

Identification of Chemical Features Linked to Thyroperoxidase Inhibition Steven O. Simmons¹, Eric D. Watt^{1,2}, Katie Paul Friedman⁴, Keith A. Houck¹, Richard S. Judson¹, Michael W. Hornung³, Kevin M. Crofton¹

Introduction

- The US Environmental Protection Agency (EPA) developed the Endocrine Disrupter Screening Program (EDSP) to identify environmentally-relevant chemicals that interfere with endocrine pathways, including thyroid hormone signaling
- A key target for chemically-induced thyroid disruption is inhibition of thyroperoxidase (TPO), which catalyzes thyroid hormone synthesis
- The AUR-TPO assay was recently developed and used to screen nearly 2,000 ToxCast chemicals for potential TPO inhibition activity and selectivity

Objective

Use ToxCast TPO inhibition assay data to identify chemical structures correlated with in vitro TPO inhibition

ToxCast Screen for TPO Inhibitors

Figure 1: Median % TPO inhibition by Sample and ToxCast Phase **Single-concentration Screen**

- 489 ToxCast chemicals were active in initial single concentration screening
- These 489 AUR-TPO actives were tested in concentration-response (0.1-100 µM final concentration) (N=3)
- Multi- and single-concentration data were analyzed using the ToxCast Analysis Pipeline (tcpl v2.0)
- Chemicals that failed to inhibit TPO activity by $\geq 20\%$ were defined as 'inactive' and AUC = 0
- Area under the fitted curve (AUC) scores incorporate both potency and efficacy for ranking
- High AUC example: 6-propyl-2-thiouracil (highly potent and efficacious)
- Low AUC example: monuron (less potent and efficacious)

1,903 ToxCast chemicals were tested in the AUR-TPO assay at 87.5 µM final concentration, solubility permitting (N=3) Chemicals eliciting a median TPO inhibition $\geq 20\%$ (above red line) were defined as 'active' and tested in 6-8 pt concentration-response (red line, Fig. 1) Black lines represent ± 3*baseline median absolute deviation (3*bmad)

Figure 2: AUC Ranking and ToxCast Phase **Multiple-Concentration Screen**

Chemical

¹National Center for Computational Toxicology; ²Oak Ridge Institute for Science Education Postdoctoral Fellow; ³Mid-Continent Ecology Division, NHEERL; ORD, U.S. EPA, RTP, NC and Duluth, MN and; ⁴Bayer CropScience LP, Research Triangle Park, NC

Chemotype	Tested	Active	p-value				
bond.COH alcohol_aromatic_phenol	230	147	1.70E-40				
bond.COH_alcohol_aromatic	239	148	2.70E-38				
ring.aromatic_benzene	1012	341	3.61E-19				
bond.P.S_generic	37	33	1.31E-17				
bond.CN_amine_pri.NH2_aromatic	82	53	6.07E-15				
bond.CN_amine_aromatic_generic	186	92	4.98E-14				
bond.CS_sulfide	111	60	1.27E-11				
bond.QQ.Q.O_Ssulfhydride	19	17	2.85E-10				
bond.CN_amine_pri.NH2_generic	112	58	2.94E-10				
bond.COH_alcohol_generic	471	172	4.70E-10				
bond.C.S_carbonyl_thio_generic	27	20	1.78E-08				
chain.aromaticAlkane_Ph.C1.Ph	68	36	2.74E-07				
chain.aromaticAlkane_Ar.C.Ar	74	38	3.95E-07				
bond.P.O_phosphate_dithio	13	11	7.69E-07				
bond.C.O_carbonyl_1_2.di	14	11	4.13E-06				
bond.CO.N_carbamate_dithio	9	8	4.73E-06				
bond.NC.O_urea_thio	15	11	1.58E-05				
chain.aromaticAlkane_Ph.C6	8	7	1.86E-05				
bond.CCO.C_ketone_alkene_cyclic_2.en.1.one_generic	62	30	2.68E-05				
ring.hetero6_6O_benzopyrone1_4	12	9	4.70E-05				
chain.aromaticAlkane_Ph.C4	14	10	5.03E-05				
ring.fused6_6naphthalene	50	25	5.18E-05				
bond.N.N_azo_aromatic	25	15	5.67E-05				
chain.alkeneLinear_diene_1_3.butene	7	6	7.30E-05				
bond.CN_amine_ter.N_aromatic_aliphatic	46	23	9.48E-05				
Alcohols (aromatic)							

Amines (aromatic) Thiocarbonyls (C=S)

Phosphothioates (P-S

Chemotype		Tested		Active	p-value
bond.CO.O_carboxylicEster_acyclic	;	1	22	10	3.74E-07
chain.alkaneBranch_isopropyl_C3		2	220	28	4.26E-07
bond.X.anyhalide		4	74	83	6.22E-07
bond.COC_ether_aliphatic		1	34	13	1.33E-06
bond.COH_alcohol_aliphatic_generic		2	250	37	5.63E-06
bond.COH_alcohol_pri.alkyl		1	19	12	9.76E-06
bond.CO.O_carboxylicEster_alkyl		1	66	21	1.26E-05
bond.C.O_carbonyl_generic		g)13	196	1.53E-05
bond.CX_halide_alkyl.X_generic		1	75	23	1.58E-05
bond.CO.O_carboxylicEster_aliphat	ic	1	11	12	5.09E-05
bond.CX_halide_alkyl.F_trifluoro1_	1_1		78	7	1.36E-04
chain.oxy.alkaneLinear_ethyleneOxid	e_EO1		37	1	2.03E-04
bond.CX_halide_alkyl.X_benzyl_alka	ne		42	2	3.91E-04
bond.CCO.C_ketone_aliphatic_acyc	clic		55	4	4.09E-04
chain.alkaneLinear_butyl_C4		2	288	52	5.20E-04
bond.CX_halide_alkyl.X_dihalo1_1.		1	28	18	6.98E-04
chain.alkaneLinear_propyl_C3		4	27	86	1.23E-03
chain.alkaneCyclic_ethyl_C2connec	t_noZ.	2	266	49	1.50E-03
bond.CX_halide_aromatic.X_generic		2	299	57	1.90E-03
chain.alkaneLinear_ethyl_C2.H_gt_1.		6	52	142	2.01E-03
bond.CX_halide_alkyl.X_trihalo1_1	_1		95	13	2.66E-03
chain.oxy.alkaneLinear_ethylenOxide	_EO1.O.		27	1	3.16E-03
bond.CO.N_carboxamideNR2.			98	14	3.70E-03
bond.CX_halide_alkyl.X_secondary			18	0	4.54E-03
bond.CCO.C_ketone_methyl_aliphatic			17	0	6.14E-03
		Halides			
		Carboxilic Esters			
		Aliphatic Alcohols			

Aromatic (ring/chain Innovative Research for a Sustainable Future

simmons.steve@epa.gov | 919-541-1475 | orcid.org/0000-0001-9079-1069

Aromatic Alcohols

Aromatic Amines

- Four general chemotypes predict *in vitro* TPO inhibition: aromatic alcohols, aromatic amines, thiocarbonyls and phosphorothioates
- Both probabilistic and predictive models readily identify chemotypes that impact TPO activity; these methods are complementary and taken together increase our understanding of what structural features impact activity
- Some chemotypes identified as enriched using probability analysis were not among the most predictive chemotypes; conversely, some of the most predictive chemotypes were not among the most statistically enriched
- Both over-and under-enriched chemotypes help improve predictive modelling
- Supplementing a predictive model with additional data, such as physical-chemical properties are expected to improve model performance over using chemotypes alone

This poster does not necessarily reflect EPA policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Alkanes

Aliphatic Ketones

Abstract # 1886

Thiocarbonyls Phosphorothioates