

www.epa.gov

Inter-individual variability in high-throughput risk prioritization of environmental chemicals

Caroline L. Ring^{*a,b}, R. Woodrow Setzer^b, Robert G. Pearce^b, John F. Wambaugh^b

^a Oak Ridge Institute for Science and Education, Oak Ridge, TN

Background: High-throughput risk prioritization

Prioritize large numbers of environmental chemicals by comparing potential exposure to potential hazard

Exposure: ExpoCast high-throughput model framework^{1,2} Inferred based on urine biomonitoring data

Hazard: ToxCast in vitro high-throughput screening bioactivity assays³ Dose-response data on >1800 chemicals for >800 assays

Relate *in vitro* bioactivity to *in vivo* toxicity and risk: *In vitro-in vivo* extrapolation (IVIVE) ^{4,5,6} using **reverse toxicokinetics** (TK) ^{5,7,8,9}

Reverse TK: Convert body concentrations equal to ToxCast bioactive concentrations to oral equivalent doses (OEDs)

Aim: Prioritization for modern US population groups

Previous work: reverse TK, prioritization for N. European Caucasian population⁵ and for average Caucasian male¹¹

Our goal: Prioritization for a modern U.S. **population**, including potentially sensitive demographic subgroups \rightarrow

For 10 U.S. demographic groups with ExpoCast exposure inferences:

- Total Age 6-11 Age 12-19
- 3. 4. Age 20-65 5. Age GT 65
- 7. BMI GT 30
- Males
- 9. Females
- 6. BMI LE 30
- 10. Reproductive-Age
 - Females (age 16-49)

Methods: Reverse toxicokinetics

TK model:

$C_{ss} =$	dose × F_a
	$(CEP \times E_{+}) + \frac{Q_{liver} \times F_{ub} \times CL_{int,h}}{Q_{liver} \times F_{ub} \times CL_{int,h}}$
	$(GFK \land Fub)^+ \overline{Q_{liver} + F_{ub} \times CL_{int,h}}$

- General model (equivalent to 1compartment model with oral infusion dosing)
- Can be parameterized for many chemicals using *in vitro* measurements of F_{ub} and CL_{int}⁵
- Implemented in open-source R package httk¹⁰

Parameters of TK model

Name	Description	Units
C _{ss}	Steady-state plasma concentration of chemical	mg/L
Dose	Oral infusion dose of chemical	mg/kg/day
F_{a}	Fraction absorbed	assumed 100%
GFR	Glomerular filtration rate (passive renal clearance)	L/h/kg bodyweight
Q _{liver}	Hepatic portal vein flow	L/h/kg bodyweight
F_{ub}	Fraction of chemical unbound in blood, scaled from <i>in vitro</i> fraction unbound in plasma ⁵ using <i>in</i> <i>silico</i> predicted blood:plasma ratio ¹⁰	Unitless fraction (amt unbound in blood/total amt in blood)
CL _{int,h}	Whole-organ intrinsic hepatic clearance, scaled from <i>in vitro</i> measurements in human hepatocytes using well-stirred model ⁵ (incl. liver volume, hepatocellularity)	L/h/kg bodyweight

- Simulate inter-individual variability using Monte Carlo sampling of model parameters
- Apply fixed dose, 1 mg/kg/day
- Take 95th percentile C_{ss} With assumption of first-order metabolism⁵:

Prioritize using activity-exposure ratio (AER)⁵

ToxCast AC₅₀ Oral Equiv. Dose = Fixed dose \times – C_{ss} from fixed dose

Oral Equiv. Dose AER = -**Estimated** exposure

U.S. Environmental Protection Agency Office of Research and Development

^b United States Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, Research Triangle Park, NC

*Corresponding author. Email: ring.caroline@epa.gov | Phone: 919-541-0720 | ORCID: 0000-0002-0463-1251

HTTK-Pop: Population physiology simulator

- Open-source correlated Monte Carlo approach
- Simulates modern US population physiology
- Based on data from Centers for Disease Control National Health and Nutrition Examination Survey (CDC NHANES): representative sample of US population; data from 2007-2012 used

Captures correlation structure of NHANES-measured quantities Simulates correlation structure of TK model parameters representing physiology

Chemical-specific TK parameters: Assume independent distributions

Normal distribution: mean = value measured in vitro in pooled adult human hepatocytes⁵; 30% CV (main peak) Assume 5% of population are poor metabolizers: mean = 10% of in vitro measured value, 30% CV 50 100 150 200 250 CLint, uL/min/million cells (secondary peak) 0.00 0.01 0.02 0.03 Fraction unbound in plasma

HTTK-Pop allows population specifications: samples NHANES quantities from appropriate *conditional* distribution

Population specification	Default	(N=1000 ir	
Age limits	0-79 years, NHANES distribution	Performed	
Gender (# males/females)	NHANES proportions	each group	
BMI/weight category	NHANES proportions	IoxCast, E	

This poster does not necessarily reflect EPA policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Society of Toxicology 55th Annual Meeting March 14-17, 2016 | New Orleans, LA Abstract Number 2681 Poster Board Number P181

References provided on separate handout

- Predict physiological TK parameters
- Tissue blood flows Glomerular filtration rate

- Fraction unbound in plasma
 - Normal distribution: mean = value measured in vitro in pooled adult human plasma
 - samples by rapid equilibrium
 - dialysis⁵; 30% CV
 - Censored below average LOD (0.01)
 - Used HTTK-Pop to simulate the 10 ExpoCast demographic groups n each group)
 - reverse toxicokinetics for p, for 50 compounds in ExpoCast, and httk
 - Pairwise joint distributions (contour plots) of HTTK-Pop outputs: sampled NHANES quantities (blue labels) and predicted TK model parameters (red labels), for a simulated population

Conclusions

- Extended open-source toxicokinetic modeling package httk to include interindividual variability by developing population physiology simulator HTTK-Pop
- High-throughput prioritization based on activity-exposure ratio (AER) for demographic subgroups of modern US population
- AER differences from Total pop. may be driven by differences in exposure or in oral equiv. dose (*i.e.*, physiology), depending on demographic group

Results: Activity-exposure ratio (AER) prioritization