

Distribution System Nitrification: Cometabolism and Nitrification Index

Gerald E. Speitel Jr. University of Texas at Austin Department of Civil, Architectural & Environmental Engineering

> David G. Wahman National Risk Management Research Laboratory U.S. Environmental Protection Agency

Nitrifier Classifications

Distribution System Nitrification

- Free ammonia source = AOB food
 - 1. Chloramines = free chlorine + ammonia
 - Stage 1 & 2 D/DBP rules (THMs & HAAs)
 - Free chlorine \rightarrow chloramines
 - 57% surface & 7% groundwater
 - 30–63% nitrification
 - 2. Source water ammonia

Water Quality & Regulatory Issues
AOB \rightarrow not pathogenic or regulated
Nitrification \rightarrow "gateway bug" \rightarrow other issues

Water Quality Issues	Regulatory Issues		
Disinfectant depletion	SWTR, TCR		
Nitrite/nitrate formation	Maximum Contaminant Level		
Reduced pH and alkalinity	Lead & Copper Rule		
Coliform occurrences	SWTR, TCR		
HPC increase	SWTR, TCR		
DBP formation via mitigation	DBP Rules		
SM/TP - Surface Water Treatment Pul	0		

TCR – Total Coliform Rule

Source: AWWA (2013)

amoA Detections in Distribution Systems (Starke et al. 2013)

Most commonly detected amoA OTUs in 78 samples collected from full-scale and pilot-scale distribution systems

Organism	Accession Number	OTU Number	Percentage of samples with OTU
Nm. oligotropha	AY356516	AOB 5	91
Nm. oligotropha	AY026907	AOB 106	88
Nm. oligotropha	EU616619	AOB 284	54
Nm. oligotropha	AY050678	AOB 170	47
AOA 1.3.3.2	FJ227695	AOA 95	47
AOA 1.3.3.2	EU651294	AOA 341	46
AOA 1.3.3.2	AB529744	AOA 83	44
Nm. oligotropha	EU770906	AOB 297	41
AOA 2.1.8.1	ARPLA59	AOA 184	33
AOA 1.3.3.1	GQ390324	AOA 70	32

Ammonia Oxidizing Bacteria (*Nitrosomonas europaea*)

Source: X. Fang et al. (2010)

Biological Ammonia Oxidation ►NO₂outside $NH_3 + O_2$ cell HAO **4e**cyt c554 NH₂OH periplasm cyt 552 суt _{см}552 Q_{pool} bc₁ **cytochrome** AMO cell membrane oxidase NADH Q_{pool} dehydrogenase cytoplasm 1/202 + 2H+ NADH NAD+ H₂O Fix CO₂ **ATP Generation** (Carbon) (Energy)

Source: Adapted from Sayavedra-Soto and Arp (2011)

♦ Free ammonia (food) → chloramines

- \diamond Ammonia-oxidizing microorganisms (AOM) \rightarrow AOB
- Growth rate > Inactivation rate
 - Growth rate \rightarrow Free ammonia concentration
 - Inactivation rate
 - Endogenous decay
 - THM cometabolism
 - Monochloramine inactivation
 - Monochloramine concentration impacts
 - Cometabolism
 - Hydroxylamine
 - Nitrite
 - Cellular & utilization associated product (UAP) reactions

Metabolism vs. Cometabolism

Metabolism

 Contaminant is a carbon and/or energy source for microbial growth (organic chemicals typically both; ammonia is an energy source)

Cometabolism

- Not a carbon and energy source
- Fortuitous degradation by non-specific enzymes (AMO)
- A growth substrate is required
- May harm bacteria
 - Toxic intermediates
 - Reductant depletion
 - Enzyme competition

Nitrification Index

 NI represents ratio of growth rate to the sum of the inactivation rates

- Monod growth kinetics
- Endogenous decay
- Inactivation by monochloramine
- Inactivation by THM cometabolism

♦ NI < 1 indicates that inactivation rate is faster than growth rate</p>

Importance of monochloramine and ammonia concentrations

Endogenous Decay – Lake Austin AOB

Source: Adapted from Sayavedra-Soto and Arp (2011)

THM Kinetics – Experiment

Transformation Capacity (T_c) $T_{c} = \frac{S_{ITHM} - S_{FTHM}}{X}$

UT R	esearch	Literature Reported Values		
Chemical	T _c (nmol/mg)	Chemical	T _c (nmol/mg)	Source
TCM	77	ТСМ	92-150	Ely (1996)
BDCM	45	TCE	61-99	Alvarez-
DBCM	31	1,1-DCE	24-45	Cohen and Speitel
TBM	22	1,2-DCA	>3,500	(2001)

Monochloramine Impacts

Source: Adapted from Sayavedra-Soto and Arp (2011)

Monochloramine Inactivation *N. europea* Disinfection Kinetics (Wahman et al., AEM 2010)

Delayed Chick Watson Model used to describe disinfection kinetics Ionic strength and buffer concentration effects on disinfection kinetics

Monochloramine & Hydroxylamine Reaction (Wahman & Speitel, *Water Research* 2015)

Monochloramine & Nitrite Reaction (Wahman & Speitel, ES&T 2012)

Cellular & UAP Reactions with Monochloramine (Maestre, Wahman, & Speitel, ES&T 2016)

Monochloramine Cometabolism (Maestre, Wahman, & Speitel, ES&T 2016)

Experimental Approach

 Four annular reactors simulate distribution system - inner cylinder rotates to create hydraulic shearing force

Parameters

- Lake Austin (tap) water culture
- Typical drinking water conditions

 pH 7-9
 - Ammonia 0.5 to 1 mg/L NH₃-N
 - Chlorine 1 to 3 mg/L as Cl₂

 Varied THM concentrations and bromine incorporation ratio

Results – Onset Rate vs. NI

Inactivation Mechanisms in NI Model

Long-Term Evaluation of NI

GAC-granular activated carbon

Concentrations in "Midwest" Annular Reactor

"Midwest Annular" Reactor - THMs

NI for "Midwest" Annular Reactor

Inactivation Mechanisms vs. NH₂CI Conc.

Endogenous decay

Inactivation by monochloramine

Operational Period†

Implementation of NI Framework

- Calculate NI over time at locations of interest in the distribution system
 - Measure pH, ammonia, and monochloramine (Monochlor F method preferred; total chlorine okay)
 - Use THM concentrations from most appropriate regular sampling points and times
 - Measure temperature and nitrite as related data to help with interpretation
- Compare NI values to indicators of nitrification (e.g., what was NI right before onset of nitrification episodes?)
- If a correlation can be established, NI might be useful as an early warning of nitrification risk

NI Calculations for Plant in PA

Closing Thoughts

- Even though the system is complicated, the biokinetics of growth, cometabolism, decay, and inactivation, as described by the Nitrification Index, should improve our ability to understand and predict nitrification episodes
 - NH₂Cl and ammonia concentrations are of primary importance
 - THM concentrations and pH are of secondary importance to NI
- NH₂Cl cometabolism (NH₂Cl loss bad) is likely to play a more important role than THM cometabolism (toxicity to nitrifiers - good)
- Easy to see how the onset of nitrification can lead to rapid loss of residual disinfectant:
 - NH₂Cl cometabolism occurs with rapid kinetics; THM cometabolism slower
 - Growing AOB biomass increases disinfectant demand
 - Nitrification product (nitrite) reacts with both HOCI and NH₂CI
 - Decreased ammonia concentration accelerates NH₂Cl autodecomposition
 - Decreased pH (low alkalinity waters) accelerates NH₂Cl autodecomposition

Distribution systems are complex biological & chemical reactors

Acknowledgements

Collaborators Andrea Henry Ben Bayer Ram Kannappan Juan Pedro Maestre Lynn Katz

Funding Agencies Water Research Foundation Texas Advanced Technology Research Program USEPA **Questions?**