

¹National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711 ²Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, 37831

Background

The Hill model relates response y (of an assay or organism) to **concentration** *x* (of a chemical):

$$y = f(x;q) = \frac{T}{1+10^{\gamma(c-x)}}$$

• Hill model parameters $q = (T, c, \gamma)$ provide useful metrics of efficacy (T), **potency** (c), and ligand binding **cooperativity** (γ) .

- Point estimates (single values) of Hill parameters are commonly used in high-throughput screening (HTS) risk assessment.
- Point estimates lack information about precision (or confidence).
- Interval estimates, such as those produced by
 - 1) Asymptotic theory (Wald type),
 - 2) Bootstrapping (two different methods), and
 - 3) Bayesian approach (MCMC),

provide information about **precision**.

Goal: Determine which of four interval estimation methods gives the most accurate information about the *precision* of toxicity parameter estimates; e.g., estimates of the $AC_{50}(c)$.

Assessing Interval Estimation Methods for Hill Model Parameters in a High-Throughput Screening Context Dustin F. Kapraun¹, Eric D. Watt^{1, 2}, R. Woodrow Setzer¹, Richard S. Judson¹

Interval Estimation Methods

1) Asymptotic Theory (Wald)

- Hessian of log-likelihood function \rightarrow FIM \rightarrow covariance matrix.
- Diagonal entries of the covariance matrix are the standard errors for the parameter estimates.
- As $n \to \infty$, parameter distributions \rightarrow **Gaussian**.

2) Bootstrapping (Boot & Wild)

- Refers to a procedure that relies on sampling with replacement.
- In the case of parameter estimation, sample residuals.
- Use the sampled residuals to create a **new data set**, then find a **new best fit model** and corresponding parameter values.
- Repeating this process many times, we obtain a probability distribution for the model parameters.
- For "Wild" method, keep residuals paired with concentration.

Evaluating Interval Estimates: Simulation Study

Innovative Research for a Sustainable Future

3) Bayesian Approach (Bayes)

Parameters are considered to be **random variables** rather than fixed quantities

• We seek the **posterior** density that best reflects the distribution of parameter values based on

struct using ious hods.		Compare actual to nominal coverage.
		95%
	•	87%
		96%
·		74%
•		:
		•

Interval estimates produced by different methods generally disagree. Which is method is best?

Conclusions

- **Bootstrapping** tends to give **better coverage** than the other interval estimation methods when errors are homoscedastic.
- Data sets generated by HTS assays exhibit a variety of error structures (homoscedastic, error largest at transition, dual trajectory, etc.). Asymptotic theory confidence intervals generally do **not** give correct
- coverage.
- **None** of the methods give good coverage for non-homoscedastic error models, or when true value of c is >= largest measured concentration.

Disclaimer: The views expressed in this poster are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

Dustin F. Kapraun I kapraun.dustin@epa.gov I ORCID 0000-0001-5570-6383