

Computer Simulation of Developmental Processes and Toxicities

Thomas B. Knudsen, PhD Developmental Systems Biologist US EPA, National Center for Computational Toxicology Chemical Safety for Sustainability Research Program Virtual Tissue Models (VTM) project

ual Tissue Models (VTM) proj <u>knudsen.thomas@epa.gov</u> ORCID 0000-0002-5036-596x

SOT symposium: Novel In Vitro and In Silico Platforms for Modeling Developmental and Reproductive Toxicity [ITS]

March 15, 2017 Baltimore MD, #3076

DISCLAIMER: The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the US EPA

FUNDING:

US EPA/ORD Chemical Safety for Sustainability (CSS) Research Program Contracts GS-35F-4550G (ORD) and 261D0054 (NCCT) with Leidos EPA/ORD/NCCT contract EP-D-13-055 with Stemina Biomarker Discovery

DISCLAIMER: The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

CONFLICTS OF INTEREST: none to disclose.

Prenatal Developmental Toxicity

- Developmental and Reproductive Toxicity testing (DART) is important for assessing hazards of drug/chemical exposure to formative processes during early life-stages.
- Prenatal testing (OECD TG 414) entails exposing pregnant rats/rabbits during organogenesis and evaluating adverse outcomes to fetal growth and development.
- Traditional test methods lack throughput and mechanistic support needed for chemicals management under TSCA reform.
- A compendium of *in vitro* data from ToxCast/Tox21 high-throughput screening (HTS) programs is available for predictive toxicology.

Shifting to Molecular/Pathway Approaches

SOURCE: Rusty Thomas, Director - NCCT

In a nutshell ...

- The devTOX quickPredict platform (Stemina) is a human pluripotent stem cell-based *in vitro* assay used to assess compounds for potential developmental toxicity.
- We screened 1066 ToxCast chemicals to derive an exposure-based potential for developmental toxicity and entered the data into the ToxCast pipeline (tcpl).
- Cellular agent-based models built from the known embryology recapitulate complex signaling networks and simulate critical developmental transitions (and defects).
- Simulation models are numerically responsive to perturbation, hence amenable to for translating HTS bioactivity data into mechanistic prediction models of toxicity.

devTOXqP (quickPREDICT) platform

- WA09 (H9) line is a hESC line approved for federally-funded research and commercially obtained from WiCell Research Institute, Inc (WA09).
- Considered a "gold standard" by stem cell researchers due to stability (normal female karyotype) and long-standing use (hundreds of publications).
- H9 cells maintained in undifferentiated (pluripotent) state in a 96-well format and exposed to chemicals for 3-days; media from last 24h analyzed by LC-MS.

ToxCast Profiling in the STM Platform

- Target exposure range based on ToxCast's cytotox burst [Judson et al. (2016) Tox Sci], compound availability, and/or compound insolubility in DMSO.
- Individual plate references used Methotrexate (MTX) for negative- (5 nM) and positive- (1 μ M) responses; and vehicle control (0.1% DMSO) for plate-level normalization.
- Media from last 24h exposure processed for metabolite analysis by HILC-HRMS (high-resolution mass spectroscopy).
- Ornithine (ORN) to Cystine (CYSS) ratio in the conditioned medium ('secretome') is the targeted biomarker [Palmer et al. 2013].

Why does the ORN/CYSS balance matter?

ORN utilized by mitochondria in the 'ornithine cycle' during pyrimidine synthesis; cellular release likely a stress signal.

CYSS from the medium utilized for glutathione synthesis in the redox cycle; reduced uptake likely a stress signal.

ORN/CYSS falling below 0.88 is predictive of dTP; driven primarily by ORN release.

Strategy

H9 viability versus ToxCast (38 cytotoxicity/cell stress assays)

Plate Controls (Level-0 data)

DMSO (0.1%, n = 846, 857), MTX-negative (5 nM, n = 425, 429) and MTX-positive (1 uM, n = 424, 429).

Targeted Biomarker (o/c ratio in the medium) versus cell viability: PLATE CONTROLS

Targeted Biomarker (o/c ratio in the medium) versus cell viability: TOXCAST SAMPLES

Targeted Biomarker (o/c ratio in the medium) versus cell viability: Methotrexate

Targeted Biomarker (o/c ratio in the medium) versus cell viability: trans-Retinoic acid

Targeted Biomarker (o/c ratio in the medium) versus cell viability: Thalidomide

How Stemina interprets this assay

* predictive model trained with 23 pharma compounds (96% accurate) and tested with 13 pharma compounds (77% accurate) [Palmer et al. 2013].

How it looks in tcpl (Level 6)

tcpl Data Representation

19

• Targeted biomarker sometimes co-occurs with viability, and other times not.

Results

- 177 actives (16.4%): 172 where o/c is below CV50 and 60 without any effect on cell viability.
- **Daston List:** 10 of 28 exposure-based calls had concordance 85.7%, with caffeine and ethylene glycol failing to give the positive signal.

Chemical Name	uM dTP
trans-Retinoic acid	0.000049
PharmaGSID_47333	0.000748
3'-Azido-3'-deoxythymidine	0.047045
Thalidomide	0,078349
Mirex	0.117920
Aplaviroc hydrochloride	0.430095
Spiroxamine	0.533445
Cyclanilide	0.579090
SAR150640	0.684029
Rifampicio	1.105449
7,12 Dimethylbenz(a)anthracene	1,340670
Carbamazepine	1.421311
Etridiazole	1.465742
Tridemorph	1.561177
CP-409092	1:573462
Dihexyl phithalate	1.297301
Nitrofurazone	1.015341
Carbaryl	1.900012
AVE8488	3,367389
GW473178E methyl benzene sulphonic acid	2.362346
Darbutelone mesylate	2.511774
Besonprodil	3.034379
Diethanolamine	3 144575
Elzasonan	110010
Volinanserin	3.583474
PharmaGSID 47259	1.010207
Nitrilotriacetic acid	1.015639
SAR102608	4.528195
2-tert-Butyl-S-methylohenol	4 617006
Tributyl phosphate	4 779376
Carbendazim	
Invastatio	5.824556
Cycloate	6.0776479
Prometon	7.105501
N.N. Dimethulderulamion oxide	11,453,464
PharmaGSID 48507	11 519745
Pirinivic acid	13 391406
leavofos	14 14/359
Atrasine	15 633364
2. Mathawa Saitmoniling	15 604337
Cravidine	16 53 2846
Trioresul abasahata	12 080 502
2 4 Disitrophanol	30 305367
Dinosah	30.007303
District abstralate	11.045.573
3 A 7 O Tetermethol E decurse A 7 dial	21.040472
Z/4,7,5-Tetrametryi-5-decyne-4,7-didi	22.070900
Difference in a balanciere	24,299064
Dijz-etnymekyi) pritnalate	20.009089
Procymidone	20.770940
Isopropyl thethanolamine titanate	29.417908
Liomazone	29.770828
N-Nicrosodiphenylamine	32.987148
17aipna-Hydroxyprogesterone	33.201285
Fluometuron	33.584433
Hydroxyurea	50.192887
Diuron	52.867066
Cyproconazole	61.347859
1,3-Propane sultone	69.899428
Carminic acid	84.585145
Mono(2-ethylhexyl) phthalate	123.787673

Performance Models

- Model Performance: range from 87-91% BA (sensitivity 0.80 to 0.86, specificity 0.93 to 1.00 depending on the anchor).
 - ECVAM/FDA labels (n=33): sens 0.80, spec 1.0, BA = 90.9%
 - add 31 literature calls (n= 64): sens 0.86, spec 0.97, BA = 92.2%
 - add 7 liberal calls (n=71): sens 0.81, spec 0.93, BA = 87.3%.
- ToxRefDB: sweet spot for dTP looks to be ~75 uM; preliminary model vs skeletal defects (dLEL <= 50 mg/kg).
 - 44 of 131 ToxRefDB_dev calls STM-positive
 - 812 of 948 non-calls were STM-negative
 - sensitivity (0.36), specificity (0.86) for BA = 79.3%.

Chemical Name	uM dTP	Class	
trans-Retinoic acid	0.006000	×	
Cytarabine hydrochloride	0.036753	D	
Methotrexate	0.046665	×	
Thalidomide	0.078349	×	
Diphenhydramine hydrochloride	0.387290	В	
Ketoconazole	0.514342	с	
Rifampicin	1 105449	с	
Busulfan	1.123890	D	
Carbamazepine	1.421311	с	
5-Fluorouracil	1.473280	D	
Amiodarone hydrochloride	3.048013	B	
Lovastatin	5.826556	×	
Dexamethasone sodium phosphate	31.821343	с	
Hydroxyurea	50.192887	0	
Indomethacin	64.572031	D	
Valproic acid	112.875459	D	
Salicylic acid	317.314747	С	
Warfarin	1000.000000	×	
Acrylamide	1000.000000	NT	
Isoniazid	1000.000000	с	
Dimethyl phthalate	1000.000000	NT	
Folic acid	1000.000000	А	
Aspirin	1000.000000	С	
Acetaminophen	1000.000000	В	
5,5-Diphenylhydantoin	1000.000000	0	
Retinol	1000.000000	А	
Caffeine	1000.000000	В	
Cyclopamine	1000.000000	Т	
Sodium L-ascorbate	1000.000000	A	
Saccharin	1000.000000	A	

ToxCast – STM assay correlations

Top Hits

top 24 correlations ranked by sensitivity

top 24 correlations ranked by specificity

biological_process	gene_target	ЧĻ	đ	Z	Z	biological_process	gene_target	ЧŢ	Ę	N L	NF
nuclear receptor gene product	CYP2E1	52	460	21	517	GPCR	Bdkrb2	5	5	67	971
oxidative stress up	NFE2L2	46	432	26	553	GPCR	EDNRB	4	5	68	971
inflammation down	SELE	43	256	29	722	inflammation up	CDK2	4	7	68	969
inflammation down	CD40	42	270	30	708	ion channel	Grin1	4	7	68	969
inflammation down	HLA-DRA	42	311	30	667	GPCR	EDNRA	5	10	67	967
	THRB TH					GPCR	NPY2R	6	12	66	964
nuclear receptor Tox21 ant	RA	42	278	31	706	GPCR	Grm1	6	12	66	964
nuclear receptor gene product	CYP4A11	41	294	32	683	nuclear receptor gene product	STAT3	5	13	68	964
inflammation down	SELP	40	221	32	757	GPCB	NPY	5	13	67	963
nuclear receptor gene product	PEG10	40	294	33	683	GPCB	AGTR2	5	14	67	962
nuclear receptor gene product	CYP7A1	40	331	33	646	puslear receptor gapa product	TGEA	1	15	60	062
inflammation down	CD40	39	260	33	718	nuclear receptor gene product		4	15	60	061
nuclear receptor gene product	HMGCS2	39	272	34	705	transcription factor	NDD	4	10	64	901
nuclear receptor gene product	FABP1	39	315	34	662	transcription factor	VDR	8	17	64	908
inflammation down	CD38	38	275	34	703	huclear receptor AIG	NR3C1	4	1/	68	968
nuclear receptor gene product	IGF1	38	302	35	675	transcription factor	ONECUT1	4	1/	68	968
inflammation down	CSF1	37	240	35	738	GPCR	ADRB3	8	1/	64	959
inflammation down	CD69	37	240	35	738	ppar signaling	PPARD	6	18	66	967
inflammation down	CSF1	37	248	35	730	enzyme blocking	PDE10A	5	19	67	959
androgen receptor	AR	37	238	36	746	GPCR	Cckbr	5	19	67	957
nuclear receptor gene product	AFP	37	323	36	654	GPCR	Adrb1	5	19	67	957
chemokine down	CCL2	36	220	36	758	GPCR	DRD1	10	21	62	955
chemokine down	CCL26	36	227	36	751	GPCR	Tacr3	6	21	66	955
chemokine down	CXCL8	36	229	36	749	cellular adhesion up	VCAM1	7	22	65	956
chemokine down	CXCL10	36	282	36	696	GPCR	Htr1a	7	22	65	954

Case 1: "unknown teratogenicity" in a stereoisomer pair

Fluazifop-butyl 69806-50-4 | DTXSID3034612 0 Searched by Integrated Source Name: Found 1 result for 5 'fluazifop butyl'. B Q+ Q diff ÷. • CHa Deed fog

Fluazifop-P-butyl 79241-46-6 | DTXSID0034855 9

Searched by Approved Name: Found 1 result for 'fluazifop-p-butyl'.

Case 2: the endothelin (ET) and endothelin receptor (EDNR) system

- ET-1/EDNRA is crucial for craniofacial/cardiac neural crest morphogenesis [Clouthier et al. 1998, Development], and ET-3/EDNRB for enteric neural crest morphogenesis [Puffenberger et al. 1994, Cell].
- Craniofacial and cardiovascular malformations were observed in rats exposed to L-753,037, a balanced EDNRA/B antagonist, similar to what is seen in knockout mice [Spence et al. 1999, Reprod Toxicol].

Despite their strong effects on **EDNRA** and **EDNRB** endothelin-binding assays, neither antagonist yielded a signal in the STM platform (HTC = 10 or 20 µM)

Case 3: potential vascular disrupters (pVDCs)

5HPP-33

Synthetic thalidomide analog, destabilizes the tubulin network and disrupts endothelial tubulogenesis [Noguchi et al. 2005].

TNP-470

Synthetic fumagillin analog, inhibits MetAP2 and disrupts endothelial proliferation in response to Wnt signals [Griffith et al. 1998].

ToxPi-pVDC rank

BAME :	SHPP-	33			
CHID:	46970	CASEN:	105624-	-96-0	
SPID	2) : TP000	11302802			
M4ID:	11033	2773			
HILL	MODEL (1	a zed) -			
	tp	ga	- 9W		
val	10	1.22	8		
ad.	0.0855	0.0406	1.35		
GAIN-	LOSS MODE	L (in bla	10) T		
	tp	ga	GM.	1.	1w
ral()	10.2	1.27	7.97	2.33	5.4
#d:	MaN	NaB	HaN	MaN	HaH
	CMST	MILL.		INLS .	
ALC:	175.64	3.58		7.04	
PROB:	0	0.85		1.15	
SMSE:	3.57	0.22	1	1.22	
HAX N	EAN: 9.9	10.3	(_NED: 9	.97	MMAD: 0.1
71.3	D HIT-CZ	1. 644	FITC: 42	AC501	16.5

ASSAY	READOUT (uM)	HPP-33	TNP-470
FICAM tubulogenesis	AC50	0.67	2.2
Rat AEA	AC50	1.3	0.018
ArunA hNP migration/prolif	AC20	1.7	
Tox21 p53 induction	AC50	2.6	>17.4
ZFISH embryotox (DOW)	AC50	3.4	0.032
BSK BioMAP	mTOR inhibition	4.4	0.15
STM viable cells	50% loss	7.1	5.2
STM targeted biomarker	<0.88 ORN/CYSS	9.5	0.01
VALA endothelial migration	nuCTNB	10.0	
VALA tubulogenesis	inhibition	16.7	
ToxCast TCB	median AC50	16.7	2.4
Rat WEC quality	AC50	21.2	0.038

ASSAY	AMID:	1690 ISTE	EINA_H9_0	ORBICYSSI	Shorm_RATIO_up)
EANE	TMP-	170			
CHID:	4114	L CASEN	129298-	91+5	
SPIDIS	Si: TPOOL	01302803			
M4ID:	1103	2794			
HILL I	NODEL (1)	a red) :			
	sp	(Tak	10W		
val:	5.09	-1-19	1.85		
ad =	0.0436	0.0095	0.0736		
GAIN-3	LOGS NOD	E (in blu	ue) :		
	tp.	ga	- gw	1.4	18
Val:	5.09	-1.19	1.85	0.965	10.4
sd:	0.0436	0.0095	0.0736	1140	12300
	CHST	BITLE.	 a 	WLS.	
AIC:	112.42	-40.4	62	36.62	
PROB:	0	0.00		1.12	
RHERI	2.91	0.08	1	9.08	
HAX M	EAN: 5.11	2 MA	K HED: 5.	13	SMAD: 0.135

135 . · TI: 0.011 HIT-CALL: 1 FITC: 41 AC50: 0.0646

FLAGS :

control

Limb-bud Outgrowth

What impact would chemical disruption of cell growth and viability have?

Teratogenesis *in silico*

How well does pVDC score match STM predicted teratogenicity overall?

AOP-based **pVDC** score vs **DevTox** potential from the STM hES cell platform

Balanced Accuracy = 75.1% (modeled on a 38-chem test set)

24.4% pVDC(+) also STM(+) 90.8% pVDC(-) also STM(-)

Breathing life into a 'Virtual Embryo'

- Hypothesis: computer models that recapitulate a morphogenetic series of events can be used analytically (to understand) and theoretically (to predict) developmental toxicity.
- Agent-Based Modeling and Simulation (ABMS): a heuristic approach to reconstruct tissue dynamics from the bottom-up, cell-by-cell and interaction-by-interaction.

In Silico Dynamics: Computer Simulation in a Virtual Embryo (#3117): SOT symposium 'Quantitative Systems Toxicology for Chemical Safety Assessment' [ITS] Thursday morning

Acknowledgements

EPA-NCCT Tom Knudsen Parth Kothiya* Keith Houck Rusty Thomas Richard Judson Ann Richard Matt Martin Stephen Little

Stemina Biomarker Discovery

Laura Egnash* Jessica Palmer* Alan Smith Paul West MR Colwell Bob Burrier Beth Donley

—National Center for Computational Toxicology SEPA Chad Deisenroth Clark Danica DeGroot Edwards John Wambeud

Virtual Tissue Models: Predicting How Chemicals Impact Human Development

http://www2.epa.gov/sites/production/files/2015-08/documents/virtual_tissue_models_fact_sheet_final.pdf

