An evaluation of selected in silico approaches for the assessment of skin sensitization potential – performance and practical utility considerations

Jeremy Fitzpatrick, Ph.D.

National Center for Computational Toxicology (NCCT), US EPA

*The views expressed in this presentation are those of the author[s] and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Overview

- Previous Work
- Models Evaluated
- Test Data
- Models and Performance
- Combining Their Predictions

Overview

- Previous Work
- Models Evaluated
- Test Data
- Models and Performance
- Combining Their Predictions

Previous Work with Predictive Models for Skin Sensitization

 Previous work compared the results of Derek Nexus, Toxtree, OECD

CrossMark

Regulatory Toxicology and

Wera Teubner ^{a,*}, Anette Mehling^b, Paul Xaver Schuster^c, Katharina Guth^c, Andrew Worth^d, Julien Burton^d, Bennard van Ravenzwaay^c, Robert Landsiedel^c

Regulatory Toxicology and Pharmacology 67 (2013) 468-485

Contents lists available at ScienceDirect

Regulatory Toxicology and Pharmacology

journal homepage: www.elsevier.com/locate/yrtph

^a BASF Schweiz AG, Basel, Switzerland
^b BASF Personal Care and Nutrition GmbH, Düsseldorf, Germany
^c BASF SE, Ludwigshafen, Germany
^d European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy

ARTICLE INFO

ABSTRACT

National legislations for the assessment of the skin sensitization potential of chemicals are increasingly based on the globally harmonized system (GHS). In this study, experimental data on 55 non-sensitizing and 45 sensitizing chemicals were evaluated according to GHS criteria and used to test the performance of computer (*in silico*) models for the prediction of skin sensitization. Statistic models (Vega, Case Ultra, TOPKAT), mechanistic models (Toxtree, OECD (Q)SAR toolbox, DEREK) or a hybrid model (TIMES-SS) were evaluated. Between three and nine of the substances evaluated were found in the individual training sets of various models. Mechanism based models performed better than statistical models and gave better predictivities depending on the stringency of the domain definition. Best performance was achieved by TIMES-SS, with a perfect prediction, whereby only 16% of the substances were within its reliability domain. Some models offer modules for potency; however predictions did not correlate well with the GHS sensitization subcategory derived from the experimental data. In conclusion, although mechanistic models are not sufficiently accurate for broad application to predict skin sensitization potentials.

© 2013 Elsevier Inc. All rights reserved.

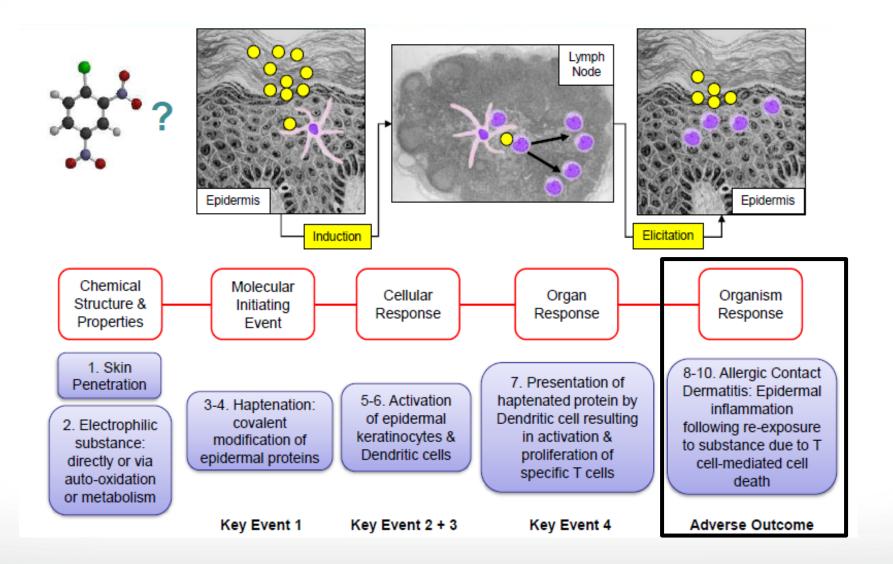
- Success was hampered by limited available data
 Current work expanded
- Current work expanded available data

Ultra, Vega, TIMES

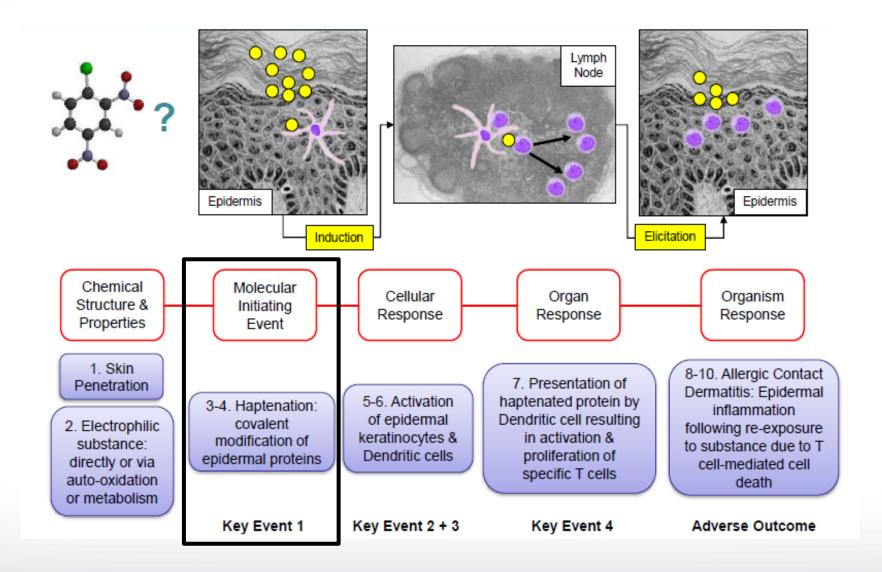
Overview

- Previous Work
- Models Evaluated
- Test Data
- Models and Performance
- Combining Their Predictions

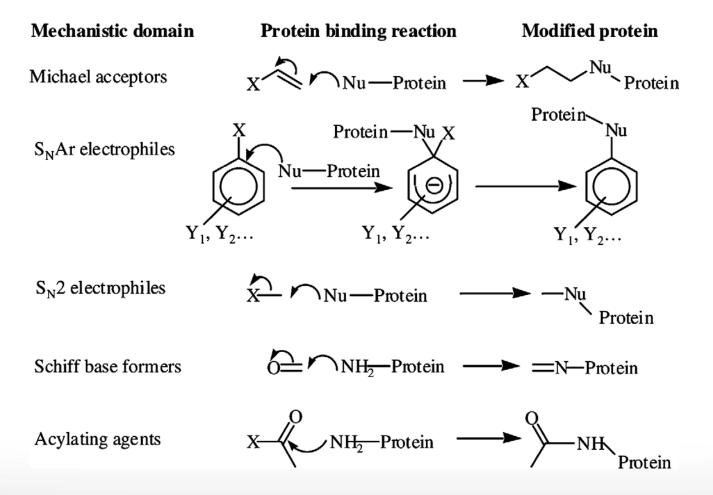
Models to Evaluate


Model the Adverse Outcome

- TIMES (skin sensitization with autoxidation v. 20.24)
- VEGA (skin sensitization model CAESAR v. 2.1.3)
- MCASE A33 (skin sensitization Danish EPA DB in OECD Toolbox)

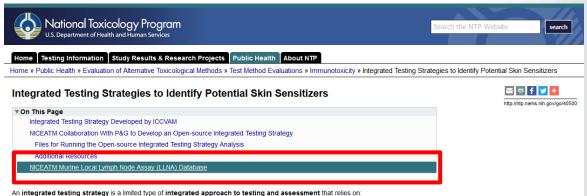

Protein Binding Domains (Prediction of the MIE)

- Toxtree (skin sensitization reactivity domains)
- OASIS (protein binding alerts for skin sensitization v1.3 in OECD Toolbox)


AOP for Skin Sensitization (OECD, 2012)

AOP for Skin Sensitization (OECD, 2012)

Haptenation: Mechanisms of Reaction Domains


Aptula A., Patlewicz G., Roberts D., Skin Sensitization: Reaction Mechanistic Applicability Domains for Structure–Activity Relationships. Chem. Res. Toxicol. 2005; 18, 9: 1420-1426

Overview

- Previous Work
- Models Evaluated
- Test Data
- Models and Performance
- Combining Their Predictions

Test Data Source

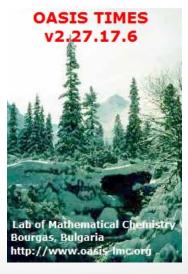
- NICEATM LLNA database
- 515 compounds with structures and LLNA results, including EC3 values
- 186 non-sensitizers, 329 sensitizers

Input data generated from identified methods
 A computational model or other evaluation protocol through which the input data is run

More about integrated approaches to testing and assessment

http://ntp.niehs.nih.gov/iccvam/methods/immunotox/niceatm-llnadatabase-23dec2013.xls http://ntp.niehs.nih.gov/pubhealth/evalatm/test-method-evaluations/immunotoxicity/nonanimal/index.html

Overview

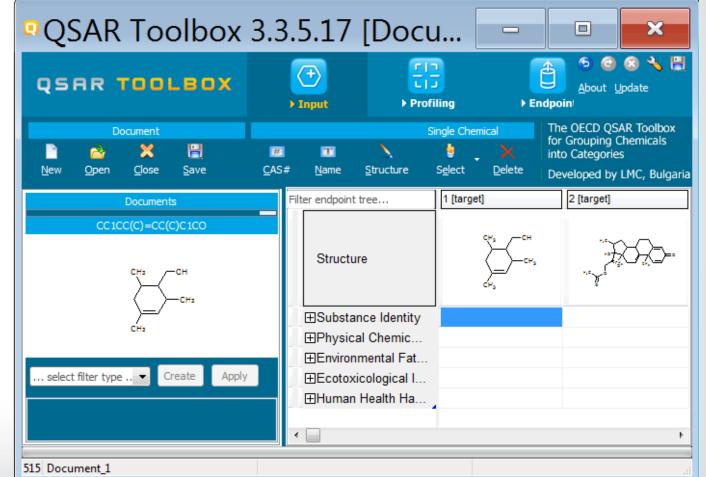

- Previous Work
- Models Evaluated
- Test Data
- Models and Performance
- Combining Their Predictions

Endpoint Models

- Turn the excel spreadsheet into a SMILES file
- Since the different models generate different prediction outcomes, we retrieve the binary outcomes i.e. sensitizer or non-sensitizer

QSAR TOOLBOX	(+) ► Input	FT Frofiling		ⓑ ⓒ ⊗ 믬 About Update
Document	# T CAS# <u>N</u> ame	Single	ect <u>D</u> elete	The OECD QSAR Toolbox for Grouping Chemicals into Categories Developed by LMC, Bulgaria
Documents CC1CC(C)=CC(C)C1C0 CPIS CPIS	Filter endpoint tr		(target)	2 (target)
CH9	⊞Ecotoxic	Chemic nental Fat		
select filter type Create Apply				

Predictivity based on Endpoint Models


	Positive Predictivity (# of compounds tested)	Negative Predictivity (# of compounds tested)	Overall Predictivity (# of compounds tested)
Overall VEGA	84% (201)	36% (151)	64% (352)
Overall MCASE A33	61% (156)	61% (70)	61% (226)
Overall TIMES	76% (148)	45% (106)	63% (254)
Overlapping TIMES	69% (122)	44% (101)	57% (221)
Overlapping VEGA	80% (122)	40% (101)	62% (221)

Prediction results are given for compounds not in the underlying training set of the model.

Assigning Reaction Domains

 Reaction domains were assigned using Toxtree and OASIS (within the OECD Toolbox)

* loxtree	(Es	stimation 😑 😐 🛋
<u>F</u> ile <u>E</u> dit Chemical Com	pound	ds Toxic Ha <u>z</u> ard <u>M</u> ethod <u>H</u> elp
File: C:\Users\JFITZP02\Do	cument	ts\Desktop\Manuscripts\QSAR_2016_presentation\WCEATM\fileToRUN.smi
Available structure attributes		Toxic Hazard by <u>Skin sensitisation reactivity</u> <u>domains</u>
Alert for Ac NO		💽 Estimate
Alert for Mi NO Alert for S NO Alert for S NO	E V	Alert for SNAr Identified.
Structure diagram		Alert for Schiff base formation identified.
		Alert for Michael Acceptor identified.
ΥŤ		Verbose explanation
\searrow		Qacyl.Acyl Transfer Agents No QSN2.SN2-Nucleophilic Aliphatic Substitution No Q6.At least one alert for skin
First Prev 1/5	515	sensitisation? No Class No skin sensitisation reactivity

Reaction Domain Assignments

Tool	Acylation	Michael Addition	Schiff Base	SN2	SNAr	No Alert
OASIS v1.3	51	55	41	75	18	278
Toxtree	78	123	81	87	21	174
Matching	40	49	35	58	18	156
Disagree	49	80	52	46	3	140

Reaction Domain Assignments

Tool	Acylation	Michael Addition	Schiff Base	SN2	SNAr	No Alert
OASIS v1.3	51	55	41	75	18	278
Toxtree	78	123	81	87	21	174
Matching	40	49	35	58	18	156
Disagree	49	80	52	46	3	140

Overall Results

219 compounds showed some alert in both tools156 compounds showed no alert in both tools140 compounds had conflicting results

Predictivity based on Reaction Domain

	Positive Predictivity (# of compounds tested)	Negative Predictivity (# of compounds tested)	Overall Predictivity (# of compounds tested)
Toxtree	77% (328)	54% (186)	69% (514)
OASIS	58% (328)	74% (186)	64% (514)

Predictivity for Reaction Domains and Endpoint Models

	Positive Predictivity (# of compounds tested)	Negative Predictivity (# of compounds tested)	Overall Predictivity (# of compounds tested)
Overall VEGA	84% (201)	36% (151)	64% (352)
Overall MCASE A33	61% (156)	61% (70)	61% (226)
Overall TIMES	76% (148)	45% (106)	63% (254)
Toxtree	77% (328)	54% (186)	69% (514)
OASIS	58% (328)	74% (186)	64% (514)

Overview

- Previous Work
- Models Evaluated
- Test Data
- Models and Performance
- Combining Their Predictions

Combining the Predictions

- Combined VEGA, ToxTree, and OASIS results into a consensus prediction model
 - To exploit broad chemical coverage
 - All programs are freely available

	Positive Predictivity	Negative Predictivity	Overall Predictivity
	(# of compounds tested)	(# of compounds tested)	(# of compounds tested)
Consensus Prediction	69% (200)	64% (151)	67% (351)

Conclusions

- All models with the exception of MCASE A33 are more likely to generate false positive over false negatives
- Combining the results does not improve the prediction performance significantly for this dataset evaluated in this study

Acknowledgements

- Grace Patlewicz (US EPA)
- Chris Grulke (US EPA)
- Nicole Kleinstreuer (NICEATM)

Thank you for your attention

Questions?

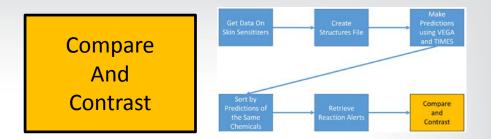
Extra backup slides

Overview

- Previous Work
- Models to Evaluate
- Test Dataset
- How They Perform?
- Combining Their Predictions
- Local Performance
- Conclusions/Acknowledgments

Predictions Grouped by Toxtree Assignments

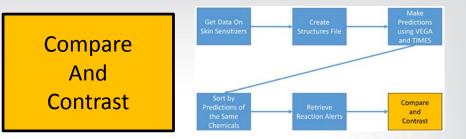
	Acylation	Michael Addition	Schiff Base	SN2	SNAr	No Domain
Positive Predictivity						
TIMES	43% (30)	57% (37)	64% (22)	54% (28)	56% (16)	60% (40)
VEGA	50% (20)	65% (26)	72% (18)	73% (26)	60% (10)	55% (76)
Negative Predictivity						
TIMES	71% (14)	0% (1)	43% (7)	29% (7)	0	54% (56)
VEGA	71% (24)	58% (12)	55% (11)	89% (9)	50% (6)	60% (20)
Overall Predictivity						
TIMES	52% (44)	55% (38)	59% (29)	49% (35)	56% (16)	56% (96)
VEGA	61% (44)	63% (38)	66% (29)	77% (35)	56% (16)	56% (96)


All overlapping compounds

Which preforms best overall?

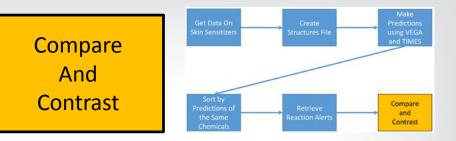
	Acylation	Michael Addition	Schiff Base	SN2	SNAr	No Domain
Predictivity OASIS Domains						
TIMES	43% (21)	53% (19)	88% (8)	70% (23)	50% (14)	57% (140)
VEGA	52% (21)	63% (19)	75% (8)	70% (23)	57% (14)	62% (140)
<u>Predictivity Toxtree</u> Domains						
TIMES	52% (44)	55% (38)	59% (29)	49% (35)	56% (16)	56% (96)
VEGA	61% (44)	63% (38)	66% (29)	77% (35)	56% (16)	56% (96)

VEGA performs better for compounds with a Acylation of Michael Addition Domain


Predictions Grouped by Toxtree Assignments

	Acylation	Michael Addition	Schiff Base	SN2	SNAr	No Domain
Positive Predictivity						
TIMES	48% (33)	69% (52)	70% (30)	58% (31)	56% (16)	62% (42)
VEGA	55% (29)	81% (62)	77% (31)	78% (37)	67% (12)	47% (116)
Negative Predictivity						
TIMES	71% (14)	0% (1)	50% (8)	38% (8)	0	55% (58)
VEGA	63% (27)	47% (15)	47% (15)	91% (11)	50% (6)	75% (32)
Overall Predictivity						
TIMES	55% (47)	68% (53)	66% (38)	54% (39)	56% (16)	58% (100)
VEGA	59% (56)	74% (77)	67% (46)	81% (48)	61% (18)	53% (148)

All compounds not in a programs training set


Best positive predictivity?

	Acylation	Michael Addition	Schiff Base	SN2	SNAr	No Domain
Predictivity OASIS Domains						
TIMES	43% (30)	57% (37)	64% (22)	54% (28)	56% (16)	60% (40)
VEGA	50% (20)	65% (26)	72% (18)	73% (26)	60% (10)	55% (76)
<u>Predictivity Toxtree</u> <u>Domains</u>						
TIMES	43% (21)	53% (19)	88% (8)	70% (23)	50% (14)	62% (58)
VEGA	45% (11)	62% (13)	100% (5)	80% (15)	56% (9)	60% (105)

TIMES performs best for compounds with no domain

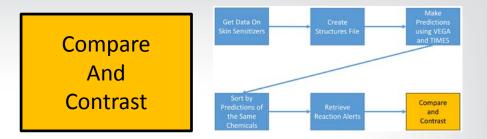
Best negative predictivity?

	Acylation	Michael Addition	Schiff Base	SN2	SNAr	No Domain
Predictivity OASIS Domains						
TIMES	0	0	0	0	0	54% (82)
VEGA	60% (10)	67% (6)	33% (3)	50% (8)	60% (5)	69% (35)
Predictivity Toxtree Domains						
TIMES	71% (14)	0% (1)	43% (7)	29% (7)	0	54% (56)
VEGA	71% (24)	58% (12)	55% (11)	89% (9)	50% (6)	60% (20)

TIMES appears not to make negative predictions for most compounds with a reaction domain

Future Directions

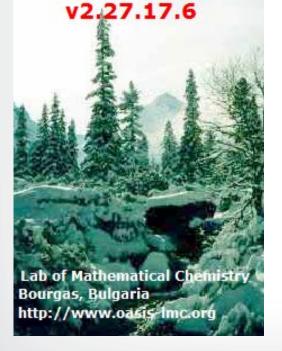
- A more in depth analysis using Chemotypes
- Get more data from eChemportal
- Possibly evaluate other programs

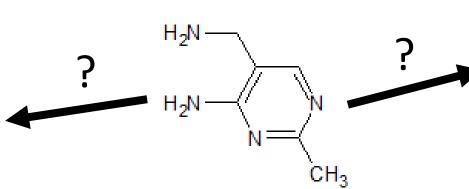

Predictions Grouped by OASIS Assignments

	Acylation	Michael Addition	Schiff Base	SN2	SNAr	No Domain
Positive Predictivity						
TIMES	43% (21)	53% (19)	88% (8)	70% (23)	50% (14)	62% (58)
VEGA	45% (11)	62% (13)	100% (5)	80% (15)	56% (9)	60% (105)
Negative Predictivity						
TIMES	0	0	0	0	0	54% (82)
VEGA	60% (10)	67% (6)	33% (3)	50% (8)	60% (5)	69% (35)
Overall Predictivity						
TIMES	43% (21)	53% (19)	88% (8)	70% (23)	50% (14)	57% (140)
VEGA	52% (21)	63% (19)	75% (8)	70% (23)	57% (14)	62% (140)

221 in neither programs training set

Predictions Grouped by OASIS Assignments

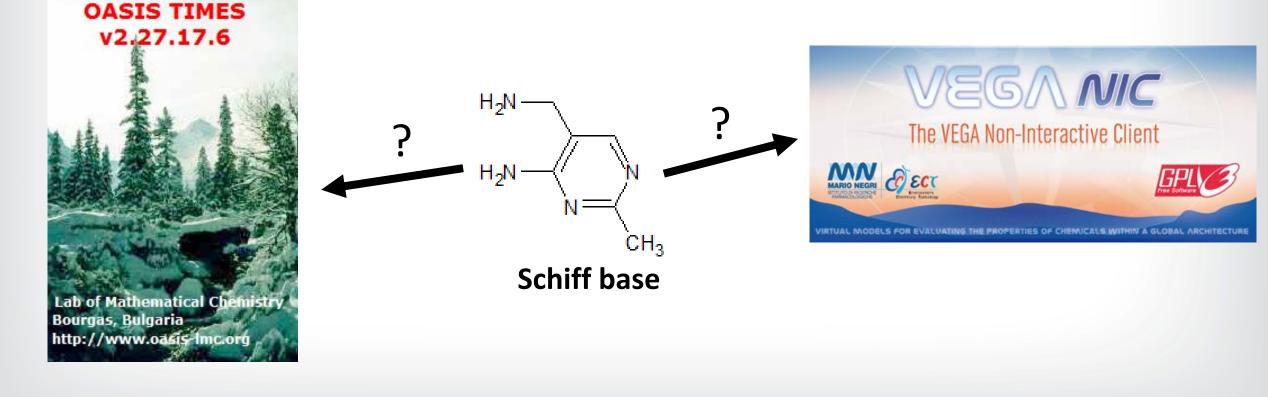



	Acylation	Michael Addition	Schiff Base	SN2	SNAr	No Domain
Positive Predictivity						
TIMES	48% (23)	70% (30)	87% (15)	73% (26)	50% (14)	66% (65)
VEGA	67% (18)	73% (30)	100% (12)	79% (28)	64% (11)	57% (165)
Negative Predictivity						
TIMES	0	0	0	0	0	56% (86)
VEGA	43% (14)	57% (7)	20% (5)	50% (10)	60% (5)	76% (49)
Overall Predictivity						
TIMES	48% (23)	70% (30)	87% (15)	73% (26)	50% (14)	60% (151)
VEGA	56% (32)	70% (37)	76% (17)	71% (38)	63% (16)	61% (214)

All compounds not in a programs training set

What are we trying to do?

 Determine which program is most likely to predict the skin sensitization potential of a compound correctly



What are we trying to do?

 Determine which program is most likely to predict the skin sensitization potential of a compound correctly, based on reaction domains from Toxtree and the OECD QSAR Toolbox.

