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Problem Statement
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Too many chemicals to test with standard 
animal-based methods

–Cost, time, animal welfare 

Need for better mechanistic data
- Determine human relevance

- What is the Adverse Outcome Pathway (AOP)?
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Potential Exposure:
ExpoCast

mg/kg BW/day

Potential Hazard: 
In Vitro + HTTK
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Priority
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Risk-based Prioritization
Hazard + Exposure

Semi-quantitative
In Vitro to In Vivo
Approach
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Computational Toxicology

• Identify biological pathways of toxicity (AOPs)

• Develop high-throughput in vitro assays to test chemicals

• Identify “Human Exposure Chemical Universe” to test 

• Develop models that link in vitro to in vivo hazard

• Use pharmacokinetic models to predict activating doses 

• Develop exposure models for all chemicals

• Add uncertainty estimates

• Create high-throughput risk assessments
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EDSP21 Project: Major Points
• EDSP: Endocrine Disruptor Screening Program

–Mandated by U.S. Congress
–“Tier 1 battery” – 11 in vitro and in vivo assays (estrogen, androgen, thyroid)

• EDSP has a mismatch between resources needed for Tier 1 and 
number of chemicals to be tested
–~10,000 chemicals in EDSP Universe
–~$1M per chemical for Tier 1, 50-100 year backlog

• Demonstrate new approach: Estrogen Receptor (ER)
–Multiple high-throughput in vitro assays
–Prioritize chemicals and replace selected Tier 1 assays
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In Vitro Estrogen Receptor Model
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• Use multiple assays per pathway
• Different technologies
• Different points in pathway

• No assay is perfect
• Assay Interference
• Noise

• Use model to integrate assays

• Evaluate model against reference chemicals

• Methodology being applied to other pathways

Judson et al: “Integrated Model of Chemical Perturbations of a Biological Pathway
Using 18 In Vitro High Throughput Screening Assays for the Estrogen Receptor” (EHP 2015) 
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All In vitro assays have false positives and 
negatives

Much of this “noise” is reproducible
- “assay interference”
- Result of interaction of chemical 

with complex biology in the assay

EDSP chemical universe is structurally 
diverse
-Solvents
-Surfactants
-Intentionally cytotoxic compounds
-Metals
-Inorganics
-Pesticides
-Drugs

Assays cluster by technology,
suggesting technology-specific 

non-ER bioactivity

Judson et al: ToxSci (2015)
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Most chemicals display a “burst” of potentially non-
selective bioactivity near cytotoxity concentration
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Schematic explanation of the burst
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Oxidative Stress
DNA Reactivity
Protein Reactivity
Mitochondrial stress

ER stress
Cell membrane disruption
Specific apoptosis
…

Specific Non-specific

Section 2.1



ER Receptor 
Binding
(Agonist)

Dimerization

Cofactor
Recruitment

DNA 
Binding

RNA 
Transcription

Protein 
Production

ER-induced
Proliferation

R3

R1

R5

R7

R8

R6

N1

N2

N3

N4

N5

N6

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A12

A13

A14

A15

A16

A11

Receptor (Direct 
Molecular Interaction)

Intermediate Process

Assay

ER agonist pathway

Pseudo-receptor pathway

ER antagonist pathway

R2

N7

ER Receptor 
Binding

(Antagonist)

A17

A18

Dimerization

N8

N9DNA 
Binding

Cofactor
Recruitment

N10
Antagonist
Transcription
Suppression

R4

R9

A1

ATG TRANS
ATG CIS

Tox21 BLA
Tox21 LUC

Tox21 BLA
Tox21 LUC

ACEA

OT PCA 
αα,αβ,ββ

OT Chromatin 
Binding

NVS
bovine
human
mouse

A



ER Receptor 
Binding
(Agonist)

Dimerization

Cofactor
Recruitment

DNA 
Binding

RNA 
Transcription

Protein 
Production

ER-induced
Proliferation

R3

R1

R5

R7

R8

R6

N1

N2

N3

N4

N5

N6

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A12

A13

A14

A15

A16

A11

R2

N7

ER Receptor 
Binding

(Antagonist)

A17

A18

Dimerization

N8

N9DNA 
Binding

Cofactor
Recruitment

N10
Antagonist
Transcription
Suppression

R4

R9

A1
Receptor (Direct 
Molecular Interaction)

Intermediate Process

Assay

ER agonist pathway

Pseudo-receptor pathway

ER antagonist pathway



ER Receptor 
Binding
(Agonist)

Dimerization

Cofactor
Recruitment

DNA 
Binding

RNA 
Transcription

Protein 
Production

ER-induced
Proliferation

R3

R1

R5

R7

R8

R6

N1

N2

N3

N4

N5

N6

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A12

A13

A14

A15

A16

A11

R2

N7

ER Receptor 
Binding

(Antagonist)

A17

A18

Dimerization

N8

N9DNA 
Binding

Cofactor
Recruitment

N10
Antagonist
Transcription
Suppression

R4

R9

A1
Receptor (Direct 
Molecular Interaction)

Intermediate Process

Assay

ER agonist pathway

Pseudo-receptor pathway

ER antagonist pathway



ER Receptor 
Binding
(Agonist)

Dimerization

Cofactor
Recruitment

DNA 
Binding

RNA 
Transcription

Protein 
Production

ER-induced
Proliferation

R3

R1

R5

R7

R8

R6

N1

N2

N3

N4

N5

N6

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A12

A13

A14

A15

A16

A11

R2

N7

ER Receptor 
Binding

(Antagonist)

A17

A18

Dimerization

N8

N9DNA 
Binding

Cofactor
Recruitment

N10
Antagonist
Transcription
Suppression

R4

R9

A1
Receptor (Direct 
Molecular Interaction)

Intermediate Process

Assay

ER agonist pathway

Pseudo-receptor pathway

ER antagonist pathway



Office of Research and Development
National Center for Computational Toxicology

Example 1 – BPA: true agonist (AUC=0.66)
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Example curves
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True Agonist True Antagonist

Assay Interference Example “R3”
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In Vitro Reference 
Chemical Performance
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Uterotrophic Database
98 Chemicals 
442 GL uterotrophic bioassays

Literature Searches: 
1800 Chemicals

Data Review: 
700 Papers, 42 Descriptors, x2 

6 Minimum 
Criteria

High-Level
Filter

In Vivo ER Reference Chemicals
30 Active, 13 Inactive

In vivo validation: Identifying Uterotrophic 
Reference Chemicals from the Literature

Selection 
Criteria

“Guideline-Like”
(GL)

Kleinstreuer et al: “A Curated Database of Rodent Uterotrophic Bioactivity” (EHP 2016) 
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Immature Rat: BPA

In vivo guideline study uncertainty
26% of chemicals tested multiple times in the 
uterotrophic assay gave discrepant results

Kleinstreuer et al. EHP 2016

LE
L 

or
 M

TD
 (m

g/
kg

/d
ay

)

Injection Oral

Inactive
Active

Uterotrophic

species / 
study 1

species / 
study 2

Reproduce Does Not 
Reproduce

Fraction 
Reproduce 

rat SUB rat CHR 18 2 0.90

rat CHR dog CHR 13 2 0.87

rat CHR rat SUB 18 4 0.82

rat SUB rat SUB 16 4 0.80

rat SUB dog CHR 11 4 0.73

mouse CHR rat CHR 11 4 0.73

mouse CHR rat SUB 13 7 0.65

dog CHR rat SUB 11 6 0.65

dog CHR rat CHR 13 8 0.62

rat CHR mouse CHR 11 11 0.50

mouse CHR dog CHR 6 6 0.50

rat SUB mouse CHR 13 14 0.48

dog CHR mouse CHR 6 8 0.43

mouse CHR mouse CHR 2 3 0.40

Phenotype X
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Model predicts in vivo uterotrophic assay as well 
as uterotrophic predicts uterotrophic

 Plot

AUC Rank
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Add Uncertainty to In Vitro Assay Data
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Moving Towards Regulatory Acceptance
From FIFRA SAP, December 2014

• Can the ER Model be used for prioritization?
– “… the ER AUC appears to be an appropriate tool for chemical prioritization for … 

the EDSP universe compounds.”

• Can the ER model substitute for the Tier 1 ER in vitro and uterotrophic 
assays?

– “… replacement of the Tier 1 in vitro ER endpoints …with the ER AUC model will 
likely be a more effective and sensitive measure for the occurrence of estrogenic 
activity …”

– “… the Panel did not recommend that the uterotrophic assay be substituted by 
the AUC model at this time. The Panel suggested that the EPA considers: 1) 
conducting limited uterotrophic and other Tier 1 in vivo assay testing, using the original 
Tier 1 Guidelines (and/or through literature curation)”

• Based on follow-up presented here (FR notice, June 18 2015) …
– “EPA concludes that ER Model data are sufficient to satisfy the Tier 1 ER 

binding, ERTA and uterotrophic assay requirements.”

21
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High throughput pharmacokinetic (HTPK)      
in vitro methods have been developed by 
pharmaceutical industry for predicting 
efficacious doses in clinical trials 

In Wetmore et al. (2012) the same methods 
are used to approximately convert ToxCast in 
vitro bioactive concentrations (µM) into daily 
doses needed to produce similar levels in a 
human (mg/kg BW/day)

These doses can then be directly compared 
with exposure data, where available

Egeghy et al. (2012) and National Academy 
Report: “Exposure Science in the 21st

Century” points out that not much exposure 
information is out there

e.g. Judson et al., (2011)

Potential 
Exposure from 

ExpoCast

mg/kg BW/day

Potential 
Hazard from 
ToxCast with 

Reverse 
Toxicokinetics

Low
Risk

Med
Risk

High
Risk

High Throughput Dosimetry
and Exposure
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Toxicokinetics Modeling
Incorporating Dosimetry and Uncertainty into In Vitro Screening 

Wambaugh et al., 2015
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Population and Exposure Modeling

(Bio) 
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Wambaugh et al., 2014
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High-throughput Risk Assessment for ER
290 chemicals with ER bioactivity

25



Office of Research and Development
National Center for Computational Toxicology

CERAPP: using QSAR for further prioritization

• Collaborative Estrogen Receptor Activity Prediction Project
• Goals:

–Use ToxCast ER score (or other data) to build many QSAR models
–Use consensus of models to prioritize chemicals for further testing

• Assumptions
–ToxCast chemicals cover enough of chemical space to be a good 

“global” training set
–Consensus of many models will be better than any one individually

• Process
–Curate chemical structures
–Curate literature data set
–Build many models
–Build consensus model
–Evaluate models and consensus

26

Mansouri et al: “CERAPP: Collaborative Estrogen Receptor Activity Prediction Project” EHP (2016) 
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Total Database
Binders: 3961
Agonists: 2494
Antagonists: 2793

CERAPP Consensus evaluation

Key point: As greater consistency 
is required from literature sources, 
QSAR consensus model 
performance improves
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CERAPP Summary

• EDSP Universe (10K)
• Chemicals with known use (40K) (CPCat & ACToR) 

• Canadian Domestic Substances List (DSL) (23K)
• EPA DSSTox – structures of EPA/FDA interest (15K)
• ToxCast and Tox21 (In vitro ER data) (8K)

~32,000 unique structures evaluated
5-10% predicted to be ER-active
Prioritize for further testing

28
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Data Transparency: EDSP21 Dashboard

• Goal: To make EDSP21 data easily available to all 
stakeholders
–Assay-by-assays concentration-response plots
–Model scores – AUC agonist and antagonist
–ER QSAR calls
–Other relevant data

• https://actor.epa.gov/edsp21

http://actor.epa.gov/edsp21
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Summary

• EDSP is in need of new approach to handle large 
testing universe
–Reduce cost, speed throughput

• Estrogen Receptor Model is first example of this
–54 chemicals in low-throughput Tier 1 assays
–1800 chemicals tested and published in high-throughput
–1000 more in queue – 2016 planned release

• Next steps
–Androgen receptor (1800 chemicals tested, modeling and 

validation in progress)
–Steroidogenesis (1000 chemicals with preliminary data)
–Thyroid – assay development and testing underway for several 

targets (THR, TPO, deiodinases, ...)

30
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