Delivering The Benefits of Chemical-Biological Integration in Computational Toxicology at the EPA

Antony Williams

National Center for Computational Toxicology U.S. Environmental Protection Agency, RTP, NC

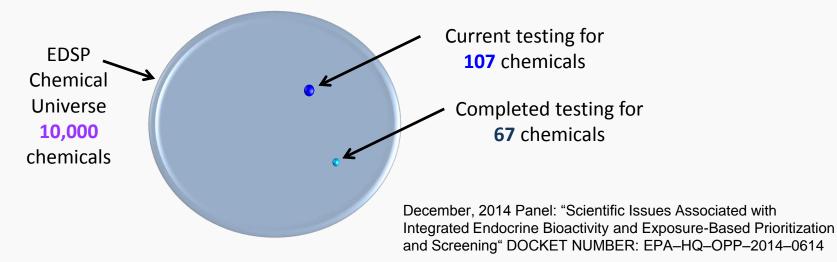
This work was reviewed by the U.S. EPA and approved for presentation but does not necessarily reflect official Agency policy.

November 7th, 2016 German Cheminformatics Conference, Fulda, Germany

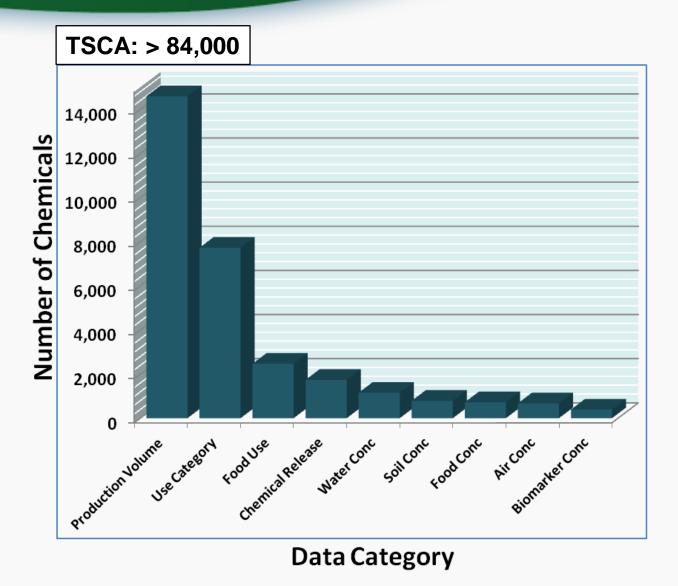
Overview

- An introduction to NCCT
- Our Data and Our Dashboards
- The CompTox Chemistry Dashboard
 - Architecture
 - Data and Models: e,g, Physicochemical Properties
 - Application to Non-Targeted Screening
- Coming Soon
- Future Work

Who is NCCT?


- National Center for Computational Toxicology part of EPA's Office of Research and Development
- Research driven by EPA's Chemical Safety for Sustainability
 Research Program
 - Develop new approaches to evaluate the safety of chemicals
 - Integrate advances in biology, biotechnology, chemistry, exposure science and computer science
- Goal To identify chemical exposures that may disrupt biological processes and cause adverse outcomes.

Number of Chemicals in Commerce Presents Regulatory Challenges



ONE LIST: EPA's Endocrine Disruptor Screening Program (EDSP) List	# of Compounds
Conventional Active Ingredients	838
Antimicrobial Active Ingredients	324
Biological Pesticide Active Ingredients	287
Non Food Use Inert Ingredients	2,211
Food Use Inert Ingredients	1,536
Fragrances used as Inert Ingredients	1,529
Safe Drinking Water Act Chemicals	3,616
TOTAL	10,341

Exposure Data Cannot Keep Pace with Regulatory Needs

P.P. Egeghy et al. Sci Total Environ. 414 (2012) 159–166

We need more data and derivative models and algorithms

- Our outputs include a lot of data, models, algorithms and software applications
- We produce Open Data we want people to interrogate it, learn from it, develop understanding

Toxicity Forecasting

Advancing the Next Generation of Chemical Evaluation

EPA needs rapid and efficient methods to prioritize, screen and evaluate thousands of chemicals. EPA's Toxicity Forecaster (ToxCast) generates data and predictive models on thousands of chemicals of interest to the EPA. ToxCast uses high-throughput screening methods and computational toxicology approaches to rank and prioritize chemicals. In fact, EPA's Endocrine Disruption

Screening Program (EDSP) is working to use ToxCast to rank and prioritize chemicals.

- ToxCast has data on over 1,800 chemicals from a broad range of sources including industrial and consumer products, food additives, and potentially "green" chemicals that could be safer alternatives to existing chemicals.
- ToxCast screens chemicals in over 700 high-throughput assays that cover a range of high-

Downloadable Computational Toxicology Data

EPA's computational toxicology research efforts evaluate the potential health effects of thousands of chemicals. The process of evaluating potential health effects involves generating data that investigates the potential harm, or hazard of a chemical, the degree of exposure to chemicals as well as the unique chemical characteristics.

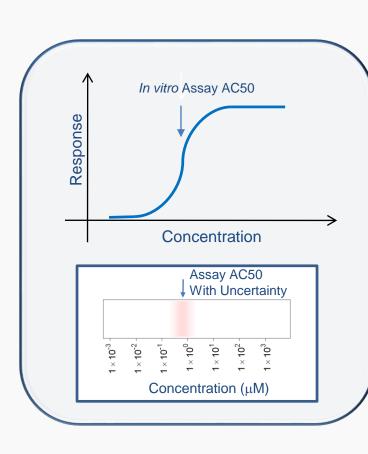
As part of EPA's commitment to share data, all of the computational toxicology data is publicly available for anyone to access and use.

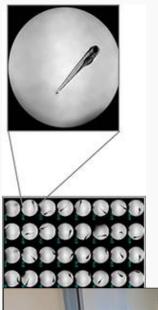
High-throughput Screening Data

EPA researchers use rapid chemical screening (called high-throughput screening assays) to limit the number of laboratory animal tests while quickly and efficiently testing thousands of chemicals for potential health effects.

<u>ToxCast Data</u>: High-throughput screening data on thousands of chemicals.

Rapid Exposure and Dose Data


EPA researchers develop and use rapid exposure estimates to predict potential exposure for thousands of chemicals.

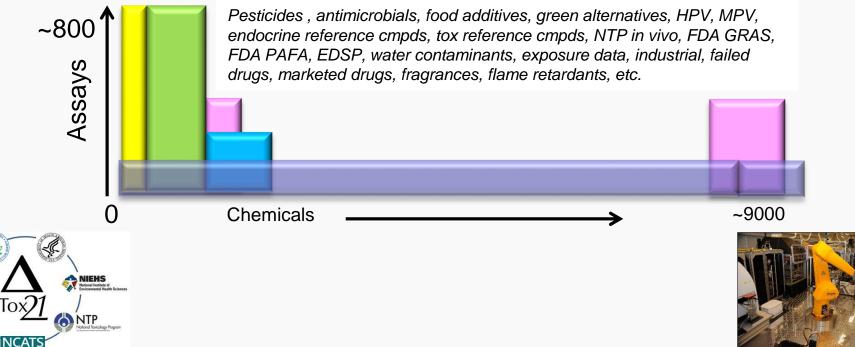

 <u>High-throughput toxicokinetics data</u>: It is important to link the external dose of a chemical to an internal blood or tissue concentration, this process is called toxicokinetics. EPA researchers measure the critical factors that determine the distribution.

High-Throughput Bioactivity to Identify **Potential Hazards**

 Assays in dose-response format (50% activity concentration – AC50 – and efficacy if data described by a Hill function)

All data is made public: http://actor.epa.gov/dashboard/

New datasets added continuously (for example, 1060 chemicals tested by Truong et al., 2014 zebrafish assay)


ToxCast & Tox21: Chemicals, Data and Release

FDA

GC

Set	Chemicals	Assays Endpoints		Completion	Available
ToxCast Phase I	293	~600	~700	2011	Now
ToxCast Phase II	767	~600	~700	03/2013	Now
ToxCast E1K	800	~50	~120	03/2013	Now
ToxCast Phase III	~900	~300	~300	In progress	2016
Tox21	~9000	~80	~150	In progress	ongoing

High Throughput Measurement to Identify **Exposure**

Rapid Chemical Exposure and Dose Research

EPA is responsible for ensuring the safety of thousands of chemicals. Quantitative exposure data are available for only a small fraction of registered chemicals. This type of exposure data is needed to thoroughly evaluate chemicals for potential risks to humans, wildlife and ecosystems. EPA is developing innovative methods to develop exposure estimates for thousands of chemicals to better protect human health and the environment. These innovative methods are called rapid exposure and dose assessments.

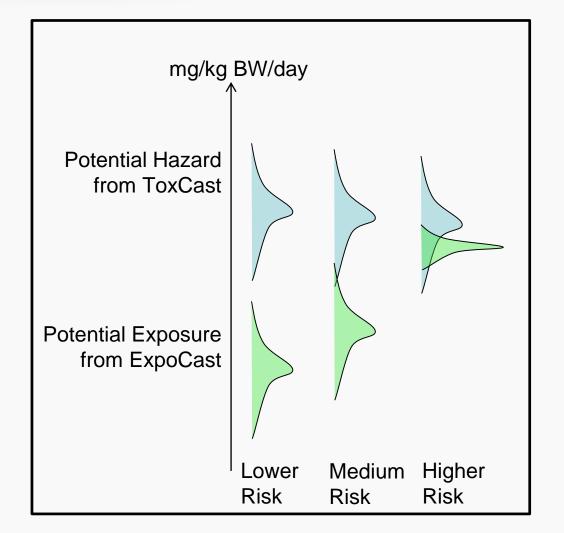
Rapid Exposure Predictions

Rapid, also called high-throughput, exposure predictions or ExpoCast provide rapid exposure estimates for thousands of chemicals. ExpoCast quickly and efficiently looks at multiple routes of exposure to provide exposure estimates. ExpoCast uses and enhances two well-known exposure models to estimate chemical exposure.

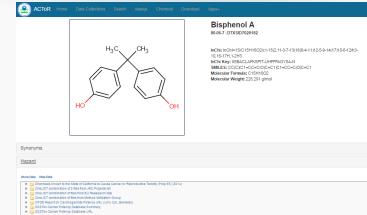
- > Farfield Exposure Models
- > Nearfield Exposure Models

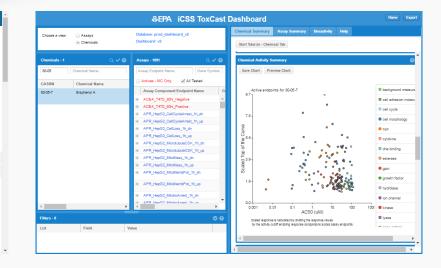
Evaluating High-throughput Exposure Predictions

EDA is currently avaluating the effectiveness of high throughout evenouire models



Pictured Above: Farfield Exposure Examples

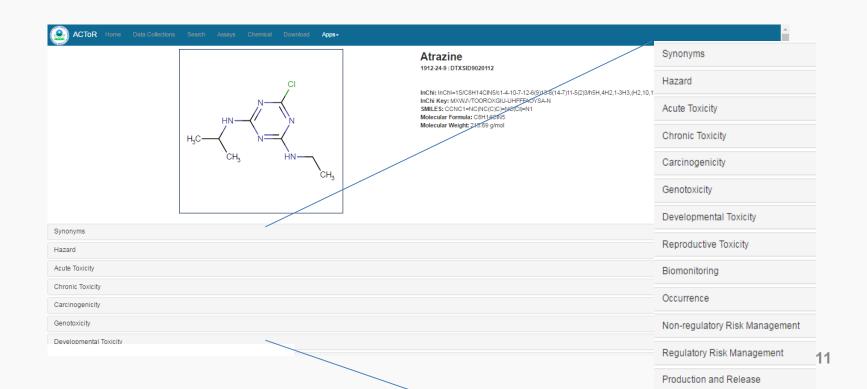

HT Hazard and Exposure Combined for Risk Assessment


Delivering Data via Dashboards

United States Environmental Protection Agency

OSSTox NCTR Estrogen Receptor Database DSSTox NTP BSI GeneTox Index

DSSTox NTP BSI Cherio Cancer Study Index DSSTox NTP BSI Cherolic Cancer Study Index DSSTox NTP BSI DevTox Study Index DSSTox NTP BSI URL DSSTox RIS Study Summaries DSSTox RIS URLs


EPA United States Environmental Prote	ction Agency			
Cat: Chemical and Product Cate are here: EPA Home - Computational Tox		d Dee		Contact Us
P Home P Search * Results				
Chemical: BISPHENOL A				
C	ASRN: 80-05-7			
Export Use Data				
CPCat Description 0	Source Description ¢	ACTOR Data Set/List o	Source o	Class of Chemical Category
consumer_use_ACToRUseDB	Consumer Use		ACToR UseDB	Use Categories
personal_care_ACToRUseDB	Personal Care Product		ACToR UseDB	Use Categories
industrial_manufacturing_ACToRUseDB	Chemical Industrial		ACToR UseDB	Use Categories
child_use detected Consumer Products		The Danish EPA:Exposure of 2-year-olds to chemical substances in Consumer Products.:This project included a survey of the products as well as chemical analyses and risk assessments of a number of selected nordinats that 2 waa-old children come into contact with	ACToR Data Sets and Lists	Use Categories

	United State Environmen Agency	Endo		ashboard ion Screening Program for	the 21st Century				
Chemical Summary	Public Information	Bioactivity Summary	Bioactivity	High-Throughput Exposure	Assay Definitions	Dosimetry			
EDSP Dashboard O	rendew								
Congress requires EF Screening Program fo The purpose of the E The data for this vers • Rapid, automs • Chemical exp • High quality of • Physichem Pri ToxCast Data Usy • Careful review	EDBP Databased Devices EDSP Databased								
To get the best possil	ole experience using the B	DSP Dashboard application	n we recommend	using Mazila Firefox or Google Cl	rome.				

ACToR https://actor.epa.gov/actor/

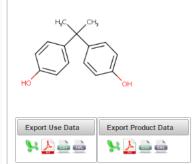
- Aggregated Computational Toxicology Resource
- Warehouse of available public toxicity data from >1000 public sources for >500,000 chemicals

ACToR https://actor.epa.gov/actor/

Genotoxicity

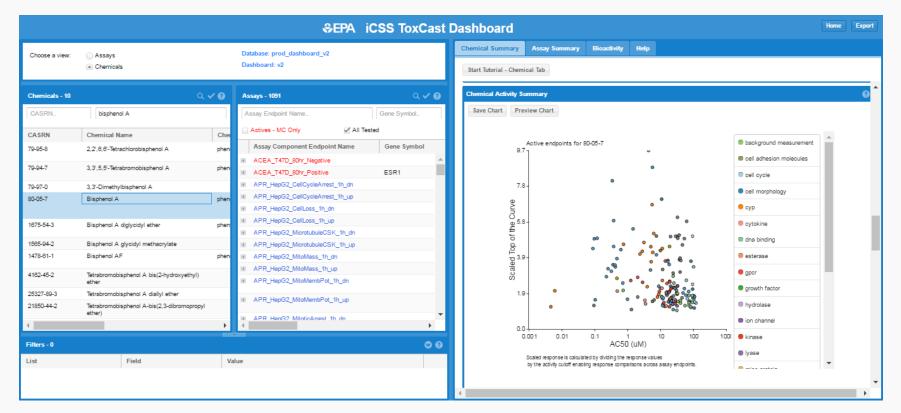
Show Data Hide Data

- CheLIST combination of files from Method Validation Group
- DSSTox NTP BSI GeneTox Index
- DSSTox NTP BSI URL
- Genotoxicity Data In Vitro from EPA HPVIS
 - NLM TOXNET CCRIS Data MSTU MUTAGENICITY STUDIES


🔹 🔻 📄 Genotoxicity	Data In Vitro from EPA HPVIS
🔻 🚞 Result G	roup:
Component Name Conclusion	Value Negative
Conclusion (GeneTox)	This study was judged to have given a negative result since the observed increase in the first experiment was not reproducible.
Dose Remarks	30 - 50 g/mL with activation20 - 40 g/mL without activation
Genotoxic Effect	Negative
GLP	No Data
Metabolic Activation	With and Without
Method/Guideline Followed	No Data
Program Flag	HPVIS
Reliability	2
Results Remarks	With metabolic activation: 50 g/mLWithout metabolic activation: None reported In the first test with metabolic activation an increase in the percentage of metaphases with chromosome aberrations from bisphenol A treated cultures was observed only at the top dose in the presence of cytotoxicity; 14% at 50 g/mL compared to 3% in controls. In these high-dose cultures it was stated that cell confluence was reduced by approximately 70%. In the second test no significant increases were observed in with metabolic activation; only 3% of cells at the highest dose had aberrations. No significant increases in aberrations were observed without metabolic activation; only 3% of cells at the highest dose had aberrations. No significant increases in aberrations were observed without metabolic activation; only activation with bisphenol A evidently being tested up to "toxic levels." The positive controls produced clear increases in chromosome aberrations.
Species	Mammalian Cell Line
Sponsor Name	General Electric Company - Plastics
Sponsored Chemical Result Type	72162-28-8
Strain	Chinese Hamster Ovary (CHO)
	Livett LL Brown R.M. Dedgers C. Anderson B.E. Ressnick M.A. and Zeiger E. 1989. Chromosomal aberrations and sister chromatid exchange tests in Chinese hamster ovary Environ. Mol. Mutagen, 14:165-187. As cited in the EU Risk Assessment. Data entered into the HPVIS extracted from the robust

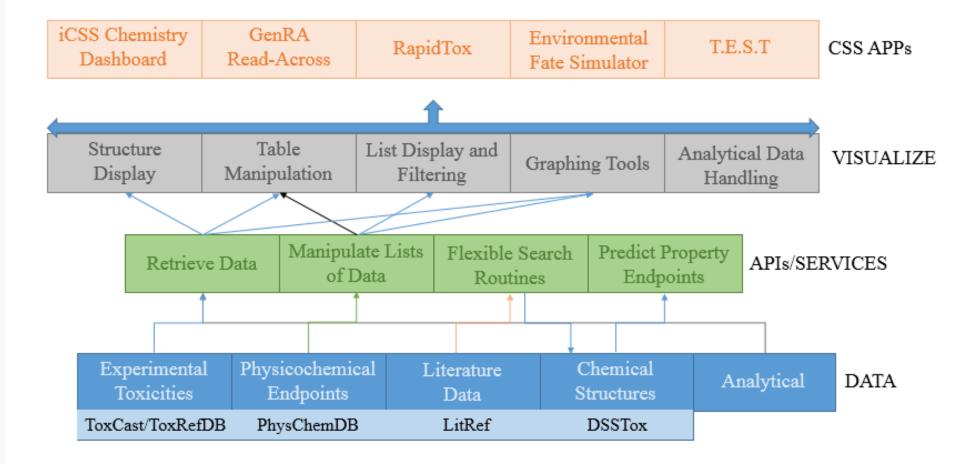
CPCat: Chemical and Product Categories https://actor.epa.gov/cpcat/

Chemical: BISPHENOL A


Chemical and Product Categories is a database containing information mapping >43,000 chemicals to a set of terms categorizing their usage or function.

Use Information:									
CPCat Description \$	Source Description \$	ACToR Data Set/List ≎	Source ¢	Class of Chemical Category \$					
consumer_use_ACToRUseDB	Consumer Use		ACToR UseDB	Use Categories					
personal_care_ACToRUseDB	Personal Care Product		ACToR UseDB	Use Categories					
industrial_manufacturing_ACToRUseDB	Chemical Industrial		ACToR UseDB	Use Categories					
child_use detected	Consumer Products	The Danish EPA:Exposure of 2-year-olds to chemical substances in Consumer Products.:This project included a survey of the products as well as chemical analyses and risk assessments of a number of selected products that 2 year-old children come into contact with throughout the course of a day. A total of 12 product groups were included in the survey phase. Selected products from 10 of these product groups were subsequently included in a screening phase and several problematic substances were subjected to quantitative analysis. A risk assessment was also performed for a number of problematic substances.	ACToR Data Sets and Lists	Use Categories					
consumer_use detected	Consumer Products	TNO Nederlands Organisation for Applied Scientific Research:Hazardous Chemicals in Consumer Products:In this study 33 consumer products, including body care products, toys, textiles, deodorizers and cleaners, have been tested for the presence of bisphenol-A, alkylphenols and ethoxylates, phthalates, musks and organotin compounds.	ACToR Data Sets and Lists	Use Categories					
child_use	Consumer Products:	(state of) Washington: Washington Childrens Safe Product Act (CSPA) Reporting Rule. List of chemical of high concern to children (CHCC)	ACToR Data Sets and	Use Categories					

Toxcast Dashboard https://actor.epa.gov/dashboard/

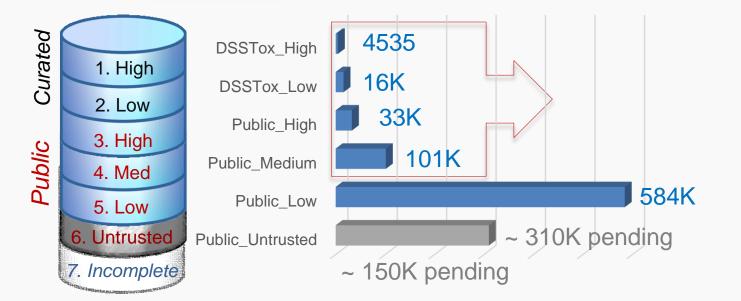


 Access and Interrogate chemical screening data from ToxCast and the Tox21 collaboration

Our New Developing Architecture

Our Latest Dashboard https://comptox.epa.gov

Bisphenol A bis(2-hydroxy-3-methacryloyloxypropyl ether)


ental Protection Advanced Search Options -Home UNITED STATES SNURONMENTAL PROTECTION About 720,000 chemicals An Integration Hub Almost 15 years of data CompTox Dashboard Q bispheno Bisphenol Bisphenol A Bisphenol A (BPA) **BISPHENOL A ANHYDRIDE** Bisphenol A bis(2-hydroxyethyl)ether Bisphenol A bis(2-hydroxyethyl ether) diacrylate Bisphenol A bis(2-hydroxyethyl ether) dimethacrylate Bisphenol A bis(2-hydroxy-3-methacryloxypropyl) ether

16

Help

Approximately 15 Years of Data... Continually changing

QC Levels

DSSTox_High:	Hand curated and validated
DSSTox_Low:	Hand curated and confirmed using multiple public sources
Public_High:	Extracted from EPA SRS and confirmed to have no conflicts in ChemID and PubChem
Public_Medium:	Extracted from ChemID and confirmed to have no conflicts in PubChem
Public_Low:	Extracted from ACToR or PubChem
Public_Untrusted:	Postulated, but found to have conflicts in public sources

Bisphenol A (Accessing DSSTox Data)

	States Immental Protection Home Advanced Search	Search CompTox Dashboard	Q	Options -
		Submit Comment	Share -	Сору -
8	Disphenol A Description Searched by Approved Name: Found 1 result for 'bisphenol A'. Image: I	Q Find All Chemicals		
hemical Properties	External Links Synonyms Product Composition ToxCast in Vitro Data	Exposure PubChe	m C	omments

Physicochemical Properties

Summary

Octanol-Water

Download as: CSV Excel SDF

Partition Coefficient (LogP)	Property	Average (Exp.)	Median (Exp.)	Range (Exp.)	Average (Pred.)	Median (Pred.)	Range (Pred.)	Result Unit
Water Solubility Melting Point	Octanol-Water Partition Coefficient (LogP)	3.38 (2)	3.43	3.43	3.42 (2)	3.42	3.20 to 3.64	-
Boiling Point	Water Solubility	5.26e-04 (1)	5.26e-04	5.26e-04	2.22e-03 (2)	2.22e-03	7.56e-04 to 3.68e-03	mol/L
Vapor Pressure	Melting Point	155 (7)	156	153 to 158	138 (2)	138	132 to 144	°C
Soil Adsorption	Boiling Point	200 (1)	200	200	349 (2)	349	334 to 364	°C
Coefficient	Vapor Pressure	-	-	-	7.06e-08 (1)	7.06e-08	-	mmHg
Octanol-Air Partition Coefficent	Soil Adsorption Coefficient	-	-	-	2.92 (2)	2.92	2.74 to 3.10	-
Atoma and a size	Octanol-Air Partition Coefficent	-	-	-	8.39 (1)	8.39	-	-
Atmospheric Hydroxylation Rate	Atmospheric Hydroxylation Rate	-	-	-	-10.4 (1)	-10.4	-	-
Biodegradation Half	Biodegradation Half Life	-	-	-	15.1 (1)	15.1	-	days
Life	Bioaccumulation Factor	-	-	-	173 (1)	173	-	-
Bioaccumulation	Bioconcentration Factor	1.64 (1)	1.64	1.64	82.0 (3)	82.0	1.38 to 173	-

Synonyms

Product Composition

ToxCast in Vitro Data

/itro Data Ex

Exposure PubChem

Data Downloads

ummary	Download as:	CSV	Excel	SDF		
Octanol-Water Partition Coefficient (LogP)	L			ct/Deselect		Media
Nater Solubility	Property		Coeffici	ent (LogP)		(Exp.)
Melting Point	Octanol-Water Pa (LogP)	artitior	✓ Wate ✓ Meltir ✓ Boilin	3.43		
Boiling Point	Water Solubility		 ✓ Vapo ✓ Soil A 	5.26e-		
Vapor Pressure	Melting Point				ion Coefficent froxylation Rate	156
Soil Adsorption Coefficient	Boiling Point			gradation H	•	200
Octanol-Air Partition	Vapor Pressure		 Bioaccumulation Factor Bioconcentration Factor Download 			-
Coefficent	Soil Adsorption C	Coeffic				-
Atmospheric Hydroxylation	Octanol-Air Partit	tion Co	pefficent		-	-
Rate	Atmospheric Hyd	roxylat	tion R <u>a</u> te	е		-

Chemical Properties

Product Composition

Synonyms

ToxCast in Vitro Data

Exposure PubChem

Comments

Data Download: Excel

A	A1 • : $\times \checkmark f_x$ Property									
	Α	В	С	D	E	F	G	н		
1	Property	Average (Exp.)	Median (Exp.)	Range (Exp.)	Average (Pred.)	Median (Pred.)	Range (Pred.)	Result Unit		
2	Octanol-Water Partition Coefficient (LogP)	3.38 (2)	3.43	3.43	3.42 (2)	3.42	3.20 to 3.64	-		
3	Water Solubility	5.26e-04 (1)	5.26E-04	5.26E-04	2.22e-03 (2)	2.22E-03	7.56e-04 to 3.68e-03	mol/L		
4	Melting Point	155 (7)	156	153 to 158	138 (2)	138	132 to 144	°C		
5	Boiling Point	200 (1)	200	200	349 (2)	349	334 to 364	°C		
6	Vapor Pressure	-	-	-	7.06e-08 (1)	7.06E-08	-	mmHg		
7	Soil Adsorption Coefficient	-	-	-	2.92 (2)	2.92	2.74 to 3.10	-		
8	Octanol-Air Partition Coefficent	-	-	-	8.39 (1)	8.39	-	-		
9	Atmospheric Hydroxylation Rate	-	-	-	-10.4 (1)	-10.4	-	-		
10	Biodegradation Half Life	-	-	-	15.1 (1)	15.1	-	days		
11	Bioaccumulation Factor	-	-	-	173 (1)	173	-	-		
12	Bioconcentration Factor	1.64 (1)	1.64	1.64	82.0 (3)	82	1.38 to 173	-		
13										
14										

Synonyms

Product Composition

ToxCast in Vitro Data

Vitro Data Exp

Exposure PubChem

- Physchem properties for exposure modeling, augmented with ToxCast HTS *in vitro* data etc.
- Our approach to modeling:
 - Obtain high quality training sets
 - Apply appropriate modeling approaches
 - Validate performance of models
 - Define the applicability domain and limitations of the models
 - Use models to predict properties across our full datasets

PHYSPROP Data: Available from:

http://esc.syrres.com/interkow/EpiSuiteData.htm

EPI Suite Data

The downloaded files are provided in "zip" format ... the downloaded file must be "un-zipped" with common utility programs such as <u>WinZip</u>.

Basic Instructions:

(1) Download the zip file (2) Un-Zip the file

WSKOWWIN Program Methodology & Validation Documents (includes Training & Validation datasets) - Download file is: WSKOWWIN_Datasets.zip (180 KB)

Click here to download WSKOWWIN_Datasets.zip

WATERNT (Water Solubility Fragment) Program Methodology & Validation Documents (includes Training & Validation datasets) - Download file is: WaterFragmentDataFiles.zip (511 KB)

Click here to download WaterFragmentDataFiles.zip

MPBPWIN (Melting Pt, Boiling Pt, Vapor Pressure) Program Test Sets -Download file is: MP-BP-VP-TestSets.zip (1983 KB)

Click here to download MP-BP-VP-TestSets.zip

BCFBAF Excel spreadsheets of BCF and kM data used in training & validation ... (includes the Jon Arnot Source BCF DB with multiple BCF values) - Download file is: Data_for_BCFBAF.zip (1.4 MB)

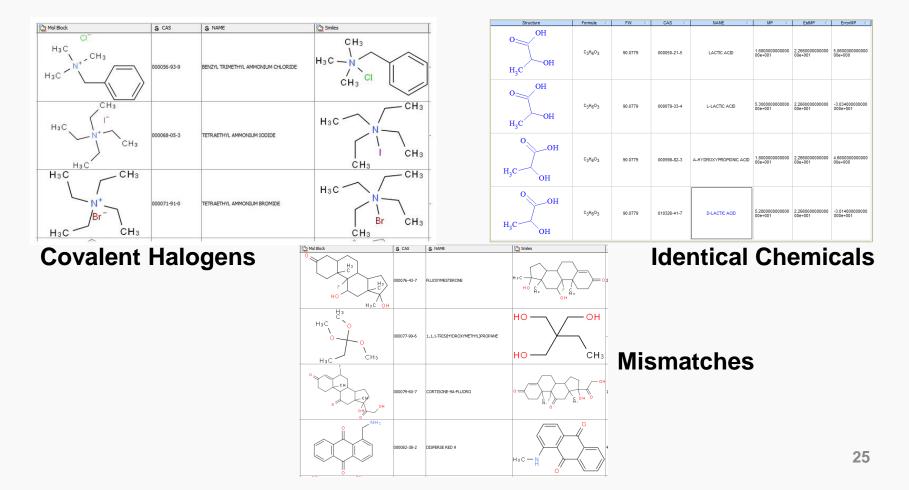
Click here to download Data_for_BCFBAF.zip

HENRYWIN Data files used in training & validation ... (includes Meylan and Howard (1991) Data document) - Download file is: HENRYWIN_Data_EPI.zip (531 K)

Click here to download HENRYWIN_Data_EPI.zip

- Water solubility
- Melting Point
- Boiling Point
- LogP (Octanol-water partition coefficient)
- Atmospheric Hydroxylation Rate
- LogBCF (Bioconcentration Factor)
- Biodegradation Half-life
- Ready biodegradability
- Henry's Law Constant
- Fish Biotransformation Half-life
- LogKOA (Octanol/Air Partition Coefficient)
- LogKOC (Soil Adsorption Coefficient)
- Vapor Pressure

Check and Curate Public Data


- Public data should be curated prior to modeling.
- The data files have FOUR representations of a chemical, plus the property value.

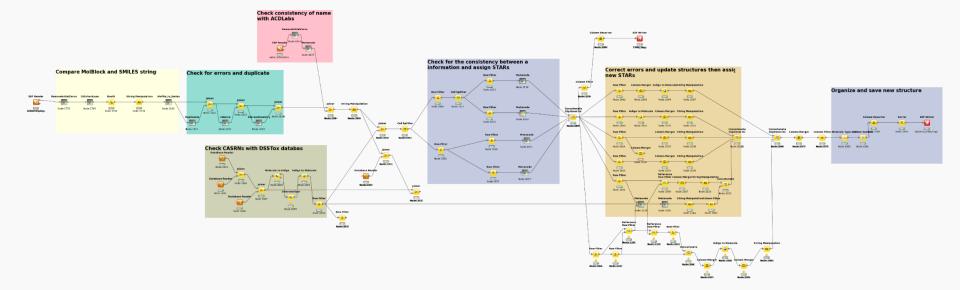
SDF Molecule	Moi Mol Block	S Smiles	S CAS	S NAME	D Kow
-ISIS- 09141018452D 4 3 0 0 0 0 0 0 0 0999 V2000 2.4667 -0.0833 0.0000 0 0 0 2.4667 -0.9125 0.0000 C 0 0 1.7500 -1.3292 0.0000 H 0 0 3.1833 -1.3292 0.0000 H 0 0 2 1 2 0 0 0 0 3 2 1 0 0 0 0 4 2 1 0 0 0 0 M END > <cas> (000050-00-0) 000050-00-0</cas>	0				D Kow
<pre>> <name> (000050-00-0) FORMALDEHYDE > <kow> (000050-00-0)</kow></name></pre>					
3.50000000000000e-001					

Public data should be curated prior to modeling

invironmental Protection

Agency

The Approach


Our curation process

- Choose the "chemical" by checking levels of consistency
- Perform initial analysis manually to understand how to clean the data (chemical structure and ID)
- Automate the process (and test iteratively)
- Process all datasets using final method

- We did **NOT** validate each measured **property value**

KNIME Workflow to Evaluate the Dataset

• CAS Checksum: 12163 valid, 3646 invalid (>23%)

nmental Protection

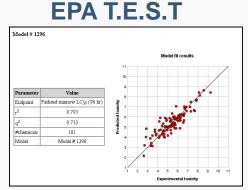
- Invalid names: 555
- Invalid SMILES 133
- Valence errors: 322 Molfile, 3782 SMILES (>24%)
- Duplicates check:
 - -31 DUPLICATE MOLFILES
 - -626 DUPLICATE SMILES
 - -531 DUPLICATE NAMES
- SMILES vs. Molfiles (structure check)
 - -1279 differ in stereochemistry (~8%)
 - -362 "Covalent Halogens"
 - -191 differ as tautomers
 - -436 are different compounds (~3%)

Curation to "QSAR Ready Files"

- "QSAR-Ready Structures"
 - Desalt/Neutralize, Desolvate, Remove stereochemistry

Property	Initial file	Curated Data	Curated QSAR ready
AOP	818	818	745
BCF	685	618	608
BioHC	175	151	150
Biowin	1265	1196	1171
BP	5890	5591	5436
HL	1829	1758	1711
KM	631	548	541
KOA	308	277	270
LogP	15809	14544	14041
MP	10051	9120	8656
PC	788	750	735
VP	3037	2840	2716
WF	5764	5076	4836
WS	2348	2046	2010

Communicating Transparency in Models to Users of an App



- Too often predicted values just give "numbers"
- Users have no real understanding of model performance
- There are good examples though! ACD/IIab, T.E.S.T, OCHEM

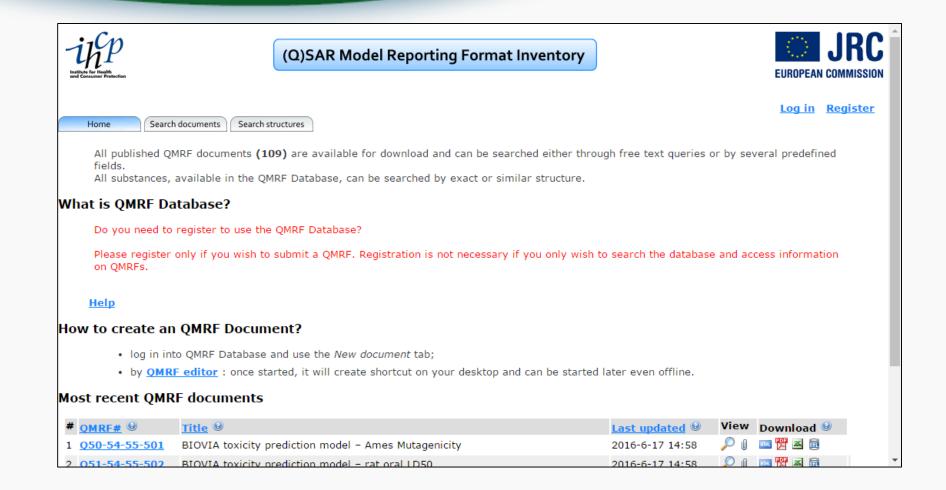
ACD/I-Lab	Module view History	view Help Register L	og In			Credits: 0 + 40	▼ Guest
Modules e Phys Clem About Basic PhysOtem Properties (Pres) Basic PhysOtem Properties (Pres) Basic PhysOtem Properties (Pres) LogP LogP LogP LogP LogP LogP LogP LogP			Loge (AR)Loge v2.0): Reliability: High (RI : Loge (ACD/Labs): 1.1 Detailed experimental Commission Report)	0.94) \pm 0.23 data for this compound I	nas been found in our dat:	abase	
pKa DB IADME Toxicity NMR Naming	Sector of the se			CHING CHI	CH3 CH3		
	Exact Match Aspirin CAS: 50-78-2 LogP: 1.19	Vesipyrin CAS: 134-55-4 LooP: 2.88	Benzoic acid, 2-(LogP: 1.67	Benzoic acid, 2-(LogP: 1.47	Benzoic acid, 2-m CAS: 579-75-9 LogP: 1.59		

OCHEM predictor - results • Here you can browse the predictions for your compounds and export them in a variety of formats Image: transmission of the second seco

OCHEM

NCCT Models: What you would report in a paper...

Prop	Vars	5-fold CV (75%)		Training (75%)			Test (25%)		
		Q2	RMSE	N	R2	RMSE	Ν	R2	RMSE
BCF	10	0.84	0.55	465	0.85	0.53	161	0.83	0.64
BP	13	0.93	22.46	4077	0.93	22.06	1358	0.93	22.08
LogP	9	0.85	0.69	10531	0.86	0.67	3510	0.86	0.78
MP	15	0.72	51.8	6486	0.74	50.27	2167	0.73	52.72
VP	12	0.91	1.08	2034	0.91	1.08	679	0.92	1
WS	11	0.87	0.81	3158	0.87	0.82	1066	0.86	0.86
HL	9	0.84	1.96	441	0.84	1.91	150	0.85	1.82


Predicted Data

		Predicted		
Source			Result	Calculation Details
EPISUITE			132 °C	Not Available
NCCT			144 °C	NCCT Model Report
	States nmental Protection Home Advanced Sea y	arch		20182
		Ν	ICCT Models: Melting Po	int
	Bisphenol A 80-05-7 DTXSID7020182			
	H0 CH3	Globa Local	esuits ted value: 144 °C I applicability domain: Inside O applicability domain index: 0.91 O lence level: 0.65 O	Calculation Result for a chemical
Model Performance with full QMRF	Model Performance	a 111	Q2 R	Weighted KNN model QMRF Training (75%) Test (25%) IMSE R2 RMSE R2 RMSE 1.8 0.74 50.3 0.73 52.7
	Nearest Neighbors from the Training S	et		
Nearest Neighbors from Training Set	High CHI HIGH CHI Bisphenol A Measured: 153 Predicted: 144	4,4'-Propane-1,1-diyldiphenol Measured: 132 Predicted: 133	phenol, 4,4-butylidenebis- Measured: 137 Predicted: 142	$ \begin{array}{c} \underset{H_{i}}{\overset{H_{i}}{\underset{H_{H_{i}}{\underset{H_{H_{i}$

QMRF Reports

Prediction Details and QMRF Report Model Results Predicted value: 144 °C Applicability domain using the leverage approach. All training set space considered. More Global applicability domain: Inside 0 details in QMRF. Local applicability domain index: 0.91 v QMRF_NCCT_MP_08212016 - Adobe Acrobat Pro Confidence level: 0.65 @ File Edit View Window Help 🖶 🖂 🔅 🦻 🋂 💊 🖗 🖄 🔁 Create 🔻 P 👚 😱 1 / 10 🛛 🗽 Sm (=) (+) 143% -Tools QMRF identifier (JRC Inventory): To be entered by JRC QMRF Title: MP: Melting point prediction from the NCCT Models Suite. Printing Date: May 4, 2016 **1.OSAR** identifier 1.1.QSAR identifier (title): MP: Melting point prediction from the NCCT_Models Suite. 1.2.Other related models: No related models 1.3.Software coding the model: NCCT_models V1.02 Suite of QSAR models to predict physicochemical properties and environmental fate of organic chemicals

Accepted for publication to SAR and QSAR in Environmental Research

nvironmental Protection

- 6 💌

Comment

Customize

Fill & Sign

Agency

EPA T.E.S.T

https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test

	wironmental Protection Agency		Esp	añol │ 中文:繁體版	│ 中文: 简体版	Tiếng Việt	한국어		
Learn the Issues	Science & Technology	Laws & Regulations	About EPA		Search EPA	Search EPA.gov			
Related Topics: Safer Chemicals Research							Share		
Taxisity Fatimatian Cafturara Taal (TECT)									

Toxicity Estimation Software Tool (TEST)

On this page:

- <u>QSAR Methodologies</u>
- What's New in Version 4.2?
- Prior Version History
- <u>System Requirements</u>
- Installation Instructions
- Publications
- Get Email Alerts

From physicochemical property endpoints to toxicity endpoints

The Toxicity Estimation Software Tool (TEST) was developed to allow users to easily estimate the toxicity of chemicals using Quantitative Structure Activity Relationships (QSARs) methodologies. QSARs are mathematical models used to predict measures of toxicity from the physical characteristics of the structure of chemicals (known as molecular descriptors). Simple QSAR models calculate the toxicity of chemicals using a simple linear function of molecular descriptors:

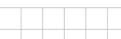
Ask a Technical Expert

Got a question about our research model? Want to give us feedback? Contact a technical expert about <u>TEST</u>.

Full transparency for each prediction

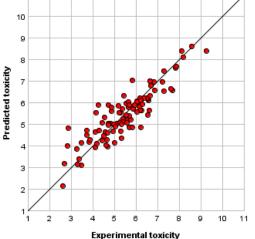
Toxicity prediction results for 333-41-5 for Hierarchical clustering method

	Prediction results		
Endpoint	Experimental value CAS: 333-41-5 Source: <u>ECOTOX</u>	Predicted value ^a	Prediction interval
Fathead minnow LC ₅₀ (96 hr) -Log(mol/L)	4.81	5.39	$4.54 \le Tox \le 6.24$
Fathead minnow LC ₅₀ (96 hr) mg/L	4.70	1.23	$0.17 \le Tox \le 8.71$


^aNote: the test chemical was present in the external test set.

١.			Cluster mode						
	Cluster	model	Test chemical descriptor values	Prediction interval -Log(mol/L)	r²	q²	#chemicals		Model # 1296
Π	<u>1296</u>		Descriptors	6.010 ± 1.136	0.793	0.733	101 -		
	<u>1300</u>		Descriptors	5.458 ± 1.312	0.729	0.645	111		
	<u>1301</u>		Descriptors	5.136 ± 1.169	0.747	0.718	294		
	<u>1302</u>		Descriptors	4.922 ± 1.182	0.774	0.751	641		

Cluster models with violated constraints									
Cluster Model	r ²	q ²	# chemicals	Message					
<u>1121</u>	0.810	0.576	10	Rmax constraint not met					
<u>1209</u>	0.799	0.574	11	Fragment constraint not met					
1247	0.919	0.647	20	Fragment constraint not met					
1264	0.869	0.781	22	Fragment constraint not met					
1268	0.675	0.553	24	Fragment constraint not met					


	Descriptor	values	for	test	chemical
--	------------	--------	-----	------	----------

Parameter	Value
Endpoint	Fathead minnow LC ₅₀ (96 hr)
r ²	0.793
q ²	0.733
#chemicals	101
Model	Model # 1296

11

Model fit results

ed States Invironmental Protection

Agency

External Links

Chemical Properties	External Links	Synonyms	Product Composition	ToxCast in Vitro Data	Exposure	PubChem	Comments
General	Toxicolo	ogy	Publications	Analytical		Prediction	I
EPA Substance R	ACToR		Toxline	Q National Env	viron	oo Chemicaliz	e
NIST Chemistry	🖷 DrugPo	rtal	Environmental He	🕜 RSC Analyti	cal A	♂ Proton NM	R Predi…
🚓 Household Produ	CCRIS		NIEHS			Carbon-13	NMR
🙄 PubChem	ChemVi	iew	National Toxicolo.			🕫 2D NMR H	ISQC/H
💢 Chemspider	CTD		G Google Books			ChemRTP	Predictor
CPCat	🏩 eChem	Portal	G Google Scholar				
🝠 DrugBank	🛞 EDSP 🛛	Dashboard	G Google Patents				
hmp HMDB	Gene-T	ох	PubMed				
w Wikipedia	HSDB						
Q MSDS Lookup	ToxCas	t Dashboa					
Q ToxPlanet	LactMe	d					
Q ChemHat: Hazard	M Internat	tional Toxi					

External Links Synonyms

Product Composition

ToxCast in Vitro Data

Exposure

PubChem Comments

Found 83 synonyms

Legend: Valid Synonyms Good Synonyms Other Synonyms

Copy all Synonyms

Bisphenol A

4,4'-(Propane-2,2-diyl)diphenol

phenol, 4,4'-(1-methylethylidene)bis-

BPA

4,4'-Propane-2,2-diyldiphenol

Phenol, 4,4'-(1-methylethylidene)bis-

80-05-7 Active CAS-RN

4-06-00-06717 Beilstein Registry Number

UNII-MLT3645199 FDA Registry Number

(4,4'-Dihydroxydiphenyl)dimethylmethane

Over a million synonyms, different levels of curation and validation

Chemical Properties

ies External Links

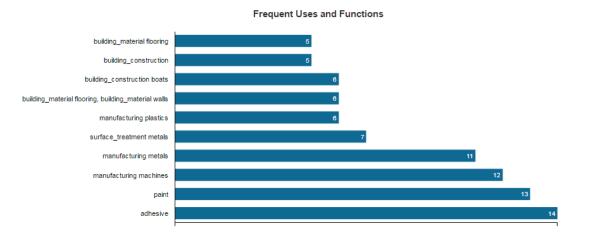
inks Synonyms

Product Composition

ToxCast in Vitro Data

Exposure

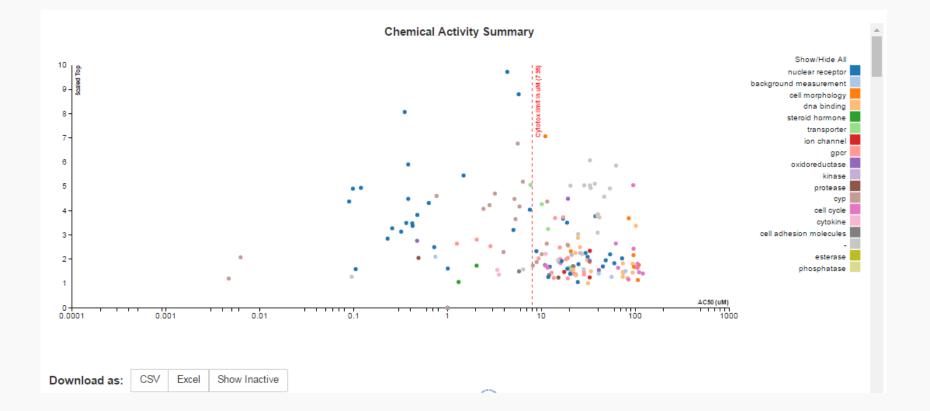
PubChem Comments


Functional Use and Composition (Integrating CPCat Data)

Download as: CSV

Chemical Properties

Excel



Product Composition

	Product		Percent Composition ↓		Manufacturer		
	BISPHENOL-A	(BPA)	100%		GENERAL ELECTRIC COMPANY		
	EPOXY PASTE	PIGMENTS, 3402-3408	<100%PPM		SYSTEM THREE RESINS		
	ISOPROPYLIDE	ENEDIPHENOL, 99+%, 23965-8	99%+		ALDRICH CHEMICAL CO		
	BISPHENOL A ((RESIN GRADE) (43106)	97.8%		SHELL OIL COMPANY		
	4,4-ISOPROPYL	LIDENEDIPHENOL, 97%, 13302-7	97%		ALDRICH CHEMICAL CO		
	ICO-PATCH EP	OXY RESIN HARDENER, PART B	80%		INTERNATIONAL COATINGS CO		
	ADHESIVE-SCO	DTCH-WELD (R) 2216 B GRAY	72%		3M COMPANY		
	EPOCAST HAR	DENER 946, FPC 5000	45%		CIBA-GEIGY CORP		
	EPOLITE 1350 H	HANDENER	35-50		HEXCEL CORP, RESINS GROUP		
	EL CHEM NO 2		27 5%	1994 - Contra - Contr			
External Links	Synonyms	Product Composition	ToxCast in Vitro Data	a Exposure	PubChem	Comments	

Bioassay Screening Data (Integrating ToxCast Data)

Chemical Properties External Links Synonyms Product Composition ToxCast in Vitro Data Exposure PubChem Comments

Bioassay Screening Data (Integrating ToxCast Data)

Assay Name	Hit Call	Тор	Scaled Top	AC50 1	log AC50	Intended Target Family		
APR_Hepat_CellLoss_48hr_dn	APR_HepG2_Oxi	idativeStress_7	2h_up					
	Assay Name:	APR_HepG2	_OxidativeStress_	72h_up				
APR_HepG2_OxidativeStress_24h_up	Gene Symbol:	null						
APR_HepG2_MitoMass_24h_dn	Organism: hun	nan						
APR_Hepat_DNADamage_48hr_up	Tissue: liver							
APR HepG2 CellLoss 24h dn	Assay Format	Type: cell-ba	sed					
	Biological Proc	ess Target: o	xidative phosphory	lation				
APR_HepG2_OxidativeStress_72h_up	Detection Tech	nology: Fluor	escence					
ATG_HSE_CIS_up	Analysis Direct							
APR Hepat DNADamage 24hr_up	Intended Targe	-						
			1 A A A A A A A A A A A A A A A A A A A		-	72hr was analyzed into 2 assay e fitting direction relative to DMS		· · · · · · · · · · · · · · · · · · ·
APR_Hepat_CellLoss_24hr_dn	baseline of acti	ivity. Using a	type of viability rep	orter, measure	es of protein for g	jain-of-signal activity can be use	ed to understa	and the signaling at
APR_Hepat_Steatosis_24hr_up		-	-			nt can be referred to as a priman ction. To generalize the intended	-	
APR_HepG2_CellLoss_72h_dn						nily, where the subfamily is "stre	-	

External Links

Synonyms Produc

Product Composition

ToxCast in Vitro Data

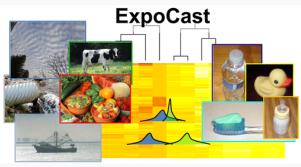
Exposure

PubChem Comments

Exposure Data – NHANES and ExpoCast Predictions

	National Health and Nutrition Examination Survey (NHANES) Inferences (mg/kg-bw/day)									
	Ages 6-11	Ages 12-19	Ages 20-65	Ages 65+	BMI > 30	BMI < 30	Repro. Age Females	Females	Males	Total
Minimum	3.80e-05	2.55e-05	2.79e-05	1.91e-05	2.38e-05	3.02e-05	2.83e-05	2.58e-05	2.94e-05	2.86e-05
Maximum	4.92e-05	3.38e-05	3.27e-05	2.31e-05	2.74e-05	3.30e-05	3.31e-05	3.03e-05	3.37e-05	3.08e-05
Mean	4.33e-05	2.93e-05	3.02e-05	2.10e-05	2.55e-05	3.16e-05	3.06e-05	2.80e-05	3.15e-05	2.97e-05

Exposure Predictions (mg/kg-bw/day)


	Ages 6-11	Ages 12-19	Ages 20-65	Ages 65+	BMI > 30	BMI < 30	Repro. Age Females	Females	Males	Total
Median	6.30e-05	2.68e-05	2.05e-05	1.61e-05	1.69e-05	2.67e-05	1.11e-05	1.11e-05	3.89e-05	2.11e-05
95th Percentile	5.82e-03	2.00e-03	1.61e-03	2.18e-03	1.45e-03	2.26e-03	1.57e-03	9.09e-04	3.34e-03	2.00e-03

National Health and Nutrition Examination Survey

High-Throughput Models for Exposure-Based Chemical Prioritization in the ExpoCast Project

Environ. Sci. Technol., 2013, 47 (15), pp 8479–8488

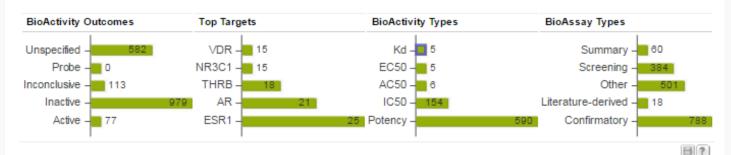
Chemical Properties

es External Links

inks Synonyms

Product Composition

ToxCast in Vitro Data


a Exposure

re PubChem

Comments

PubChem integration

Biological Activities

Structure	Substance		Activity		Compound Name	Bioassay Name	
Suucture	SID	Outcome	Туре	Value [µM]	Compound Name	Dibassay Name	
0+0	<u>312534041</u>	Inactive			Bisphenol A	Screen for inhibitors of RMI FANCM (MM2) intereaction [AID: <u>1159607</u> , Type: Other, PubMed ID: <u>26962873</u>]	
0+0	<u>144214049</u>	Inconclu	Potency	62.1889	Bisphenol A	qHTS assay for small molecule agonists of the p53 signaling pathway [AID: <u>651631</u> , Type: Confirmatory]	
0+0	<u>144214049</u>	Inactive	Potency		Bisphenol A	qHTS assay for small molecules that induce genotoxicity in human embryonic kidney cells expressing luciferase-tagged ATAD5 [AID:651632, Type: Confirmatory]	
0+0	<u>144214049</u>	Inconclu	Potency	55.4259	Bisphenol A	qHTS assay for small molecule agonists of the p53 signaling pathway - cell viability [AID: <u>651633</u> , Type: Confirmatory]	
ģ	144214049	Inactive	Potency		Bisphenol A	qHTS assay for small molecules that induce genotoxicity in human	

Chemical Properties

External Links

ToxCast in Vitro Data

Connecting into the Dashboard

Linkages into the Dashboard are simple: using the associated identifiers

Bisphenol A 80-05-7 DTXSID7020182 Searched by Synonym: Found 1 result for 2D 3D Q III E 4-	'bisphenol A'.
	Intrinsic Properties Structural Identifiers
H ₃ C CH ₃	Citation
DD	U.S. Environmental Protection Agency. iCSS Chemistry Dashboard. https://comptox.epa.gov/dashboard/DTXSID7020182 (accessed May 03, 2016), Bisphenol A
но он	

- For integration use files of structures/identifiers mapped to DTXSIDs
- Integrated already PubChem, EBI's UNICHEM, ChemSpider and whoever wants the files...

Our OPEN Data is available...

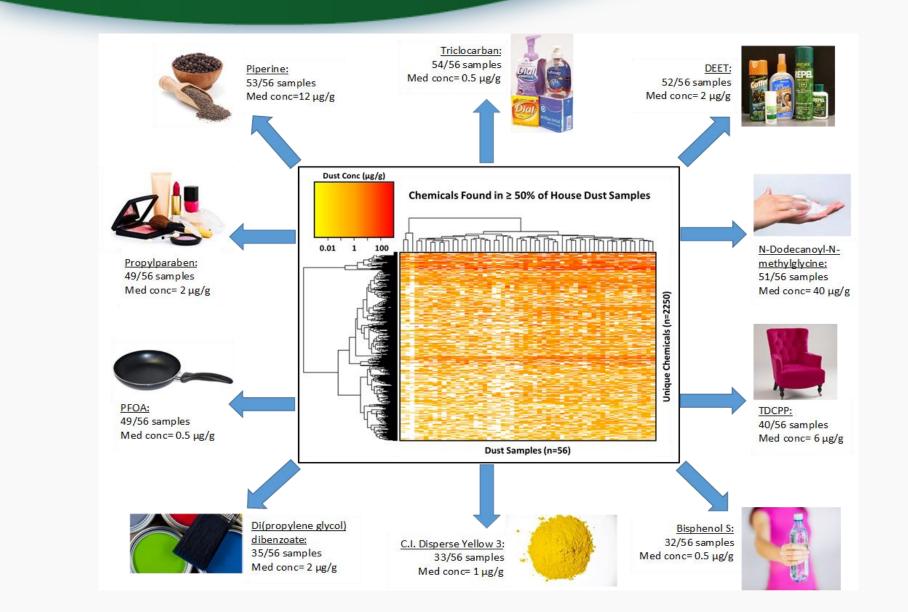
 Various types of data at FTP download site: <u>ftp://newftp.epa.gov/COMPTOX/Sustainable_Chemistry_Data/Chemistry_Dashboard</u>

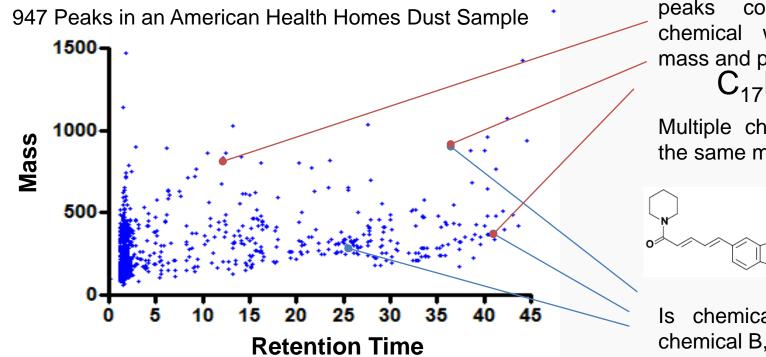
Index of /COMPTOX/Sustainable_Chemistry_Data/Chemistry

Name	Size	Date Modified
[parent directory]		
PHYSPROP_Analysis/		9/6/16, 10:30:00 AM
DSSTOX_MS_Ready_Chemical_Structures.zip	280 MB	10/7/16, 1:32:00 PM
DSSTox_Mapping_20160701.zip	32.9 MB	8/25/16, 9:31:00 AM
DSSTox_Predicted_NCCT_Model.zip	343 MB	9/29/16, 10:13:00 AM
DSSTox_SDF_File_20160720.sdf.gz	162 MB	8/25/16, 9:34:00 AM
DSSTox_Synonyms_20161018.zip	145 MB	10/21/16, 3:31:00 PM
Dsstox_CAS_number_name.xlsx	32.1 MB	8/25/16, 9:36:00 AM
PubChem_DTXSID_mapping_file.txt	23.1 MB	9/27/16, 9:46:00 AM

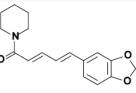
ONE Application of the Dashboard

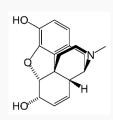
- Targeted Analysis:
 - We know exactly what we're looking for
 - 10s 100s of chemicals
- Suspect Screening Analysis (SSA):
 - We have chemicals of interest
 - 100s 1,000s of chemicals




Suspect Screening Results

United States Environmental Protection Agency


Suspect Screening in House Dust



Liquid chromatography peaks corresponds to а chemical with an accurate mass and predicted formula: $C_{17}H_{19}NO_{3}$

Multiple chemicals can have the same mass and formula:

chemical A present, chemical B, or both?

We are now expanding our identity libraries using reference samples of ToxCast chemicals

ONE Application of the Dashboard

- Targeted Analysis:
 - We know exactly what we're looking for
 - 10s 100s of chemicals
- Suspect Screening Analysis (SSA)
 - We have chemicals of interest
 - 100s 1,000s of chemicals
- Non-Targeted Analysis (NTA):
 - We have no preconceived lists
 - 1,000s 10,000s of chemicals
 - In dust, soil, food, air, water, products, plants, animals, and...us!!

Previous Work with Suspect-Screening

Environment International 88 (2016) 269-280

Contents lists available at ScienceDirect

Environment International

journal homepage: www.elsevier.com/locate/envint

Linking high resolution mass spectrometry data with exposure and toxicity forecasts to advance high-throughput

environmental monitoring

Julia E. Rager^a, Mark J. Strynar^b, Shuang Liang^a, Rebecca L. McMahen^a, Ann M. Richard^c, Christopher M. Grulke^d, John F. Wambaugh^c, Kristin K. Isaacs^b, Richard Judson^c, Antony J. Williams^c, Jon R. Sobus^{b,*}

* Oak Ridge Institute for Science and Education (ORISE) Participant, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, United States

^b U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, United States
^c U.S. Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, United States
States

^d Lockheed Martin, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, United States

Rank-Ordering of "Known-Unknowns" using ChemSpider

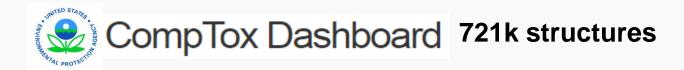
RESEARCH ARTICLE

Identification of "Known Unknowns" Utilizing Accurate Mass Data and ChemSpider

Table 1. Searching ChemSpider by Elemental Composition then Sorting by Number of Associated References

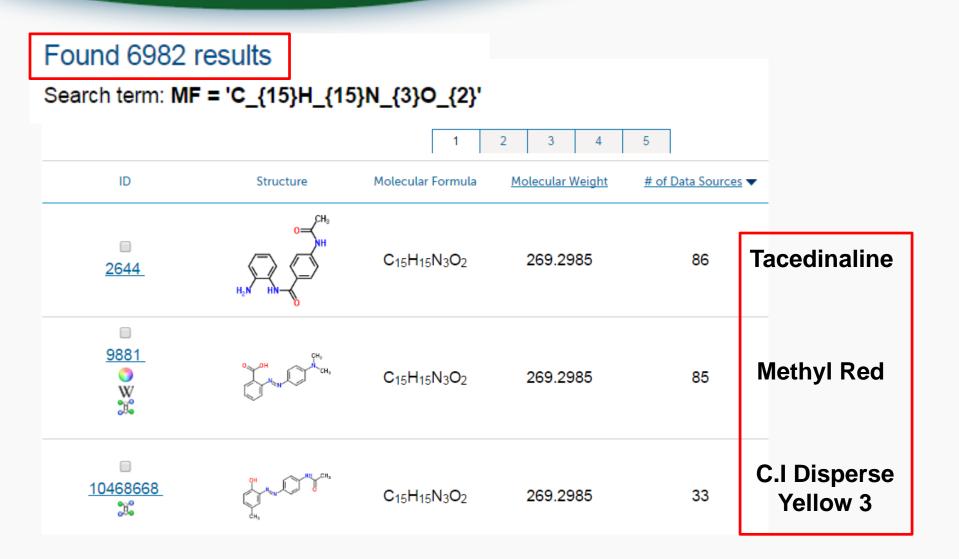
Class of compounds	Number compounds in class	Position of compound sorted in de			
		#1	#2	#3	
Drugs	45	43	1	1	
Pesticides	8	7	1		
Toxins	2	2			
Polymer antioxidants	15	15			
Polymer UV stabilizers	10	8	1	1	
Polymer clarifying agent (Irgaclear DM)	1				
Polyurethane additives	4	2	1		
Natural products	3	2		1	
Herbicide (clofibric acid)	1	1			
Artificial sweetener (sucralose)	1	1			
Total compounds ChemSpider	90	81	4	3	
Total compounds CAS Registry [1]	90	84	4	1	

Advanced MS Searches



SEPA United States Environmental Prot Agency	ection Home	Advanced Search			Search CompT	Tox Dashboard Q	Options -
		Con	прТох	Dashb	oard		
			Advand	ed Search			
	Mass Searc	:h _{Max}					
	Mass	amu	±	Error	amu	Search Q	
	Single comp	onent 🛛 🗐 Ignore is	otopes				
	Generate M	lolecular Form	nula(e)				
	± Min/	Max					
	Mass	amu	±	Error	amu	Search Q	
	Options -						
	Molecular F	ormula Searc	h				
	Molecular Formula	a				Search Q	
	Ignore isotope	s					
	Ab	out Contact	ACTol	. 🗶 🚽	Privacy Privacy	Accessibility Hel	p

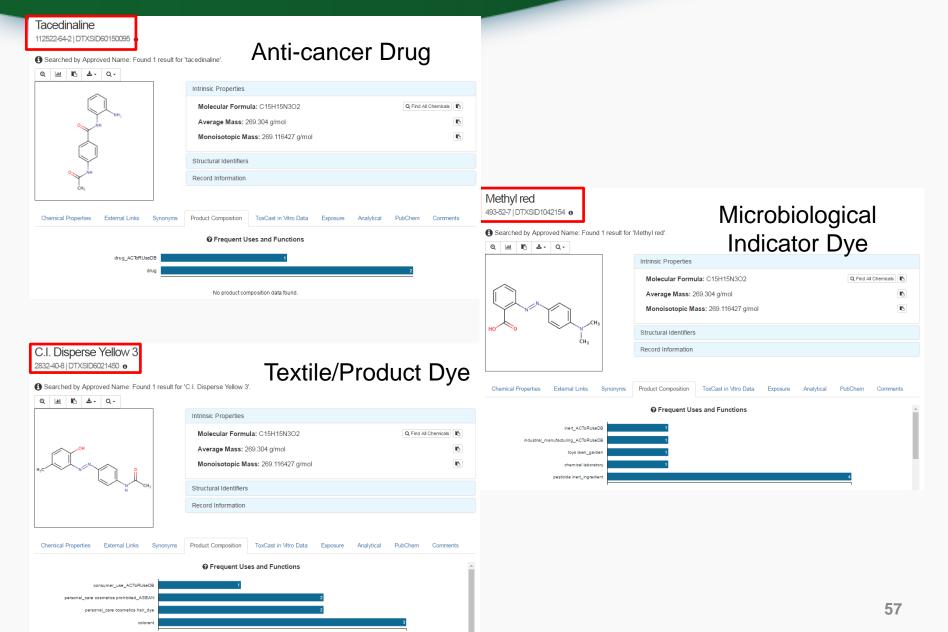
Does the Dashboard Add Value?


Dilution Example... Morphine Skeleton

Found 32 results 10.00 10.000 Search term: BQJCRHHNABKAKU (Found by InChIKey (skeleton match)) First Last (5alpha,6beta)-17-Methyl-7,8-D-(-)-Morphine 17-Methyl-7,8-didehydro-4,5-(5alpha,6alpha)-17-(5alpha)-17-Methyl-7,8epoxymorphinan-3,6-diol 3)Methyl-7.8-didehydrodidehydro-4,5-epoxymorphinandidehydro-4,5-epoxymorphinanepoxymorphinan-3.6-dio 6.6-diol .6-diol CH., сH (5alpha,6alpha)-17-Methyl-7,8-(6alpha)-17-Methyl-7,8-(5beta,6beta,9alpha,13alpha,14al) (5alpha,6alpha)-17-Methyl-7,8-(5alpha,6alpha,9alpha)-17-Methyl-7,8-didehydro-4,5-Methyl-7,8-didehydro-4,5lidehydro-4,5-epoxymorphinandidehydro-4,5-epoxymorphinanidehydro-4,5-epoxymorphinanepoxymorphinan-3,6-diol epoxymorphinan-3,6-diol 6-diol .6-diol 6-diol HC Searched by InchiKey Skeleton: Found 3 results for 'BQJCRHHNABKAKU'. Download as: CSV - Excel - SDF -CH, нс Preferred Name 1 CAS-RN↑↓ QC Level 1 Number of Sources 1 Monoisotopic Mass 1 (6alpha)-17-Methyl-7,8-(6beta)-17-Methyl-7,8-didehydro-(5beta, idehydro-4,5-epoxymorphinan-4,5-epoxymorphinan-3,6-diol didehydr .6-dio HO ĊН. Morphine Morphinan-3.6-d... Morphinan-3,6-a.. HO 57-27-2 16206-77-2 67293-88-3

ChemSpider 6982 Results!!! Search for C15H15N3O2

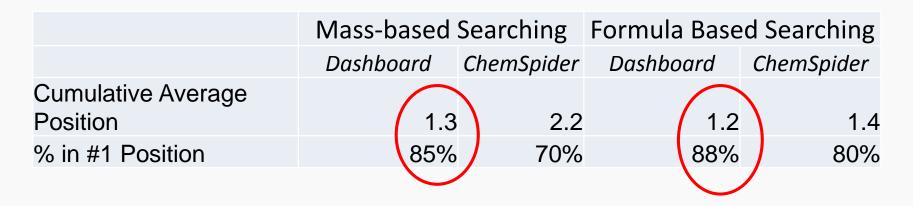
Same top hits – different ranking **90 hits** only versus **6926 hits**


Search Results

Searched by Molecular Formula, ignoring isotopes: Found 90 results for 'C15H15N3O2'.

Structure	Preferred Name ↑↓	CAS-RN ↑↓	QC Level †↓	Number of Sources †↓	Monoisotopic Mass †↓
North Contraction	C.I Disperse Yellow 3	2832-40-8	DSSTox Low	18	269.116427
HO CH ₂	Methyl Red	493-52-7	DSSTox Low	17	269.116427
	Tacedinaline	112522-64-2	Public Medium	4	269.116427

Using Meta-Data to Sort Candidates



Dashboard vs ChemSpider Ranking Summary

- Selected peer-reviewed publications
- 162 total individual chemicals in search

Coming December 2016 Batch Searching Names/CASRNs

• What are these chemicals?

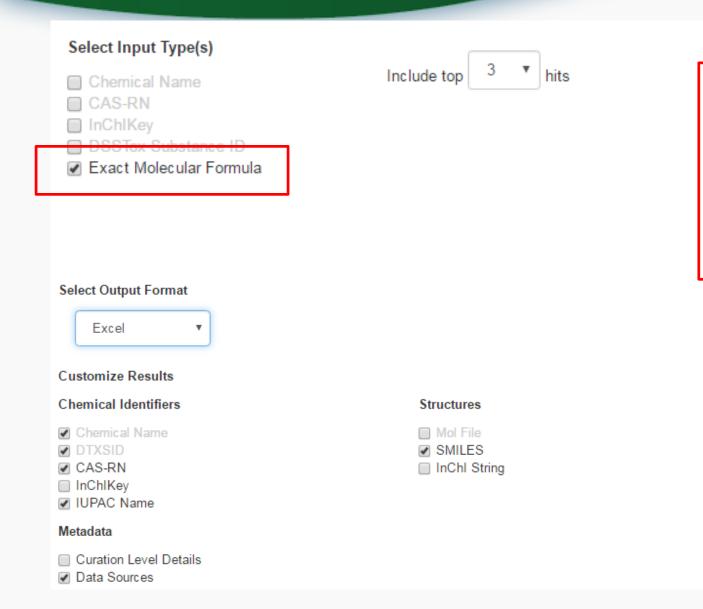
533-73-31,5-Naphthalenediol95-54-52,7-Naphthalenediol108-73-64-Amino-o-cresol108-45-2Disperse Blue 32051-85-6Disperse Blue 377106-50-33,4-Dihydroxyaniline128-95-02,6-Dihydroxyethylaminotoluene83-56-7Catechol27581-07-31-Acetoxy-2-methylnaphthalene5697-02-9Fast Green FCF90-15-3Acid Red 1489-25-86-Nitro-2,5-pyridinediamine92-44-4Pyridine15086-94-9HC Orange 2615-05-4m-Aminophenol5862-77-12-Methyl-4-nitroaniline5862-77-12-Methyl-4-nitroaniline95-86-3Acid Blue 195-86-3Acid Blue 195-80-72,3-Indolinedione1004-75-71,2,4-Trihydroxybenzene141-86-62-chloro-4-phenylenediamine84540-47-62-chloro-4-phenylenediamine44330-25-6Solvent Red 43606-20-2Acid Violet 9823-40-5Direct Blue 86582-17-22,5,6-Triamino-4-pyrimidinol16867-03-1Solvent Red 1603-85-0Orazino 1		
95-54-52,7-Naphthalenediol108-73-64-Amino-o-cresol108-45-2Disperse Blue 32051-85-6Disperse Blue 377106-50-33,4-Dihydroxyaniline128-95-02,6-Dihydroxyethylaminotoluene83-56-7Catechol27581-07-31-Acetoxy-2-methylnaphthalene5697-02-9Fast Green FCF90-15-3Acid Red 1489-25-86-Nitro-2,5-pyridinediamine92-44-4Pyridine15086-94-9HC Orange 2615-05-4m-Aminophenol5862-77-12-Methyl-4-nitroaniline5862-77-12-Methyl-4-nitroaniline95-86-3Acid Blue 195-86-3Acid Blue 195-80-72,3-Indolinedione1004-75-71,2,4-Trihydroxybenzene141-86-62-Chloro-4-phenylenediamine84540-47-62-Chloro-p-phenylenediamine44330-25-6Solvent Red 43606-20-2Direct Blue 86582-17-24-Hydroxyindole16867-03-12,5,6-Triamino-4-pyrimidinol16867-03-1Solvent Red 1603-85-0Orvarine 1	533-73-3	1 5_Naphthalenedial
108-73-64-Amino-o-cresol108-45-2Disperse Blue 32051-85-6Disperse Blue 377106-50-33,4-Dihydroxyaniline128-95-02,6-Dihydroxyethylaminotoluene83-56-7Catechol27581-07-31-Acetoxy-2-methylnaphthalene5697-02-9Fast Green FCF90-15-3Acid Red 1489-25-86-Nitro-2,5-pyridinediamine92-44-4Pyridine15086-94-9HC Orange 2615-05-4m-Aminophenol5862-77-12-Methyl-4-nitroaniline5862-77-12-Methyl-4-nitroaniline5862-77-12,4-Trihydroxybenzene5862-77-150/vent Red 23141-86-62-Chloro-4-phenylenediamine4540-47-6P-Phenylenediamine4540-47-6Direct Blue 86582-17-2Acid Violet 9823-40-5Direct Blue 86582-17-24-Hydroxyindole16867-03-150/vent Red 1603-85-0Oranje 1		1, 5-Napricia reneutor
108-73-64-Amino-o-cresol108-45-2Disperse Blue 32051-85-6Disperse Blue 377106-50-33,4-Dihydroxyaniline128-95-02,6-Dihydroxyethylaminotoluene83-56-7Catechol27581-07-31-Acetoxy-2-methylnaphthalene5697-02-9Fast Green FCF90-15-3Acid Red 1489-25-86-Nitro-2,5-pyridinediamine92-44-4Pyridine15086-94-9HC Orange 2615-05-4m-Aminophenol5862-77-12-Methyl-4-nitroaniline5862-77-12-Methyl-4-nitroaniline5862-77-12,4-Trihydroxybenzene5862-77-12,3-Indolinedione1004-75-71,2,4-Trihydroxybenzene141-86-62-Chloro-4-phenylenediamine84540-47-6p-Phenylenediamine4540-47-6p-Phenylenediamine84540-47-6p-Phenylenediamine14930-25-6Solvent Red 43606-20-2Acid Violet 9823-40-5Direct Blue 86582-17-24-Hydroxyindole16867-03-150lvent Red 1603-85-0Oranje 1	95-54-5	2,7-Naphthalenediol
108-45-2Disperse Blue 32051-85-6Disperse Blue 377106-50-33,4-Dihydroxyaniline128-95-02,6-Dihydroxyethylaminotoluene83-56-7Catechol27581-07-31-Acetoxy-2-methylnaphthalene5697-02-9Fast Green FCF90-15-3Acid Red 1489-25-86-Nitro-2,5-pyridinediamine92-44-4Pyridine15086-94-9HC Orange 2615-05-4m-Aminophenol5862-77-12-Methyl-4-nitroaniline5862-77-10-Phenylenediamine95-86-3Acid Blue 195-80-72,3-Indolinedione1004-75-71,2,4-Trihydroxybenzene141-86-62-chloro-4-phenylenediamine84540-47-6p-Phenylenediamine44930-25-6Solvent Red 234-Hydroxyindole292-40-5Direct Blue 86582-17-24-Hydroxyindole16867-03-150lvent Red 11603-85-0Orange 1	108-73-6	
2051-85-6Disperse Blue 377106-50-33,4-Dihydroxyaniline128-95-02,6-Dihydroxyethylaminotoluene83-56-7Catechol27581-07-31-Acetoxy-2-methylnaphthalene5697-02-9Fast Green FCF90-15-3Acid Red 1489-25-86-Nitro-2,5-pyridinediamine92-44-4Pyridine15086-94-9HC Orange 2615-05-4m-Aminophenol5862-77-12-Methyl-4-nitroaniline5862-77-10-Phenylenediamine95-86-3Acid Blue 195-80-72,3-Indolinedione1004-75-71,2,4-Trihydroxybenzene141-86-62-Chloro-4-phenylenediamine84540-47-62-Chloro-p-phenylenediamine84540-47-6Direct Blue 8684540-47-6Direct Blue 86582-17-24-Hydroxyindole23-40-5Direct Blue 86582-17-24-Hydroxyindole667-03-1Solvent Red 1603-85-0Oragine 1		
106-50-33,4-Dihydroxyaniline128-95-02,6-Dihydroxyethylaminotoluene83-56-7Catechol27581-07-31-Acetoxy-2-methylnaphthalene5697-02-9Fast Green FCF90-15-3Acid Red 1489-25-86-Nitro-2,5-pyridinediamine92-44-4Pyridine15086-94-9HC Orange 2615-05-4m-Aminophenol5862-77-12-Methyl-4-nitroaniline5862-77-10-Phenylenediamine95-86-3Acid Blue 195-80-72,3-Indolinedione1004-75-71,2,4-Trihydroxybenzene141-86-62-Chloro-4-phenylenediamine84540-47-62-Chloro-p-phenylenediamine84540-47-6Direct Blue 8684540-47-6Direct Blue 86582-17-24-Hydroxyindole16867-03-1Solvent Red 116867-03-1Solvent Red 11603-85-0Oragine 1	108-45-2	Disperse Blue 3
106-50-33,4-Dihydroxyaniline128-95-02,6-Dihydroxyethylaminotoluene83-56-7Catechol27581-07-31-Acetoxy-2-methylnaphthalene5697-02-9Fast Green FCF90-15-3Acid Red 1489-25-86-Nitro-2,5-pyridinediamine92-44-4Pyridine15086-94-9HC Orange 2615-05-4m-Aminophenol5862-77-12-Methyl-4-nitroaniline5862-77-10-Phenylenediamine95-86-3Acid Blue 195-80-72,3-Indolinedione1004-75-71,2,4-Trihydroxybenzene141-86-62-Chloro-4-phenylenediamine84540-47-62-Chloro-p-phenylenediamine84540-47-6Direct Blue 8684540-47-6Direct Blue 86582-17-24-Hydroxyindole16867-03-1Solvent Red 116867-03-1Solvent Red 11603-85-0Oragine 1	2051-85-6	Disperse Blue 377
128-95-02,6-Dihydroxyethylaminotoluene83-56-7Catechol27581-07-31-Acetoxy-2-methylnaphthalene5697-02-9Fast Green FCF90-15-3Acid Red 1489-25-86-Nitro-2,5-pyridinediamine92-44-4Pyridine15086-94-9HC Orange 2615-05-4m-Aminophenol5862-77-12-Methyl-4-nitroaniline5862-77-12-Methyl-4-nitroaniline5862-77-12-Methyl-4-nitroaniline95-86-3Acid Blue 195-80-72,3-Indolinedione1004-75-71,2,4-Trihydroxybenzene141-86-62-chloro-4-phenylenediamine84540-47-6p-Phenylenediamine84540-47-6p-Phenylenediamine14330-25-6Solvent Red 43606-20-2Acid Violet 9823-40-5Direct Blue 86582-17-22,5,6-Triamino-4-pyrimidinol16867-03-1Solvent Red 1603-85-0HC yellow 10		
83-56-7Catechol27581-07-31-Acetoxy-2-methylnaphthalene5697-02-9Fast Green FCF90-15-3Acid Red 1489-25-86-Nitro-2,5-pyridinediamine92-44-4Pyridine15086-94-9HC Orange 2615-05-4m-Aminophenol5862-77-12-Methyl-4-nitroaniline5862-77-12-Methyl-4-nitroaniline5862-77-10-Phenylenediamine95-86-3Acid Blue 195-80-72,3-Indolinedione1004-75-71,2,4-Trihydroxybenzene141-86-62-Chloro-4-phenylenediamine84540-47-6P-Phenylenediamine84540-47-6Solvent Red 23141-86-62-Chloro-p-phenylenediamine84540-47-6Direct Blue 86582-17-2Acid Violet 9823-40-5Direct Blue 86582-17-22,5,6-Triamino-4-pyrimidinol16867-03-1Solvent Red 1603-85-0Grapion 1		5,4-Dinyur oxyani rine
83-56-7Catechol27581-07-31-Acetoxy-2-methylnaphthalene5697-02-9Fast Green FCF90-15-3Acid Red 1489-25-86-Nitro-2,5-pyridinediamine92-44-4Pyridine15086-94-9HC Orange 2615-05-4m-Aminophenol5862-77-12-Methyl-4-nitroaniline5862-77-12-Methyl-4-nitroaniline5862-77-10-Phenylenediamine95-86-3Acid Blue 195-80-72,3-Indolinedione1004-75-71,2,4-Trihydroxybenzene141-86-62-Chloro-4-phenylenediamine84540-47-6P-Phenylenediamine84540-47-6Solvent Red 23141-86-62-Chloro-p-phenylenediamine84540-47-6Direct Blue 86582-17-2Acid Violet 9823-40-5Direct Blue 86582-17-22,5,6-Triamino-4-pyrimidinol16867-03-1Solvent Red 1603-85-0Grapion 1	128-95-0	2,6-Dihydroxyethylaminotoluene
27581-07-3 1-Acetoxy-2-methylnaphthalene 5697-02-9 Fast Green FCF 90-15-3 Acid Red 14 89-25-8 6-Nitro-2,5-pyridinediamine 92-44-4 Pyridine 15086-94-9 HC Orange 2 615-05-4 m-Aminophenol 5862-77-1 p-Aminophenol 5862-77-1 2-Methyl-4-nitroaniline 5862-77-1 0-Phenylenediamine 95-86-3 Acid Blue 1 95-86-4 2,3-Indolinedione 1004-75-7 1,2,4-Trihydroxybenzene 141-86-6 2-Chloro-4-phenylenediamine 84540-47-6 2-Chloro-p-phenylenediamine 84540-47-6 2-Chloro-p-phenylenediamine 84540-47-6 Direct Blue 86 8423-40-5 Direct Blue 86 582-17-2 4-Hydroxyindole 16867-03-1 Solvent Red 1 16867-03-1 Solvent Red 1 603-85-0 HC vellow 10	83-56-7	
5697-02-9Fast Green FCF90-15-3Acid Red 1489-25-86-Nitro-2,5-pyridinediamine92-44-4Pyridine15086-94-9HC Orange 2615-05-4m-Aminophenol5862-77-1p-Aminophenol5862-77-12-Methyl-4-nitroaniline5862-77-10-Phenylenediamine95-86-3Acid Blue 195-80-72,3-Indolinedione1004-75-71,2,4-Trihydroxybenzene141-86-62-Chloro-4-phenylenediamine84540-47-62-Chloro-p-phenylenediamine84540-47-650lvent Red 23141-86-6Solvent Red 43606-20-2Acid Violet 9823-40-5Direct Blue 86582-17-22,5,6-Triamino-4-pyrimidinol16867-03-1Solvent Red 11603-85-0HC Yellow 10		
90-15-3Acid Red 1489-25-86-Nitro-2,5-pyridinediamine92-44-4Pyridine15086-94-9HC Orange 2615-05-4m-Aminophenol5862-77-1p-Aminophenol5862-77-12-Methyl-4-nitroaniline5862-77-10-Phenylenediamine95-86-3Acid Blue 195-80-72,3-Indolinedione1004-75-71,2,4-Trihydroxybenzene141-86-62-Chloro-4-phenylenediamine84540-47-62-Chloro-p-phenylenediamine84540-47-650lvent Red 23141-86-62-Chloro-p-phenylenediamine84540-47-6Direct Blue 86582-17-2Acid Violet 9823-40-5Direct Blue 86582-17-22,5,6-Triamino-4-pyrimidinol16867-03-1Solvent Red 1603-85-0HC Yellow 10		1-ACELOXy-2-methy maphtna rene
90-15-3Acid Red 1489-25-86-Nitro-2,5-pyridinediamine92-44-4Pyridine15086-94-9HC Orange 2615-05-4m-Aminophenol5862-77-1p-Aminophenol5862-77-12-Methyl-4-nitroaniline5862-77-10-Phenylenediamine95-86-3Acid Blue 195-80-72,3-Indolinedione1004-75-71,2,4-Trihydroxybenzene141-86-62-Chloro-4-phenylenediamine84540-47-62-Chloro-p-phenylenediamine84540-47-650lvent Red 23141-86-62-Chloro-p-phenylenediamine84540-47-6Direct Blue 86582-17-2Acid Violet 9823-40-5Direct Blue 86582-17-22,5,6-Triamino-4-pyrimidinol16867-03-1Solvent Red 1603-85-0HC Yellow 10	5697-02-9	Fast Green FCF
89-25-86-Nitro-2,5-pyridinediamine92-44-4Pyridine15086-94-9HC Orange 2615-05-4m-Aminophenol5862-77-1p-Aminophenol5862-77-12-Methyl-4-nitroaniline5862-77-1o-Phenylenediamine95-86-3Acid Blue 195-80-72,3-Indolinedione1004-75-71,2,4-Trihydroxybenzene141-86-62-Chloro-4-phenylenediamine84540-47-62-Chloro-p-phenylenediamine84540-47-650lvent Red 23141-86-6Solvent Red 43606-20-2Acid Violet 9823-40-5Direct Blue 86582-17-22,5,6-Triamino-4-pyrimidinol16867-03-1Solvent Red 1603-85-0HC Yellow 10		Acid Red 14
92-44-4Pyridine15086-94-9HC Orange 2615-05-4m-Aminophenol5862-77-1p-Aminophenol5862-77-12-Methyl-4-nitroaniline5862-77-1o-Phenylenediamine95-86-3Acid Blue 195-80-72,3-Indolinedione1004-75-71,2,4-Trihydroxybenzene141-86-62-Chloro-4-phenylenediamine84540-47-62-Chloro-p-phenylenediamine149330-25-6Solvent Red 43606-20-2Acid Violet 9823-40-5Direct Blue 86582-17-22,5,6-Triamino-4-pyrimidinol16867-03-1Solvent Red 1603-85-0HC Yellow 10		
15086-94-9 HC Orange 2 615-05-4 m-Aminophenol 5862-77-1 p-Aminophenol 5862-77-1 2-Methyl-4-nitroaniline 95-86-3 Acid Blue 1 95-86-3 Acid Blue 1 95-80-7 2,3-Indolinedione 1004-75-7 1,2,4-Trihydroxybenzene 141-86-6 2-Chloro-4-phenylenediamine 84540-47-6 2-Chloro-p-phenylenediamine 84540-47-6 p-Phenylenediamine 149330-25-6 Solvent Red 43 606-20-2 Acid Violet 9 823-40-5 Direct Blue 86 582-17-2 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 16867-03-1 Solvent Red 1 16867-03-1 Solvent Red 1 1603-85-0 HC Yellow 10	89-25-8	6-Nitro-2,5-pyridinediamine
15086-94-9 HC Orange 2 615-05-4 m-Aminophenol 5862-77-1 p-Aminophenol 5862-77-1 2-Methyl-4-nitroaniline 95-86-3 Acid Blue 1 95-86-3 Acid Blue 1 95-80-7 2,3-Indolinedione 1004-75-7 1,2,4-Trihydroxybenzene 141-86-6 2-Chloro-4-phenylenediamine 84540-47-6 2-Chloro-p-phenylenediamine 84540-47-6 p-Phenylenediamine 149330-25-6 Solvent Red 43 606-20-2 Acid Violet 9 823-40-5 Direct Blue 86 582-17-2 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 16867-03-1 Solvent Red 1 16867-03-1 Solvent Red 1 1603-85-0 HC Yellow 10	92-44-4	Pyridine
149330-25-6 Solvent Red 43 606-20-2 Acid Violet 9 823-40-5 Direct Blue 86 582-17-2 4-Hydroxyindole 16867-03-1 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 603-85-0 HC Yellow 10		HC Orange 2
149330-25-6 Solvent Red 43 606-20-2 Acid Violet 9 823-40-5 Direct Blue 86 582-17-2 4-Hydroxyindole 16867-03-1 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 603-85-0 HC Yellow 10		m_Aminophenol
149330-25-6 Solvent Red 43 606-20-2 Acid Violet 9 823-40-5 Direct Blue 86 582-17-2 4-Hydroxyindole 16867-03-1 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 603-85-0 HC Yellow 10		m-Amirrioprierio i
149330-25-6 Solvent Red 43 606-20-2 Acid Violet 9 823-40-5 Direct Blue 86 582-17-2 4-Hydroxyindole 16867-03-1 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 603-85-0 HC Yellow 10	5862-77-1	p-Aminopheno i
149330-25-6 Solvent Red 43 606-20-2 Acid Violet 9 823-40-5 Direct Blue 86 582-17-2 4-Hydroxyindole 16867-03-1 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 603-85-0 HC Yellow 10	5862-77-1	2-Methyl-4-nitroaniline
149330-25-6 Solvent Red 43 606-20-2 Acid Violet 9 823-40-5 Direct Blue 86 582-17-2 4-Hydroxyindole 16867-03-1 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 603-85-0 HC Yellow 10		o-Phenylenediamine
149330-25-6 Solvent Red 43 606-20-2 Acid Violet 9 823-40-5 Direct Blue 86 582-17-2 4-Hydroxyindole 16867-03-1 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 603-85-0 HC Yellow 10		Acid Blue 1
149330-25-6 Solvent Red 43 606-20-2 Acid Violet 9 823-40-5 Direct Blue 86 582-17-2 4-Hydroxyindole 16867-03-1 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 603-85-0 HC Yellow 10		2 2 Indelinedione
149330-25-6 Solvent Red 43 606-20-2 Acid Violet 9 823-40-5 Direct Blue 86 582-17-2 4-Hydroxyindole 16867-03-1 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 603-85-0 HC Yellow 10		1 D A Tadhudaan daaraa
149330-25-6 Solvent Red 43 606-20-2 Acid Violet 9 823-40-5 Direct Blue 86 582-17-2 4-Hydroxyindole 16867-03-1 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 603-85-0 HC Yellow 10	1004-75-7	1,2,4-Trinydroxybenzene
149330-25-6 Solvent Red 43 606-20-2 Acid Violet 9 823-40-5 Direct Blue 86 582-17-2 4-Hydroxyindole 16867-03-1 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 603-85-0 HC Yellow 10	141-86-6	Solvent Red 23
149330-25-6 Solvent Red 43 606-20-2 Acid Violet 9 823-40-5 Direct Blue 86 582-17-2 4-Hydroxyindole 16867-03-1 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 603-85-0 HC Yellow 10		2-Chloro-4-phenvlenediamine
149330-25-6 Solvent Red 43 606-20-2 Acid Violet 9 823-40-5 Direct Blue 86 582-17-2 4-Hydroxyindole 16867-03-1 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 603-85-0 HC Yellow 10		2-Chloro-n-phenylenediamine
149330-25-6 Solvent Red 43 606-20-2 Acid Violet 9 823-40-5 Direct Blue 86 582-17-2 4-Hydroxyindole 16867-03-1 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 603-85-0 HC Yellow 10		2-cirror 0-p-prierry reneuralitrie
823-40-5 Direct Blue 86 582-17-2 4-Hydroxyindole 16867-03-1 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 603-85-0 HC Yellow 10	84540-47-6	p-Prierly rened tamine
823-40-5 Direct Blue 86 582-17-2 4-Hydroxyindole 16867-03-1 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 603-85-0 HC Yellow 10	149330-25-6	Solvent Red 43
823-40-5 Direct Blue 86 582-17-2 4-Hydroxyindole 16867-03-1 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 603-85-0 HC Yellow 10		Acid Violet 9
582-17-2 4-Hydroxyindole 16867-03-1 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 603-85-0 HC Yellow 10		Direct Plue 96
16867-03-1 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 603-85-0 HC Yellow 10	823-40-5	
16867-03-1 2,5,6-Triamino-4-pyrimidinol 16867-03-1 Solvent Red 1 603-85-0 HC Yellow 10	582-17-2	4-Hydroxy1ndole
16867-03-1 Solvent Red 1 603-85-0 HC Yellow 10		2.5.6-Triamino-4-pvrimidinol
603-85-0 HC Yellow 10		Solvent Red 1
003-83-0	1686/-03-1	
Oversine 1	603-85-0	
602_85_0 UX42111e I	603-85-0	Oxazine 1
2 4 Diaminotoluono		
	96-91-3	
95-85-2 m-Phenylenediamine	95-85-2	m-Priery renear am the

Coming December 2016 Batch Searching...

List Search

Please enter one identifier per line			×
Select Input Type(s) Chemical Name CAS-RN InChIKey DSSTox Substance ID Exact Molecular Formula		Enter Identifiers to Search 10228-03-2 10228-03-2 99-98-9 99-98-9 575-38-2 104903-49-3 150-75-4 Solvent Red 140 Solvent Red 3 Solvent Red 3 Solvent Red 72	
Select Output Format Download as Customize Results		Solvent Red 73 Solvent Yellow 29 Solvent Yellow 33 Solvent Yellow 44 <u>Tetrahydro-6-nitroquinoxaline</u>	•
Chemical Identifiers	Structures	Intrinsic Properties	
Chemical Name DTXSID CAS-RN InChIKey IUPAC Name	Mol FileSMILESInChI String	 Molecular Formula Average Mass Monoisotopic Mass 	
Metadata			
 Curation Level Details Data Sources 			

Download 🚣


Coming December 2016 Download to Excel

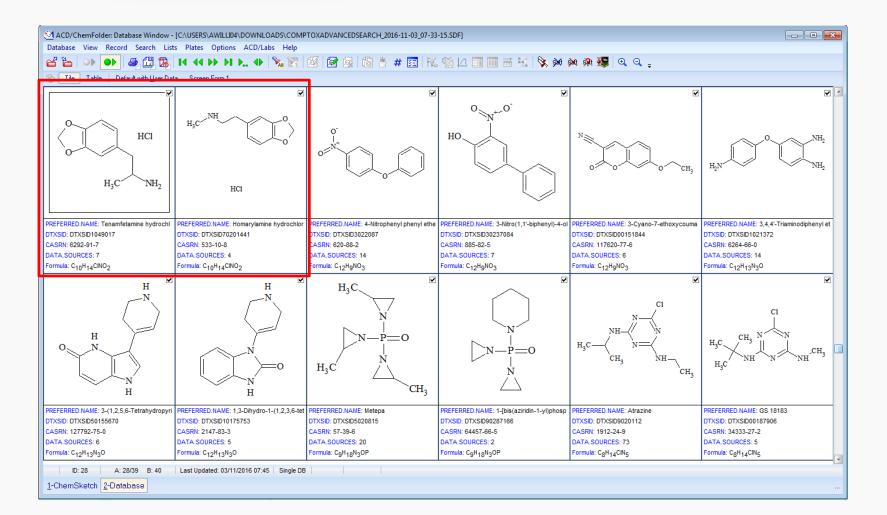
🚺 🔒 🗲 🗧 🗧					Com	pToxAdvancedSearch_2	016-11-02_08-44-17	.xls [Compatibility M	ode] - Excel		
FILE HOME INSERT	PAGE LAYOUT FORMULAS DATA	REVIEW	VIEW ESRI MA	APS ACROB	ΑT						
Arial	- 10 - A A = = =	ø ₽	Wrap Text	General	-		Normal	Bad	Good	Neutral	Calculation
Paste S F I D I I	U - 🖽 - 💩 - 🗛 - 🚍 = =	≡ #= 🛱	Merge & Center 🔹	\$ - % >	€.0 .00 .00 →.0	Conditional Format as	Check Cell	Explanatory	Input	Linked Cell	Note
🗸 💉 Format Painter			Nerge & Center 🔹		.00 →.0	Formatting • Table •	encencen		mpar		
Clipboard 🕞	Font G	Alignment	5	Number	G.			Stj	les		
A1 🔹 : 🗙 🗸	fx INPUT										
AB	С	D		E		F		G	Н	I	J K
97 84540-50-1 DTXSID80233531 5			XYRDGCCCBJITE			3-Amino-2-chloro-6-					597518 157.0294416
	6-Amino-m-cresol		HCPJEHJGFKWF			2-Amino-5-methylph		1=CC(O)=C(N)C=C1	InChl=1S/0		154998 123.068413914
99 17672-22-9 DTXSID80170179 (ALQKEYVDQYG			2-Amino-6-methylph		1=C(O)C(N)=CC=C1	InChI=1S/0		154998 123.068413914
100 2380-86-1 DTXSID20178497 (XAWPKHNOFIW			1H-Indol-6-ol		1=CC2=C(C=CN2)C			149993 133.052763849
	6-Nitro-2,5-pyridinediamine		DRSOPPBVZYEN			6-Nitropyridine-2,5-d	iamine NC	1=NC(=C(N)C=C1)[[I+]([O-] InChl=1S/0	C C5H6N4O2 154	128997 154.049075449
102 69825-83-8 DTXSID30220113 (DRSOPPBVZYEN			6-Nitropyridine-2,5-d	iamine NC	1=NC(=C(N)C=C1)[]	+j([O-] InChl=1S/0	C C5H6N4O2 154	128997 154.049075449
	9,10-Anthracenedione, 1,4-diamino-2-meth										272003 268.084792254
	9,10-Anthracenedione, 1-[(2-hydroxyethyl)										378997 340.142307132
	9,10-Anthracenedione, 1-[(2-hydroxyethyl);										378997 340.142307132
	Acid green 50		WDPIZEKLJKBS								609985 576.10008778
	Acid Violet 9		UWMZZSRDUVJJ			Sodium 2-[3-(2-metr	iyianiiino)-6-(∡[iva	+].UU1=UU=UU=U	-0/0-(I=0)	C C34H25N2h612	630004 612.13310199
	Amaranth Amarantina buda ablasida	915-67-3	WLDHEUZGFKA0 KSCQDDRPFHTI			Trisodium 3-nydroxy	-4-[(Z)-(4-suit [iva	+j.[Iva+j.[Iva+j.001	=C(C=CINCNI=15/0	CZUHTTINZI 604.	460021 603.92689092
	Auramine hydrochloride	2465-27-2									829986 303.1502254
	Basic Blue 26		LLWJPGAKXJBK IVFRHOQHKQWE								089996 505.2284757
	Basic Blue 47 Basic Blue 7		ROVRRJSRRSGL			4-{[4-(Diethylamino)					440002 371.163376928
	Basic Violet 4		JVICFMRAVNKD								
	Basic Violet 4 Benzyl Violet 4B		AXMCIYLNKNGN								.149993 491.3067261 .869995 733.22562265
	Black PN	2519-30-4	GMMAPXRGRVJ								659973 866.92456206
	Biack PN Brilliant Green	633-03-4	NNBFNNNWANB								.640014 482.223928757
	Bromophenol blue	115-39-9	UDSAIICHUKSCK			3,3-Bis(3,5-dibromo					
	C.I. Acid Black 1	1064-48-8	AOMZHDJXSYHP			Disadium 4 amino 6	-4-nyuroxypricOC	11 [No.1] NC1=C(N)	-N(C) = lnCh = 15/(C C131110D14 003	489990 616.00590696
	C.I. Acid Blue 74	860-22-0	KHLVKKOJDHCJ								350006 465.95174613
	C.I. Acid Blue 9	2650-18-2	HMEKVHWROSN								.940002 782.21139247
	C.I. Acid Orange 10	1936-15-8	HSXUHWZMNJHF								359985 451.97248158
	C.I. Acid Orange 24, monosodium salt	1320-07-6	FIKBURFLPVUDA								429992 448.08173512
	C.I. Acid Orange 3	6373-74-6	KKBFCPLWFWQ			Sodium 2-anilino-5-0	2 4-dinitroanil [Na	+] [O-][N+](=O)C1=	CC(=C(InChl=1S/0	C C18H13N4N452	369995 452.04026423
	C.I. Acid Orange 7	633-96-5	CQPFMGBJSMS			Sodium 4-I(2-bydrox	vnaphthalen- [Na	+1 OC1=C(N=NC2=	CC=C((InChl=1S/	C C16H11N2N350	320007 350.0337223
	C.I. Acid Red 14		YSVBPNGJESB								420013 501.98813164
	C.I. Acid Red 52		XJENLUNLXRJLE			Sodium 4-[3.6-bis(d	ethylamino)-2[Na	+1.CCN(CC)C1=CC	2=[O+10 InChl=15/0	C C29H33N2N608	700012 608.16268804
127 4430-18-6 DTXSID6041717			GTKIEPUIFBBXJ			Sodium 2-[(4-hvdrox	v-9.10-dioxo- INa	+1.CC1=CC=C/NC2	=CC=C InChl=1S/0	C C21H14NN 431	390014 431.04395263
	C.I. Acid Yellow 1	846-70-8	CTIQLGJVGNGFE								190002 357.94837483
	C.I. Acid Yellow 36, monosodium salt	587-98-4	NYGZLYXAPMMJ			Sodium 3-I(E)-(4-ani	linophenvl)dia [Na	+].[0-]S(=0)(=0)C1	=CC=CInChI=1S/0	C C18H14N3N375	380004 375.06535678
	C.I. Acid Yellow 36, monosodium salt	587-98-4	NYGZLYXAPMMJ								380004 375.06535678
	C.I. Basic Oange 2	532-82-1	MCTQNEBFZMB			4-(Phenyldiazenyl)b					
	C.I. Basic Orange 2- parent (Chrysoidine fr		IWRVPXDHSLTIO								255996 212.106196402
	C.I. Basic Red 9	479-73-2	AFAIELJLZYUNP								365997 287.142247559
	C.I. Basic Violet 14	632-99-5	NIKFYOSELWJIC								850006 337.1345754
135 632-99-5 DTXSID6021246 (C.I. Basic Violet 14	632-99-5	NIKFYOSELWJIC	F-SVFFXJIWS	A-N						850006 337.1345754
136 4208-80-4 DTXSID5052092 0	C.I. Basic Yellow 11	4208-80-4	QAMCXJOYXRSX	DU-UHFFFAO	'SA-N						890014 372.1604558
								•••••••••••			

Non-Targeted Analysis: In-testing

Enter Identifiers to Search

C12H25NO2	
C11H21NO3	
C10H9N5O	
C11H21NOS	
C10H14CINO2	
C12H9NO3	
C12H13N3O	
C9H18N3OP	
C8H14CIN5	

Intrinsic Properties


Monoisotopic Mass

Metadata included for Ranking

1.0	A	U	U	U	L	1	0
1	INPUT	DTXSID	CASRN	PREFERRED NAME	IUPAC NA	SMILES	DATA SOURCES
31	C12H9NO3	DTXSID3022087	620-88-2	4-Nitrophenyl phenyl ether	1-Nitro-4-ph	[O-][N+](=O)C1=CC=C(O0	2 14
32	C12H9NO3	DTXSID30237084	885-82-5	3-Nitro(1,1'-biphenyl)-4-ol	3-Nitro[1,1'-	OC1=C(C=C(C=C1)C1=C0	7
33	C12H9NO3	DTXSID00151844	117620-77-6	3-Cyano-7-ethoxycoumarin	7-Ethoxy-2-	CCOC1=CC2=C(C=C1)C=	C * 6
34	C12H13N3O	DTXSID1021372	6264-66-0	3,4,4'-Triaminodiphenyl ether	4-(4-Aminop	NC1=CC=C(OC2=CC=C(N)' 14
35	C12H13N3O	DTXSID50155670	127792-75-0	3-(1,2,5,6-Tetrahydropyrid-4-yl)p	3-(1,2,3,6-T	O=C1NC2=C(NC=C2C2=C	C 6
36	C12H13N3O	DTXSID10175753	2147-83-3	1,3-Dihydro-1-(1,2,3,6-tetrahydro	1-(1,2,3,6-T	O=C1NC2=CC=CC=C2N1	C 5
37	C9H18N3OP	DTXSID5020815	57-39-6	Metepa	1,1',1"-Phos	CC1CN1P(=O)(N1CC1C)N	1 [°] 20
38	C9H18N3OP	DTXSID90287166	64457-66-5	1-[bis(aziridin-1-yl)phosphoryl]pi	1-[Bis(azirid	O=P(N1CC1)(N1CC1)N1C	2
39	C8H14CIN5	DTXSID9020112	1912-24-9	Atrazine	6-Chloro-N~	CCNC1=NC(NC(C)C)=NC(C 73
10	C8H14CIN5	DTXSID00187906	34333-27-2	GS 18183	N~2~-tert-B	CNC1=NC(NC(C)(C)C)=NC	(5
11							

Need for "MS-Ready Structures"

Environmental Protection

Agency

"QSAR-Ready Structures"

- For the purpose of building QSAR Models we already "standardize" structures
 - Desalt/Neutralize
 - Desolvate
 - Remove stereochemistry

• Some minor tweaks gets us "MS-ready Structures". ALREADY in our database.

"QSAR-Ready Structures"

 Mass and Formula-based searches will be based on MS-ready structures but connected to the original chemical (with name, CAS, rank ordering)

	~	U	U	U	L	L. C.	0	1.1
1	INPUT	DTXCID	DTXSID	CASRN	PREFERRED_NAME	MOL_FORMULA	MONOISOTOPI	DATA_SOURCES
2	C6H6O	DTXCID01234	DTXSID5021124	108-95-2	Phenol	C6H6O	94.04186481	77
3	C6H6O	DTXCID01234	DTXSID4027072	139-02-6	Sodium phenolate	C6H5NaO	116.023809	19
4	C6H6O	DTXCID01234	DTXSID10206632	5793-84-0	Calcium phenoxide	C12H10CaO2	226.030671	5
5	C6H6O	DTXCID01235	DTXSID60179347	24599-57-3	2 4-Cvclohexadienone	C6H6O	94 04186481	4

 MS-ready structures and substance mappings will be available as Open Data

Work in Progress: RAPIDTOX Predicted Hazards

	ted States ironmental Protecti incy	on Home Adva	anced Search	CompTox Dashboard +							Search CompTox E	ashboard	c
RapidTox	<								Submit Con	nment Share	e 🔹 Copy 🕶	Aa 🔻 🗛	a Aa 🔺
R	Chemical Proper	ties External Links	Synonyms	Product Composition	Bioassays Ar	alytical Toxicity Values	Similar Molecules	Exposure	Literature	Predicted Hazard	ls Comments		
					Predicted	l Hazards Radial Plot						<u> </u>	
	Persistence	Bioaccumulation	Ecotox	 Soil Mobility Cl. Soil Mobility Clinical Science (Science) Daphnia Toxicity Conc Daphnia Toxicity Conc Fish Toxicity Conc Fish Toxicity Conc Fish Toxicity Conc Fish Toxicity Conc Algal Toxicity Conc BAF Clinical Soil Mobility 	ass wern wern wern		1. Air Persistenov 2. Water Persistenov 2. Water Persistenov 4. Sediment Pers 5. BCF Class 6. BCF Class 6. BCF Class 7. BCF Class 8. BCF Class 9. BAF Class	nce Class ve Class					
	No. C	ategory			Model	Name							
	1 Ai	r Persistence Class			EPISUI	TE_Fugacity_3_air 🟮							
	2 W	ater Persistence Class			EPISUI	TE_Fugacity_3_water							
	3 S	il Persistence Class			EPISUI	TE_Fugacity_3_soil 0							

Work in Progress: RAPIDTOX **Structural Analogs for Read-Across**

EPA United States Environmental Protection F Agency	Home Advanced Search	CompTox Dashboard 👻				Search CompTox D	ashboard
RapidTox					Submit (Comment Share - Copy -	Aa 🕶 🗛 A
Chemical Properties	External Links Synonyms	Product Composition	Bioassays Analytical	Toxicity Values Similar Molecules	Exposure Literature	Predicted Hazards Comments	
Download as: TSV E	xcel	:	Showing 20 of 44 Si Searched with a similari				
		CH,	H ₁ N ₁ CH ₃	H,H, L, OH,	or the contract of the contrac	Part Charles	
LogP: Octanol-Water	Experimental	-	-	-	-	-	
	Predicted	2.00	2.50	1.95	2.16	1.72	
LogWS: Water Solubility	Experimental	-	-	-	-	-	
	Predicted	-2.00	-2.75	-2.29	-2.84	-2.70	
Density	Experimental	-	-	-	-	-	
	Predicted	1.41		-	-	-	
Melting Point	Experimental	60.0	-	105	-	-	
	Predicted	78.5	99.0	88.3	93.7	108	
Boiling Point	Experimental	300	-	-	-	-	
	Predicted	294	291	282	305	302	
			,	Description Description			
	About	Contact	A CLOR	Execution DSSTox	Privacy	Accessibility Help	

Work in Progress: RAPIDTOX PubMed "Abstract Sifting"

About

Contact

forward by ACTOR

Separate Contend States Environmental Protection He Agency	me Advanced Search CompTox Dashboard +	Search CompTox Das	hboard	Q
RapidTox		Submit Comment Share + Copy +	Aa 🗸 🗛 Aa	•
PubChem Articles	Select Term: E	idit the Query Before Querying		
Google Scholar	Exposure v	("118-74-1" OR "Hexachlorobenzene") AND (exposure OR near-field OR far- field OR SHEDS[tiab] AND ENVIRONMENTAL MONITORING)		
Abstract Sifter	Retrieve Articles 215 Articles (out of 215)		6	
PubChem Patents	Add additional query terms to filter abstracts:			
	Breast milk RfD	PBDEs Search and Count		
	Br RfD PB Total PMID Pu Title			
		d chlorinated contaminants in human breast milk from Thessaloniki, Greece.	*	
	0 0 4 16289241 2005 The relationship between persistent of	rganic pollutants in maternal and neonatal tissues and immune responses to		
	0 0 3 23856469 2013 Organochlorine compounds, nitro mu	sks and perfluorinated substances in breast milk - results from Bavarian Monit		
	3 0 0 3 23336922 2013 Hexachlorobenzene in human milk co			
	3 0 0 3 22921253 2012 Musks and organochlorine pesticides Record: H I of 215 H H I I of 215 H I<	in breast milk from Shanghai, China: levels, temporal trends and exposure a	•	
	Title: Levels and profiles of brominated and chlorinated contaminants in human breast milk fro	m Thessaloniki, Greece.		
	Abstract: Human <u>breast mill</u> , samples (n=87) collected between July 2004 and July 2005 from groups of persistent organic pollutants (POPs): polybrominated diphenyl ethers (PEDEs), polyc (DDTs), chlordane compounds (CHLs), hexachlorocyclohexane isomers (HCHs) and hexachlo Iw) and HCHs (median: 40ng/g Iw) were the predominantly identified compounds in all the brea from Thessaloniki, Greece were lower compared to other countries. Maternal age had a posite occupational exposure to PBDEs (i.e., working in office environments) had higher PBDE conce	hlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites robenzene (HCB). DDTs [median: 410ng/g lipid weight (lw)], PCBs (median: 90ng ast milli samples. Levels of PBDEs (median: 1.5ng/g lw) in human breast milli samj /e correlation with most compounds, but not with PBDEs. Women with a higher)/g ples	

compared with the tolerable daily intakes (TDI) or the reference doses (Rtp)) the maiority of samples (85 out of 87) a higher daily intake of PCBs than the TDI was calculated

Powered by DSSTox

Privacy

Accessibility

Help

Future Work

- Real-time Predictions
- API/Web Services in development
- Deeper integration to agency databases

 Focus on the challenge "Identify chemical exposures that may disrupt biological processes and cause adverse outcomes"

Conclusion

- NCCT: delivering data, algorithms, models and software tools for almost a decade.
- Developing a new flexible architecture to support multiple both internal and external apps
- A future concept for the CompTox dashboard...

Future Search Possibilities

CompTox Dashboard

	Chemicals	Products	Targets	Assays	Literature		
Search a chemical by systematic name, synonym, CAS number, or InChIKey							Q

Conclusion: We are focused on Integrating Research Efforts

HT research needs:

ToxCast:

Prioritizations for:

- 1) Parent chemicals
- 2) Mixtures
- 3) Metabolites

ExpoCast:

Measurement data for:

- 1) Model inputs
- 2) Model evaluation
- 3) Model refinement

NTA research needs:

- 1) Chemical databases
- 2) Chemical standards
- 3) Exposure forecasts
- 4) Bioactivity data
- 5) Functional use data
- 6) Prioritization methods
- 7) HT workflows

Acknowledgements

EPA-RTP Chris Grulke Kamel Mansouri Ann Richard Nancy Baker Katharine Phillips Kathie Dionisio Jennifer Smith Jeff Edwards John Wambaugh Grace Patlewicz Imran Shah Jon Sobus Richard Judson