

Permeable Pavement Research Highlights Performance and effectiveness of permeable pavement systems

Michael Borst

Edison Environmental Center Edison, New Jersey

In-Street Application Louisville, Kentucky

Office of Research and Development National Risk Management Research Laboratory Water Supply and Water Resource Division Urban Watershed Management Branch

The design at the EEC incorporated water quality monitoring capabilities.

Vertical cross sections of permeable sections varied slightly from material to material.

Based on engineering drawings from Morris & Ritchie Associates, Inc. 2009

3

Four equally-sized and spaced lined sections collect infiltrating water from each monitored permeable surface with the balance infiltrating to the underlying soil.

Infiltrate drains from the lined sections to 1,500gallon tanks on the east side of the parking lot where it can be sampled.

The permeable pavement parking lot at the Edison Environmental Center allows evaluation of water quality effects.

- Published or in review
 - -Chloride
 - -Speciated nitrogen
 - -Organic carbon
 - -Phosphate
 - -pH
 - -Eh
- In production
 - -SVOCs
 - -Metals

6

Just starting
Microbial indicators

After winter salt application, chloride concentration decreases throughout the remainder of the year.

JAWRA 50(1) 29-41

All permeable surfaces reduced Suspended Solids Concentration (SSC) to different degrees.

Acidic rainfall is buffered by all pavement surfaces, and PA exfiltrate is surprisingly basic.

TN concentrations in PICP, PC, and runoff were not significantly different, but all three were significantly less than PA.

NSDQ median NH3 0.5 mg/L median NO3-2 0.6 mg/L median TKN 1.6 mg/L

Total phosphate concentrations in PICP and PC were significantly larger than in the runoff, and all were significantly larger than PA.

■ RO

RAIN

Date Range: 10/28/2010 - 9/7/2011

Events sampled: 13 (PICP, PC, and PA)

12 (Runoff and Rain)

The concentration of priority-pollutant metals were generally less than the groundwater discharge limit.

Arsenic and antimony sometimes exceeded the groundwater limits

Surface results:

- The three surfaces have very large infiltration rates.
- Clogging progresses from upgradient to downgradient.
- Microtopography partly determines clogging pathway.
- 5 to 7% of the captured water evaporates through the surfaces.

The infiltration rate varies among the four tested surfaces, but all surfaces are sufficient to handle maximum expected direct rainfall rates.

Infiltration decreased with age for the three surfaces that received run-on from driving lane.

Bars represent standard error.

16

Sediment accumulates (*and clogging progresses*) from the upgradient edge.

The surface clogging progression varied because of microtopography.

We developed a working hypothesis of the mechanics of the clogging processes.

Flow

As gaps fill with sediment, the location of the primary infiltration moves downgradient.

Flow

Recovered sediment particle size analysis shows initial accumulation of fines in the upgradient sections.

Section 25

A shade and the set

1000

Barner Street

SPECIAL STR

1000

Flume tests show the progressive infiltration of the runoff that leads to the clogging.

Photos: Amir Ehsaei University of Louisville

The flume tests are showing the same general pattern of accumulated sediment as observed in the field.

Inorganic material near up gradient edge

Organic material near down gradient edge

Photos: Amir Ehsaei University of Louisville

Large portions of the pervious concrete disaggregated.

The problem first became apparent about 18 months after pouring concrete. It was repaired by the contractor in May 2011, but has recurred.

Is structural failure coupled with chloride?

NRMCA revised O&M guidance (2015)

"Deicing chemicals should not be used on any type of concrete in the first year."

Pervious Concrete Pavement Maintenance and Operations Guide

In 2011, Louisville MSD installed permeable pavement strips in parking lanes near the catch basins in the Butchertown section of Louisville.

In-Street Application

Louisville, Kentucky

There are large variation in infiltration rates at small geographic scales.

	Expected rate from "nearby" geotechnical survey 4.3 cm/hr				
Magguramant	Control 19G		Control 19H		
location	Infiltration	USDA soil texture	Infiltration	USDA soil texture	
location	rate	classification	rate	classification	
	(cm/hr)	(% sand/silt/clay)	(cm/hr)	(% sand/silt/clay)	
Upgradient	0.114	Sandy Loam (58/34/8)	0.258	Sandy Loam (55/36/9)	
Middle	0.108	Loam (50/33/17)	0.780	Silt Loam (35/50/15)	
Downgradient	0.012	Silty Clay Loam (18/52/30)	0.096	Sandy Loam (62/25/13)	
Average	0.078		0.378		

In this curb and gutter system, we expected concentrated flow along the curb to transport and deposit sediment from the drainage area.

Findings:

- There are very large variations in soil hydraulic conductivity at small spatial scales.
- Clogged does not mean sealed.
- Embedded instruments can be used monitor the clogging progression.
- Clogging distance is proportional to rainfall depth and not time.
- Static volumetric design may cause oversized stormwater controls.

Findings:

- Exfiltration rates vary with age.
- Exfiltration rates vary with water depth and constant hydraulic flux is not representative of exfiltration processes.
- Much of the exfiltration occurs through the sides.
- SCM geometry is important.

Installed instruments can be used to determine the control's longitudinal clogging rate.

Control Louisville 19G

Response threshold 0.10 RVWC

The initial clogging rate was about 0.123 m per mm (10 ft per inch) of rain.

Even when clogged, the surface is not sealed.

Louisville control 19H Level data at 1-minute intervals Rainfall data at 5-minute intervals MSD gauge TR05

Constant exfiltration across wetted perimeter or base is not supported by the measurements.

Modeling the fate of runoff showed that most of the captured water exfiltrated laterally through the side walls.

Subsurface flow patterns and interactions with groundwater will be the emphasis of near-term studies in KY and KS.

Flow patterns will also be investigated in Philadelphia under the NCER cooperative agreements.

Intra-event exfiltration can be significant

Static sizing criterion may significantly oversize the SCM.

Maintenance:

- Multiple techniques were implemented.
- Each technique increased surface infiltration capacity, but did not always restore baseline conditions.
- Longevity of the restored infiltration capacity varied.
- Results are probably product specific.

We have costs for maintenance activities undertaken to date but have concerns about scaling.

Cost of initial maintenance techniques				
Method	Cost (\$)	Area maintained (ft ²)	Unit cost (\$/ ft ²)	
Sweeping	370	960	0.385	
Air jetting & brush	921	1,400	0.658	

Note: We expect some economy of scale to produce lower unit costs when additional controls are built.

Sweeping was only done to control 19G. Fixed mobilization / demobilization costs may skew unit cost estimate Data source: URS

39

Construction costs have been essentially proportional to volume.

Item	Quantity	Unit Cost (\$)	Extended Cost (\$)	Fraction (%)	
No. 57 Aggregate	52 CY	0.61	3,172	6.6	
Geogrid	1,400 SF	4.00	5,600	11.6	
Pavers	1,400 SF	14.00	19,600	40.6	\$126/sq yd
Earthwork	235 CY	35.00	8,225	17.1	
No. 3 Aggregate	181 CY	40.00	7,240	15.0	
Asphalt removal	1,400 SF	0.75	1,050	2.2	
Overflow pipe	LS		1,200	2.5	
Traffic control	LS		600	1.2]
Survey & stake	LS		200	0.4	Semi-fixed
Erosion / sediment control	LS		200	0.4	costs 4.5%
Bonding	LS		650	1.3	of total
Mobilization / Demobilization	LS		500	1.0	\$310/sq.vd
Total Costs: November 2011 Louisville, KY Ty	vo paver strips. Exclu	udes monitoring	\$48,237 costs and change o	100.0 rders	- ψυτυ/δη γυ

EFFECTIVENESS

Ideally, we wanted a Before-After Control-Impact (BACI) Study.

Control

Impact

41

Plan "B" created a virtual sewershed for comparison.

Modeled (InfoWorks)

Measured

The statistics allow determination of whether the "impact" had a measurable effect after adjusting for all other factors.

• X_{1,1}, X_{1,2}, X_{1,3} . . .

• X_{2,1}, X_{2,2}, X_{2,3} ...

• X_{3,1}, X_{3,2}, X_{3,3} . . .

• X_{4.1}, X_{4.2}, X_{4.3} . . .

In-sewer flows were measured at 5 locations for at least 1 year before construction to develop the preconstruction condition model using InfoWorks (Innovyze).

Sigma 920 area-velocity flow meters (later FloWav) were installed and managed by LJCMSD.

The flow meters separated the basin into 4 catchments, and catch basins were used to define 29 subcatchments.

Drainage areas were defined using 6-inch LIDAR data and refined with on-site observations.

We selected the largest subsewershed area to evaluate the effectiveness (north of Story Avenue) as a surrogate.

Using the BACI approach, GI significantly reduced in-sewer flow volume per event.

North of Story Avenue Catchment

North of Story Avenue Catchment

Results after replacing the dryweather line are promising for meeting basin AAOV targets.

OTHER STUFF

The typical diurnal surface temperature pattern shows

In the process of going from data to information.

How do these surfaces affect the urban heat island?

How do short and long wave radiation patterns differ among the surfaces?

Annually, evaporation from the storage gallery accounted for a measureable part of the rainfall volume for this system.

Design to help mitigate UHI? Strategic select for arid v. humid areas?

	Percentage of rainfall volume on design drainage area that evaporated			
Surface	PICP	PC	PA	
Section 1	5.8%	N/A (leaked)	3.9%	
Section 2	4.4%	7.0%	5.6%	
Section 3	3.9%	7.6%	2.4%	
Section 4	5.8%	6.5%	4.2%	
Average	5.0%	7.0%	4.0%	
		10 YO M 10 10 10 10 10 10 10 10 10 10 10 10 10	CONTRACTOR AND ADDRESS	

53

Journal of Hydrological Processes 2014 DOI: 10.1002/hyp.10359

Office of Research and Development National Risk Management Research Laboratory Water Supply and Water Resource Division Urban Watershed Management Branch

Sneak preview of upcoming research

- How do SCMs interact with groundwater?
 - -Hydrology
 - -Chemistry
- What are the mechanics of SCMs?

Near-field monitoring of groundwater using wells and piezometers

In addition to monitoring the storage gallery infiltration and exfiltration, we are installing a collection of wells, piezometers, and tensiomters to try to monitor the subsurface processes.

We are starting a similar project in an urban setting in Louisville.

Google earth