)

IBER <=1 : Exposure 
potentially high 
enough to cause 
bioactivity

IBER >> 1: Exposure 
less likely to be high 
enough to cause 
bioactivity

Slide from Caroline Ring
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In vivo Predictive Ability and 
Domain of  Applicability

 In drug development, HTTK methods estimate therapeutic doses for 
clinical studies – predicted concentrations are typically on the order of 
values measured in clinical trials (Wang, 2010)

 For environmental compounds, there will be no clinical trials 

 Uncertainty must be well characterized ideally with rigorous statistical 
methodology
 We will use direct comparison to in vivo data in order to get an 

empirical estimate of our uncertainty
 Any approximations, omissions, or mistakes should work to increase 

the estimated uncertainty when evaluated systematically across 
chemicals
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Using in vivo Data to Evaluate 
HTTK

Wambaugh et al. (2015)

• When we compare the 
Css predicted from in 
vitro HTTK with in vivo 
Css values determined 
from the literature we 
find limited correlation 
(R2 ~0.34)

• The dashed line 
indicates the identity 
(perfect predictor) line: 
• Over-predict for 65
• Under-predict for 

22
• The white lines indicate 

the discrepancy 
between measured and 
predicted values (the 
residual)



Office of Research and Development11 of 17

Toxicokinetic Triage

Office of Research and Development30 of 45 

 Through comparison to in 
vivo data, a cross-
validated (random forest) 
predictor of success or 
failure of HTTK has been 
constructed

 Add categories for 
chemicals that do not 
reach steady-state or for 
which plasma binding 
assay fails

 All chemicals can be 
placed into one of seven 
confidence categories

Wambaugh et al. (2015)
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A General Physiologically-based 
Toxicokinetic (PBTK) Model

• Some tissues (e.g. arterial blood) are simple 
compartments, while others (e.g. kidney) are 
compound compartments consisting of separate 
blood and tissue sections with constant partitioning 
(i.e., tissue specific partition coefficients)

• Exposures are absorbed from reservoirs (gut lumen)
• Some specific tissues (lung, kidney, gut, and liver) are 

modeled explicitly, others (e.g. fat, brain, bones) are 
lumped into the “Rest of Body” compartment.

• Blood flows move the chemical throughout the body. 
The total blood flow to all tissues equals the cardiac 
output.

• The only ways chemicals “leaves” the body are 
through metabolism (change into a metabolite) in the 
liver or excretion by glomerular filtration into the 
proximal tubules of the kidney (which filter into the 
lumen of the kidney). 
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Evaluating In Vitro PBTK 
Predictions with In Vivo Data

 PBTK predictions for 
the AUC (time 
integrated plasma 
concentration or Area 
Under the Curve)

 Oral and iv studies for 
26 ToxCast compounds

• Collaboration with 
NHEERL (Mike Hughes 
and Jane Ellen Simmons)

• Additional work by 
Research Triangle 
Institute (Tim Fennell)

 Can estimate
• Fraction absorbed
• Absorption Rate
• Elimination Rate
• Volume of Distribution

13
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 PBTK predictions for 
the AUC (time 
integrated plasma 
concentration or Area 
Under the Curve)

 Oral and iv studies for 
26 ToxCast compounds

• Collaboration with 
NHEERL (Mike Hughes 
and Jane Ellen Simmons)

• Additional work by 
Research Triangle 
Institute (Tim Fennell)

 Can estimate
• Fraction absorbed
• Absorption Rate
• Elimination Rate
• Volume of DistributionCyprotex is now measuring bioavailability 

(CACO2) for all HTTK chemicals

Evaluating In Vitro PBTK 
Predictions with In Vivo Data
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httk: An Up-to-Date Tool

https://cran.r-project.org/web/packages/httk/
Can access this from the R GUI: “Packages” then “Install Packages”

Ongoing refinements:
High log P, ionization 
(Pearce et al., in preparation)

 “httk” R Package for reverse dosimetry and PBTK
 543 Chemicals to date
 100’s of additional chemicals being studied
 Pearce et al. package documentation manuscript accepted at 

Journal of Statistical Software

Inhaled Gas

Qliver

Qgut

Qgut

Kidney Blood

Gut Blood
Gut Lumen

QGFR
Kidney Tissue

Liver Blood
Liver Tissue

Qrest

Lung Blood
Lung Tissue Qcardiac

Qmetab

Body Blood

Rest of Body

Qkidney

Arterial  BloodVe
no

us
  B

lo
od

Old versions are archived

https://cran.r-project.org/web/packages/httk/
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ToxCast-derived 
Receptor 
Bioactivity 
Converted to 
mg/kg/day with 
HTTK

ExpoCast
Exposure 
Predictions

December, 2014 Panel:
“Scientific Issues Associated with Integrated Endocrine Bioactivity and Exposure-Based 
Prioritization and Screening“

ToxCast Chemicals

Application to High 
Throughput Risk Prioritization

Near Field
Far Field

mg/kg BW/day

DOCKET NUMBER:
EPA–HQ–OPP–2014–0614 

More Plausible Biologically Active Exposures
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Summary

 Toxicokinetics (TK) provides a bridge between HTS and HTE by predicting 
tissue concentrations due to exposure 

 HTTK methods developed for pharmaceuticals have been adapted to 
environmental testing

 A primary application of HTTK is “Reverse Dosimetry” or RTK
• Can infer daily doses that produce plasma concentrations equivalent 

to the bioactive concentrations, but:
 We must consider domain of applicability

• Collected new PK data from in vivo studies (EPA/NHEERL and Research Triangle Institute)
• Organizing data from larger, systematic studies (e.g., National Toxicology Program) into 

computable format

 New R package “httk” freely available on CRAN allows statistical analyses
• Analysis has been submitted
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