♦ EPA

Economic and Environmental Assessment of Natural Gas Plants with Carbon Capture and Storage (NGCC-CCS)

Samaneh Babaee (ORISE) and Dan Loughlin U.S. EPA Office of Research and Development Research Triangle Park, NC

34th USAEE/IAEE North American Conference October 23-26, 2016 – Tulsa, Oklahoma

- . Motivation
- 2. Objectives
- 3. Approach
- 4. Preliminary results
- 5. Lessons learned

Disclaimer

- The views expressed in this presentation are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

€PA

Motivation

- Natural gas combined-cycle (NG) plants are promoted as a clean technology and a bridge to a low carbon future.
- NG plants have a number of advantages:
 - Compared to new coal and nuclear plants
 - Relatively low investment cost
 - Easier to site and shorter build time
 - Lower NG prices in recent years due to the technological advancements in U.S. shale gas exploration
 - NG combined-cycle turbines (NGCC) can be retrofitted at a later date with carbon capture and sequestration (CCS)

Motivation

NG plants have a number of challenges:

- Methane (CH₄) leakage in the NG extraction, processing, transmission and distribution processes
- Carbon dioxide (CO₂) capture and sequestration results in a higher cost and energy penalty
- The low CO₂ content of gas from conventional NGCC plants yield difficulties in capture
- Stringent CO₂ reduction targets may make natural gas plants less attractive, even with CCS

The competitiveness of NGCC-CCS technologies may be affected by regional variations in fuel prices and access to renewables, as well as the presence and stringency of a CO₂ cap.

Objectives

- How do various factors affect the competiveness of NGCC-CCS and its potential role in climate change mitigation?
 - e.g., NGCC cost and efficiency, CO₂ capture cost and capture rate, fuel prices, methane leakage rate, stringency of greenhouse gas (GHG) reduction targets, nuclear hurdle rates, ...
- Do results change when we use a regional model?
 - Are there important underlying stories when we examine NGCC-CCS penetration at the regional level?

Approach

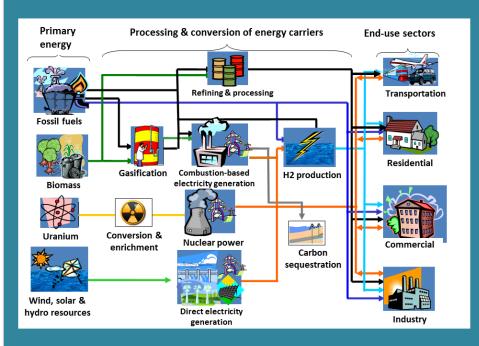
- Used MARKet ALlocation (MARKAL) energy system model along with U.S. 9-region EPA database (EPAUS9r-2014), which can capture regional deployment of NGCC-CCS.
- Performed sensitivity analysis to explore conditions in which NGCC-CCS can compete with other power plants in each region through 2050 in response to:
 - 30% and 40% system-wide GHG cap
 - 50% system-wide GHG cap:

- with variations in CCS retrofit characteristics (costs, capture rate, hurdle rate, efficiency penalty), NG prices, renewables availability and storage level, nuclear lifetime and cost, leakage rates... \rightarrow 45 sensitivity runs

Quantified energy consumption and CO_2 emissions as well as air pollutant emissions (nitrogen oxides (NOx), sulfur dioxide $(SO_2),...)$ for each region and scenario.

Approach Energy system model: MARKAL

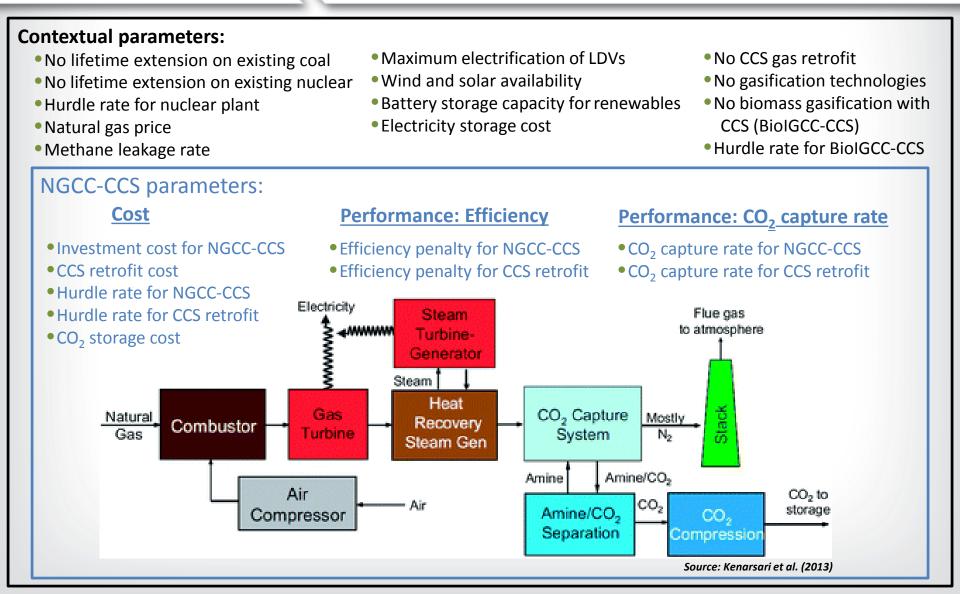
Bottom-up, technology-rich, and capture the full energy system:


- Technologies cost and performance estimates (efficiency, emission factors,...)
- Technologies are connected via flow of energy commodities
- End-use demands

EPA

Constraints (energy/emission regulations and policies, ...)

Optimization


 Identify the least-cost way to satisfy enduse demands over the model time horizon from 2005 to 2055

Model output

- Optimal installed capacity and utilization by technology
- Marginal fuel prices
- Emissions

Approach Sensitivity parameters

€PA

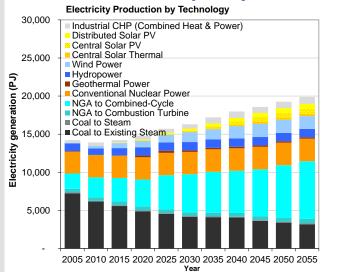
Assumptions


Baseline and all GHG mitigation scenarios include:

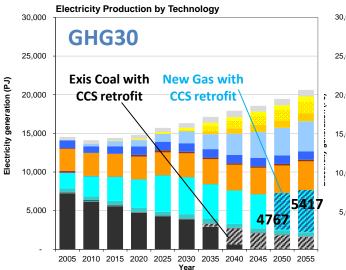
- Cross-State Air Pollution Rule (CSAPR), Clean Power Plan (CPP) (regional caps derived from IPM mass-based analysis), and Corporate Average Fuel Efficiency (CAFE) standards for light duty vehicles
- Updated solar PV costs from the EPA's Integrated Planning Model (IPM)
- Simplified hurdle rates for power plants (new nuclear: 15%, coal and nuclear extension: 5%, and other new power plants: 10%)
- Upper bound capacity on new nuclear electricity generation is 5GW in 2020, which can grow up to 5% per year until 2055 (Max: 28GW new nuclear is built by 2055).
- The maximum share of electricity generation from wind and solar photovoltaics (PV) is limited to 50% of system-wide electricity production from 2010 through 2055.

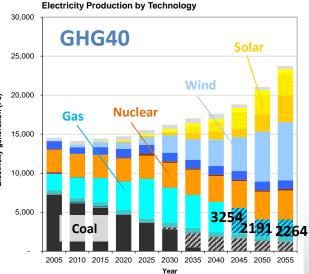
€PA

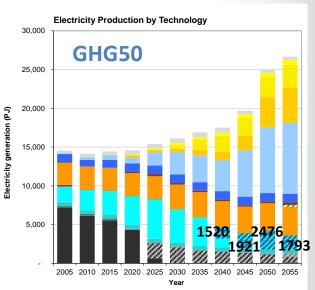
Assumptions


- Sensitivity analysis on 20 model parameters yielded a total of 45 MARKAL scenarios
- Discretized each parameter into very low, low, high, very high
- Ran MARKAL for individual parametric sensitivity
- For discussion purposes, focus on the results for:
- No GHG policy
- 50% GHG energy system-wide reduction by 2050, relative to 2005 (GHG50)

Preliminary results Electricity generation

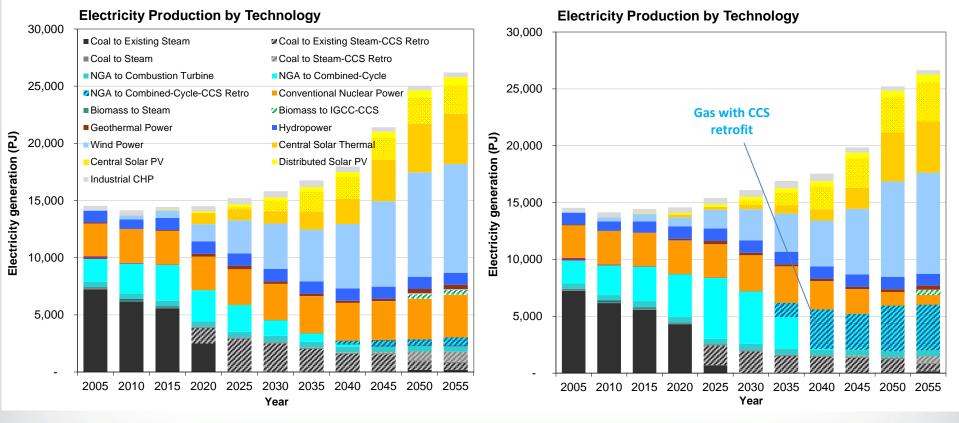

Baseline: No policy


EPA



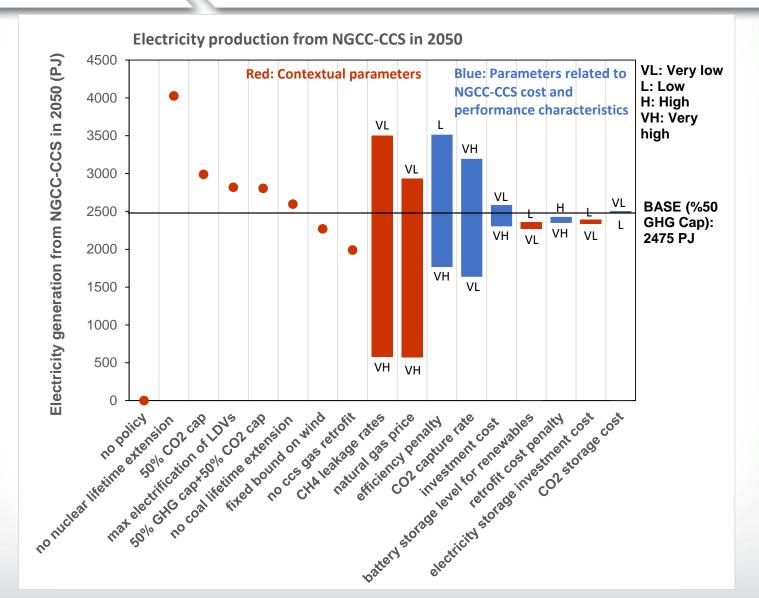
Electricity generation from natural gas power plants (PJ)

Scenario	2015	2030	2050
No Policy	3600	5480	7540
GHG30	3710	5370	5390
GHG40	3710	4990	2710
GHG50	3710	4830	2970



Preliminary results Electricity generation under 50% GHG cap

Lowest NGCC-CCS deployment: Very high natural gas price + GHG50


Highest NGCC-CCS deployment: No nuclear lifetime extension + GHG50

In low NGCC-CCS deployment: Higher coal with CCS, wind, solar thermal, and nuclear post 2040

In High NGCC-CCS deployment: Higher central solar PV, NGCC (with CCS retrofit starting 2035)

Preliminary results Electricity generation from NGCC-CCS under GHG50

EPA

Preliminary results GHG cap vs. methane leakage rate in 2050

• As GHG cap and CH4 leakage rate increase, NGCC-CCS deployment, NOx and CO_2 emissions, and NG consumption decrease, but solar and wind deployment increases, nuclear is fixed.

€PA

Nuclear deployment (PJ)					
GHG cap		Methane L	eakage rate	9	
опо сар	0.25% 1.00% 4.00% 7.00%				
GHG30	3550	3550	3550	3550	
GHG40	3550	3550	3550	3550	
GHG50	3550	3550	3550	3550	

Water consumption (trillion gallon)					
	Methane Leakage rate 0.25% 1.00% 4.00% 7.00%				
GHG cap					
GHG30	1460	1470	1310	1190	
GHG40	1360	1260	1220	1290	
GHG50	1290	1290	1350	1530	

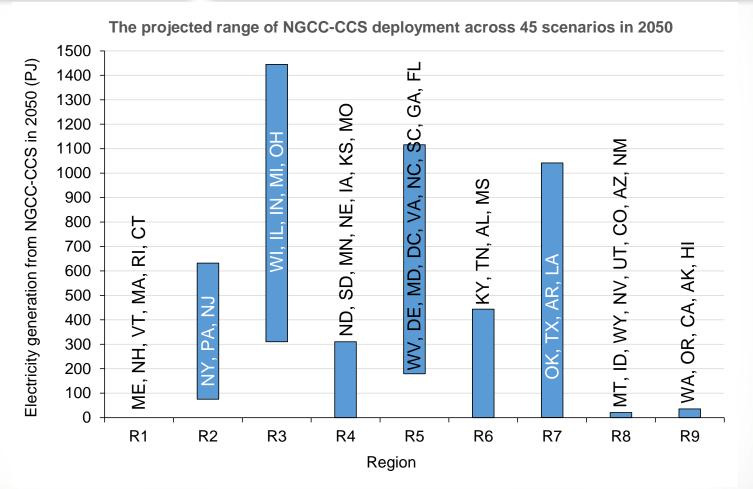
Total SO ₂ (Kt)							
	Г	Methane L	Leakage rate				
GHG cap	0.25% 1.00% 4.00% 7.00%						
GHG30	2140	2150	1980	1800			
GHG40	1430 1360 1240 1310						
GHG50	GHG50 1180 1200 1200 1300						

NGCC-CCS deployment (PJ)					
	Methane Leakage rate				
GHG cap	0.25%	1.00%	4.00%	7.00%	
GHG30	3910	3440	2920	1230	
GHG40	3830	2690	1660	1290	
GHG50	3500	2990	1430	580	

Coal deployment (PJ)					
	Methane Leakage rate				
GHG cap	0.25%	7.00%			
GHG30	2030	2020	1830	1760	
GHG40	1510	1450	1490	1780	
GHG50	1060	1140	1580	1790	

PM-related health damages (billion \$)					
	Methane Leakage rate				
GHG cap	р 0.25% 1.00% 4.00% 7.				
GHG30	1130	1130	1120	1100	
GHG40	1050	1040	1000	1000	
GHG50	980	980	980	1000	

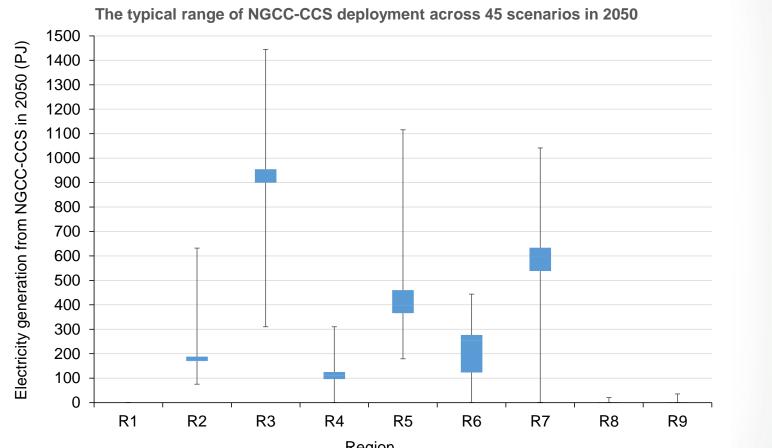
Total CO ₂ (Mt)					
	Methane Leakage rate				
GHG cap	0.25%	7.00%			
GHG30	4210	4090	3740	3550	
GHG40	3610	3520	3260	3070	
GHG50	3170	3090	2870	2710	


 As GHG cap increases, coal deployment, PM health damages, and SO₂ emissions decrease.

Solar and wind deployment (PJ)					
GHG cap Methane Leakage rate				9	
опо сар	0.25% 1.00% 4.00% 7.00				
GHG30	5280	5800	8450	10980	
GHG40	8740	10270	13390	15320	
GHG50	13680	14410	16210	16310	

Total NOx (Kt)					
	Methane Leakage rate				
GHG cap	0.25% 1.00% 4.00% 7.00%				
GHG30	6340	6330	6200	5940	
GHG40	5980	5880	5530	5270	
GHG50	5080	5020	4980	4810	

Total natural gas consumption (PJ)					
GHG cap	Methane Leakage rate				
опо сар	0.25% 1.00% 4.00%				
GHG30	29140	28260	23400	19140	
GHG40	25170	22450	18180	15290	
GHG50	20370	19100	15840	13640	


Preliminary results Regional NGCC-CCS adoption under GHG50

- R3 has the widest range of NGCC-CCS adoption with very low influence from different scenario parameters.
- The NGCC-CCS deployment in R1, R8, and R9 is negligible.

EPA

Preliminary results Regional NGCC-CCS adoption under GHG50

€ FPA

 Variation in scenarios parameters has the minimal effect on NGCC-CCS deployment in R2 and R4.

 R5 has higher NGCC-CCS deployment than R7, but the typical range of NGCC-CCS adoption is higher in R7.

Lessons learned

- Mild GHG cap leads to higher NGCC-CCS deployment in later time periods, while stringent GHG cap results in lower NGCC-CCS deployment starting earlier in the model time horizon.
- Under 50% GHG cap and at the national level in 2050:
 - Highest NGCC-CCS deployment scenario: no nuclear lifetime extension
 - Lowest NGCC-CCS deployment scenario: very high NG price
 - The main trade-off is between nuclear and NGCC-CCS plants
 - Uncertainty in CH₄ leakage rates result in the largest range of NGCC-CCS adoption.
- Increased GHG cap and methane leakage rate result in:
 - Decrease in NGCC-CCS deployment, NOx and CO₂ emissions, and NG consumption
 - Increase in electricity generation from renewables
 - Fixed electricity production from nuclear power plants
- At the regional level, the minimum deployment of NGCC-CCS is seen in R1, R8, and R9; the widest range of NGCC-CCS adoption is associated with R3; NGCC-CCS deployment in R2 and R4 is the least responsive to variations in scenario parameters.

Next steps

Add other scenario parameters:

- Change the methane leakage rate over time
- CO₂ leakage from CO₂ storage sites
- Assume NGCC with CCS retrofit as a baseload power plant
- Examine the effects of including emissions associated with CO₂ transport through pipelines, trucks (gasoline, diesel, natural gas, ...)
- Examine the role of NET Power gas plant in our analysis
- Develop nested sensitivity analysis

Questions?

Contact information:

Samaneh Babaee, Ph.D.

ORISE Postdoctoral Fellow at the U.S. EPA

Babaee.Samaneh@epa.gov