

Predictive Toxicology: Current Status and Future Outlook

EBI-EMBL Industry Programme Workshop Predictive Toxicology

November 16-17, 2016

Imran Shah

National Center for Computational Toxicology

The views expressed in this presentation are those of the author[s] and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Regulatory Agencies Need to Make A Range of Decisions on Chemicals...

- Multiple drivers shape type of assessment
 - Regulatory scope
 - Economic considerations
 - Multiple applications
- Chemical assessments are "fit-forpurpose"
 - Prioritization (e.g., EDSP, PMN, SNUR)
 - Screening-level assessments (e.g., CCL, GreenChem)
 - Provisional assessments (e.g., PPRTVs)
 - Toxicity assessments (e.g., IRIS)
 - Risk assessments (e.g., MCLs, pesticides)

EPA	Workflow	Throughput	Data
ОРРТ	New chemicals: Premanufacture Notice (PMN) Existing chemicals: Significant New Use Rule (SNUR)	~1000/yr (90d/chem) ~84,000 total	III (II)
	Current Chemical Risk Assessments	~10 total	1
	DFE / Green Chemistry	~2500	I, II, III
OPP	Pesticide registration (PR)	~10 new/yr ~50 old/yr	1
	Pesticide re-registration	~1000/yr 24,576 total	1
OW	Chemical Contaminant List	6yr / ~6,000 total	1,11,111
	RegDet on CCL	Every 6yr / 90 total	1
	Unregulated Contaminant Monitoring	30/5yr	1
	Drinking Water Health Advisories		II, III
OLEM	Spills Brownfields Super Fund		

- Guideline animal testing data
- I Some *in vitro* bioactivity
- II Chemical structure data

Current System to Evaluate Chemicals is Antiquated and Inefficient

Requires an Integrated and Multidisciplinary Solution

- National Center for Computational Toxicology established in 2005
- Currently staffed by ~60 employees
- Exists within the EPA's Office of Research and Development
- Home of the ToxCast and ExpoCast research efforts
- Key partner in U.S. Tox21 federal consortium

Need to Start with a High Quality Chemistry Foundation

https://comptox.epa.gov

- Developing a centralized resource for curated chemical structure, identifier, and physical chemical properties of >700K unique substances with data quality flags
- Expand and curate training sets for QSAR models for phys-chem, environmental fate, and toxicological properties
- Use the centralized chemical resource as the foundation for an integrated hazard, bioactivity, pharmacokinetics, and exposure information

Need to Start with a High Quality Chemistry Foundation

Analytical QC of Chemical Library

Pass =
$$C$$
 (75%) or greater
Fail = D , F , Ac , Bc , Cc

High-Throughput Bioactivity Screening

ToxCast Incorporates a Diverse Array of High-Throughput *In Vitro* Assays

Assay Provider

ACEA
Apredica
Attagene
BioReliance
BioSeek
CeeTox
CellzDirect
Tox21/NCATS
NHEERL MESC
NHEERL Zebrafish
NovaScreen (Perkin Elmer)
Odyssey Thera
Vala Sciences

Biological Response

cell proliferation and death cell differentiation
Enzymatic activity
mitochondrial depolarization protein stabilization
oxidative phosphorylation reporter gene activation gene expression (qNPA) receptor binding receptor activity steroidogenesis

Target Family

response Element
transporter
cytokines
kinases
nuclear receptor
CYP450 / ADME
cholinesterase
phosphatases
proteases
XME metabolism
GPCRs
ion channels

Assay Design

viability reporter
morphology reporter
conformation reporter
enzyme reporter
membrane potential reporter
binding reporter
inducible reporter

Readout Type

single multiplexed multiparametric

Cell Format

cell free
cell lines
primary cells
complex cultures
free embryos

Species

human
rat
mouse
zebrafish
sheep
boar
rabbit
cattle
guinea pig

Tissue Source

Lung Breast Liver Vascular Skin Kidney Cervix Testis Uterus Brain Intestinal Spleen Bladder Ovary Prostate **Pancreas** Inflammatory Bone

Detection Technology

qNPA and ELISA
Fluorescence & Luminescence
Alamar Blue Reduction
Arrayscan / Microscopy
Reporter gene activation
Spectrophotometry
Radioactivity
HPLC and HPEC
TR-FRET

Efforts to Ensure HTS Data Quality and Increase Transparency

FLAGS:
Only one conc above baseline, active
Borderline active

- Public release of Tox21 and ToxCast data on PubChem and EPA web site (raw and processed data)
- Transparent ToxCast data analysis pipeline
 - Data quality flags to indicate concerns with chemical purity and identity, noisy data, and systematic assay errors
 - Publicly available as an R package
- Tox21 and ToxCast chemical libraries have undergone analytical QC and results publicly available
- Public posting of ToxCast procedures
 - Chemical Procurement and QC
 - Data Analysis
 - Assay Characteristics and Performance
- External audit on ToxCast data and data analysis pipeline

Most Environmental Chemicals are Nonselective for Biological Targets

ToxCast ~600 Cell & ~1,000 biochemical Chemicals | assays Response

Concentration

ToxRefDB: Digitizing Legacy in vivo Toxicology Data

- ToxRefDB holds in vivo endpoint data from animal toxicology studies (DERs, NTP, open literature, pharma)
- Currently at 5567 studies on 1049 unique chemicals

Data Source	Study Count	
EPA OPP DER	3279	
Open Literature	731	
National Toxicol Program	666	
Sanofi_Pharma	222	
Unpublished Submissions	50	
GSK Pharma	38	
Health Canada PMRA DER	23	

Predicting Target Organ Toxicities by Machine Learning

Developing a Pathway Model to Predict Endocrine Activity

Performance for *In Vitro* Reference Chemicals

# True Pos	28
# True Neg	12
# False Pos	0
# False Neg	4
PPV	1.0
NPV	0.75
ВА	0.94
Sensitivity	0.88
Specificity	1.0

Performance for *In Vivo* Uterotrophic Studies

# True Pos	28
# True Neg	12
# False Pos	1
# False Neg	1
PPV	0.97
NPV	0.92
ВА	0.95
Sensitivity	0.97
Specificity	0.92

ER Pathway Model Integrating 18 In Vitro Assays

Judson et al., ToxSci (in press)

ER Active Hit Rate

1431 EDSP chemicals run *in vitro*71 (5%) have a significant ER score

Systems Biology Models To Scale Targets to Pathways and Networks – Virtual Tissues

Human Tubulogenesis Assay (FICAM: T Heinonin)

Cell ABM of Octyl Gallate (NCCT: G Nagaraj)

Providing Context by Incorporating Toxicokinetics and Exposure

Comparing Bioactivity with Exposure Predictions for Risk Context

Delivering Data to Stakeholders and Scientific Community

EDSP21 Dashboard (https://actor.epa.gov/edsp1)

Developing a Broad Hazard Screening Platform

How Would a HT Transcriptomic Platform be Deployed?

High-Throughput Transcriptomic Assay Tier 0

- Identify predominant mechanisms as a function of concentration
- Group chemicals by similar mechanism/bioactivity
- Identify a concentration that results in no transcriptional effects

Lamb et al. Science (2006)

Broad CMAPdb: 7,000 profiles; 1,309 compounds NIH LINCs CMAPdb: 9,000 shRNAs, 3,000 over expression ORFs, and 4,000 compounds in 20 cell types/lines (cell lines and primary cells)

Cell Type #3

Using HT Transcriptomics to Identify Mode-of-Action

Target Family	Total Profiles	Target Genes	Chemicals	Cell Lines
Cytokine receptors	3	1	1	3
Enzymes	336	40	112	5
Exosome	14	1	4	4
G protein-coupled receptors	585	16	192	4
Ion channels	194	8	65	3
Nuclear receptors	227	10	71	5
Protein kinases	19	8	6	4
Transporters	102	2	35	3

- Developed local database of Broad's CMAP data (~3,000 profiles)
- Annotated targets using KEGG (1,571 profiles)
- Significant genes identified using a z-score cutoff of 2
- Incorporated "JG" scoring method (Jiang and Gentleman 2007)
- Determine significance using a permuted rank approach across target family

Distinguishing Adaptation from Adversity

☐ **Tipping Point**: Threshold between adaptation and adversity

☐ Can we use **Tipping Point** to define a point of departure (PoD) for risk assessment?

☐ Use ToxCast High Content Imaging (HCI) data to identify Tipping Points

- 967 chemicals (ToxCast)
- HepG2 cells culture
- 10 concentrations
- 3 Time points
- 10 HCI Assays
- 400 plates
- . 100,000 wells
- . 2,400,000 images

Tipping Point Analysis

Thousands of chemicals have limited data!

- Tens of thousands of environmental chemicals have very limited exposure/biological data
 - → Need more effective tools to describe chemical properties, effects and linkages
 - → Need predictive models to fill data gaps

- existing/legacy tools: TIMES, LeadScope, ECOSAR, EPIWIN
- developed internally: Read-across/GenRA, Machine Learning: classification and regression

Structuring PubChem Data for Analysis

Generalised Read-across (GenRA)

Chemicals are clustered on the basis of chemical descriptors to identify local neighbourhoods

The Read-across toxicity prediction is a similarity-weighted activity of nearest neighbours based on chemistry and bioactivity descriptors

Uncertainties can be evaluated across the local neighbourhoods

Shah, et al. RTP 2016

Machine Learning to Predict Chemical Effects

Use Semantic Tools to Link Disparate Data

Can we use semantic tools (OWL/RDF, existing ontologies to meaningfully integrated disparate resources?

Data Challenges

- Transparently sharing complex data streams—adequately capturing chemical (treatment dose and time), biological (experimental modal, assay, etc.) context to ease re-use
- Systematically integrating disparate data streams—representing linkages across molecular, cellular, tissue, organs. This is vital for relating early molecular changes to adverse (e.g. histopathological) outcomes
- Effectively extracting evidence from unstructured textual data— the literature is one of the largest resource for information about apical outcomes
- Using linked data to better discriminate between adaptation vs adversity predicting which molecular markers lead to apical outcomes
- Quantifying and incorporating uncertainty and variability in predictions
- Legal defensibility of new methods and assessment products

Acknowledgements and Questions

Tox21 Colleagues:

NTP Crew FDA Collaborators NCATS Collaborators

EPA Colleagues:

NERL NHEERL NCEA

EPA's National Center for Computational Toxicology