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Introduction

ToxCast Screen for TPO Inhibitors

Enriched Feature Identification Using 
Hypergeometric Distribution

Predictive Feature Identification Using a Random 
Forest Model

Conclusions and Future Directions

• The US Environmental Protection Agency (EPA) developed the Endocrine Disrupter Screening 
Program (EDSP) to identify environmentally-relevant chemicals that interfere with endocrine 
pathways, including thyroid hormone signaling

• A key target for chemically-induced thyroid disruption is inhibition of thyroperoxidase (TPO), which 
catalyzes thyroid hormone synthesis

• The AUR-TPO assay was recently developed and used to screen nearly 2,000 ToxCast chemicals 
for potential TPO inhibition activity and selectivity
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• 1,903 ToxCast chemicals were tested in 
the AUR-TPO assay at 87.5 µM final 
concentration, solubility permitting (N=3)

• Chemicals eliciting a median TPO 
inhibition ≥ 20% (above red line) were 
defined as ‘active’ and tested in 6-8 pt
concentration-response (red line, Fig. 1)

• Black lines represent ± 3*baseline 
median absolute deviation (3*bmad)

• 489 ToxCast chemicals were active in initial single-
concentration screening

• These 489 AUR-TPO actives were tested in 
concentration-response (0.1-100 µM final 
concentration) (N=3)

• Multi- and single-concentration data were analyzed 
using the ToxCast Analysis Pipeline (tcpl v2.0) 

• Chemicals that failed to inhibit TPO activity by ≥ 20% 
were defined as ‘inactive’ and AUC = 0

• Area under the fitted curve (AUC) scores incorporate 
both potency and efficacy for ranking 

• High AUC example: 6-propyl-2-thiouracil (highly 
potent and efficacious)

• Low AUC example: monuron (less potent and 
efficacious)
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Objective
Use ToxCast TPO inhibition assay data to identify chemical structures correlated with in 
vitro TPO inhibition

• 1,816 of 1,903 tested chemicals have defined structures; others were largely mixtures
• 429 of 729 ToxPrint chemotypes were represented among the 1,816 tested structures
• Cumulative hypergeometric probability: what is the probability that there will be ≥ X active chemicals 

with chemotype Y if there are 1,816 tested chemicals, 486 actives, and Z tested chemicals with 
chemotype Y?
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• Four general chemotypes predict in vitro TPO inhibition: aromatic alcohols, aromatic amines, 
thiocarbonyls and phosphorothioates

• Both probabilistic and predictive models readily identify chemotypes that impact TPO activity; these 
methods are complementary and taken together increase our understanding of what structural features 
impact activity

• Some chemotypes identified as enriched using probability analysis were not among the most predictive 
chemotypes; conversely, some of the most predictive chemotypes were not among the most statistically 
enriched

• Both over-and under-enriched chemotypes help improve predictive modelling
• Supplementing a predictive model with additional data, such as physical-chemical properties are 

expected to improve model performance over using chemotypes alone

• Chemotypes were trimmed from 429 to 10 using a 
looping random forest (R randomForest 4.6-12) that 
evaluated balanced accuracy and ranked the 
chemotypes most predictive of TPO inhibition activity 
(Fig. 5)

• Fig. 6 shows optimal model performance peaks at a 
trimmed chemotype set of 150

• The 25 most predictive chemotypes were identified at 
the model optima (top 150) using the mean decrease in 
Gini index, a measure of node impurity in tree structures

• 6 of the 25 most predictive chemotypes were not 
identified as over- or under-enriched by probability 
analysis

• Using chemotypes alone, a predictive TPO model can 
be built with a balanced accuracy of 76%
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Figure 1: Median % TPO inhibition by Sample and ToxCast Phase
Single-concentration Screen

Figure 2: AUC Ranking and ToxCast Phase
Multiple-Concentration Screen

Figure 3: Distribution of 429 Represented Chemotypes
(p = 0.005 threshold for over- and under-enrichment)

Figure 4: Workflow for identifying 
enriched chemotypes

Figure 5: Workflow for Identifying the Most Predictive Chemotypes

Chemotype Tested Active p-value
bond.COH_alcohol_aromatic_phenol 230 147 1.70E-40
bond.COH_alcohol_aromatic 239 148 2.70E-38
ring.aromatic_benzene 1012 341 3.61E-19
bond.P.S_generic 37 33 1.31E-17
bond.CN_amine_pri.NH2_aromatic 82 53 6.07E-15
bond.CN_amine_aromatic_generic 186 92 4.98E-14
bond.CS_sulfide 111 60 1.27E-11
bond.QQ.Q.O_S._sulfhydride 19 17 2.85E-10
bond.CN_amine_pri.NH2_generic 112 58 2.94E-10
bond.COH_alcohol_generic 471 172 4.70E-10
bond.C.S_carbonyl_thio_generic 27 20 1.78E-08
chain.aromaticAlkane_Ph.C1.Ph 68 36 2.74E-07
chain.aromaticAlkane_Ar.C.Ar 74 38 3.95E-07
bond.P.O_phosphate_dithio 13 11 7.69E-07
bond.C.O_carbonyl_1_2.di 14 11 4.13E-06
bond.C..O.N_carbamate_dithio 9 8 4.73E-06
bond.NC.O_urea_thio 15 11 1.58E-05
chain.aromaticAlkane_Ph.C6 8 7 1.86E-05
bond.CC..O.C_ketone_alkene_cyclic_2.en.1.one_generic 62 30 2.68E-05
ring.hetero_.6_6._O_benzopyrone_.1_4.. 12 9 4.70E-05
chain.aromaticAlkane_Ph.C4 14 10 5.03E-05
ring.fused_.6_6._naphthalene 50 25 5.18E-05
bond.N.N_azo_aromatic 25 15 5.67E-05
chain.alkeneLinear_diene_1_3.butene 7 6 7.30E-05
bond.CN_amine_ter.N_aromatic_aliphatic 46 23 9.48E-05

Chemotype Tested Active p-value
bond.C..O.O_carboxylicEster_acyclic 122 10 3.74E-07
chain.alkaneBranch_isopropyl_C3 220 28 4.26E-07
bond.X.any._halide 474 83 6.22E-07
bond.COC_ether_aliphatic 134 13 1.33E-06
bond.COH_alcohol_aliphatic_generic 250 37 5.63E-06
bond.COH_alcohol_pri.alkyl 119 12 9.76E-06
bond.C..O.O_carboxylicEster_alkyl 166 21 1.26E-05
bond.C.O_carbonyl_generic 913 196 1.53E-05
bond.CX_halide_alkyl.X_generic 175 23 1.58E-05
bond.C..O.O_carboxylicEster_aliphatic 111 12 5.09E-05
bond.CX_halide_alkyl.F_trifluoro_.1_1_1.. 78 7 1.36E-04
chain.oxy.alkaneLinear_ethyleneOxide_EO1 37 1 2.03E-04
bond.CX_halide_alkyl.X_benzyl_alkane 42 2 3.91E-04
bond.CC..O.C_ketone_aliphatic_acyclic 55 4 4.09E-04
chain.alkaneLinear_butyl_C4 288 52 5.20E-04
bond.CX_halide_alkyl.X_dihalo_.1_1.. 128 18 6.98E-04
chain.alkaneLinear_propyl_C3 427 86 1.23E-03
chain.alkaneCyclic_ethyl_C2_.connect_noZ. 266 49 1.50E-03
bond.CX_halide_aromatic.X_generic 299 57 1.90E-03
chain.alkaneLinear_ethyl_C2.H_gt_1. 652 142 2.01E-03
bond.CX_halide_alkyl.X_trihalo_.1_1_1.. 95 13 2.66E-03
chain.oxy.alkaneLinear_ethylenOxide_EO1.O. 27 1 3.16E-03
bond.C..O.N_carboxamide_.NR2. 98 14 3.70E-03
bond.CX_halide_alkyl.X_secondary 18 0 4.54E-03
bond.CC..O.C_ketone_methyl_aliphatic 17 0 6.14E-03

Figure 6: Model Performance by Top Chemotypes

Chemotype Mean ↓ Gini Index
bond.COH_alcohol_aromatic_phenol 21.71
bond.COH_alcohol_aromatic 19.51
bond.P.S_generic 12.19
ring.aromatic_benzene 9.57
bond.CN_amine_aromatic_generic 9.13
bond.CS_sulfide 8.74
bond.CN_amine_pri.NH2_aromatic 8.23
bond.COH_alcohol_generic 6.13
bond.CN_amine_pri.NH2_generic 5.95
bond.QQ.Q.O_S._sulfhydride 5.87
bond.X.any._halide 5.30
bond.C.O_carbonyl_generic 5.11
bond.C.S_carbonyl_thio_generic 5.05
chain.alkaneLinear_ethyl_C2_.connect_noZ_CN.4. 5.05
chain.alkaneLinear_ethyl_C2.H_gt_1. 4.98
ring.aromatic_phenyl 4.59
chain.aromaticAlkane_Ph.C1_acyclic_generic 4.59
bond.P.O_phosphate_thioate 4.37
bond.CX_halide_aromatic.X_generic 4.24
bond.COC_ether_aliphatic__aromatic 4.22
chain.aromaticAlkane_Ph.C1_cyclic 4.14
bond.OZ_oxide_hyroxy 4.02
bond.C.O_carbonyl_1_2.di 3.98
chain.aromaticAlkane_Ph.C1_acyclic_connect_noDblBd 3.98
bond.N..O._nitro_C 3.76
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