Application of computational and high-throughput *in vitro* screening for prioritization

Richard Judson
*U.S. EPA, National Center for Computational Toxicology
Office of Research and Development*

ECHAd Red-Across Workshop
19-20 April 2016, Helsinki
20 minutes

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA
Major Points

• EDSP has a mismatch between resources needed for Tier 1 and number of chemicals to be tested
 – ~10,000 chemicals in EDSP Universe
 – ~$1M per chemical for Tier 1, 50-100 year backlog

• Need new approach
 – Prioritize chemicals
 – Replace low-throughput assays with high-throughput variants

• Demonstrate new approach: Estrogen receptor
 – Multiple high-throughput in vitro assays
 – Demonstrate use to prioritize chemicals and replace selected Tier 1 assays
In Vitro Estrogen Receptor Model
Combines results from multiple in vitro assays

- Use multiple assays per pathway
 - Different technologies
 - Different points in pathway

- No assay is perfect
 - Assay Interference
 - Noise

- Use model to integrate assays

- Evaluate model against reference chemicals

- Methodology being applied to other pathways

In vivo guideline study uncertainty

26% of chemicals tested multiple times in the uterotrophic assay gave discrepant results.

Immature Rat: BPA

- **Phenotype X**

<table>
<thead>
<tr>
<th>species / study 1</th>
<th>species / study 2</th>
<th>Reproduce</th>
<th>Does Not Reproduce</th>
<th>Fraction Reproduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>rat SUB</td>
<td>rat CHR</td>
<td>18</td>
<td>2</td>
<td>0.90</td>
</tr>
<tr>
<td>rat CHR</td>
<td>dog CHR</td>
<td>13</td>
<td>2</td>
<td>0.87</td>
</tr>
<tr>
<td>rat CHR</td>
<td>rat SUB</td>
<td>18</td>
<td>4</td>
<td>0.82</td>
</tr>
<tr>
<td>rat SUB</td>
<td>rat SUB</td>
<td>16</td>
<td>4</td>
<td>0.80</td>
</tr>
<tr>
<td>rat SUB</td>
<td>dog CHR</td>
<td>11</td>
<td>4</td>
<td>0.73</td>
</tr>
<tr>
<td>mouse CHR</td>
<td>rat CHR</td>
<td>11</td>
<td>4</td>
<td>0.73</td>
</tr>
<tr>
<td>mouse CHR</td>
<td>rat SUB</td>
<td>13</td>
<td>7</td>
<td>0.65</td>
</tr>
<tr>
<td>dog CHR</td>
<td>rat SUB</td>
<td>11</td>
<td>6</td>
<td>0.65</td>
</tr>
<tr>
<td>dog CHR</td>
<td>rat CHR</td>
<td>13</td>
<td>8</td>
<td>0.62</td>
</tr>
<tr>
<td>rat CHR</td>
<td>mouse CHR</td>
<td>11</td>
<td>11</td>
<td>0.50</td>
</tr>
<tr>
<td>mouse CHR</td>
<td>dog CHR</td>
<td>6</td>
<td>6</td>
<td>0.50</td>
</tr>
<tr>
<td>rat SUB</td>
<td>mouse CHR</td>
<td>13</td>
<td>14</td>
<td>0.48</td>
</tr>
<tr>
<td>dog CHR</td>
<td>mouse CHR</td>
<td>6</td>
<td>8</td>
<td>0.43</td>
</tr>
<tr>
<td>mouse CHR</td>
<td>mouse CHR</td>
<td>2</td>
<td>3</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Kleinstreuer et al. EHP 2015
In vitro assays also have false positives and negatives

Assays cluster by technology, suggesting technology-specific non-ER bioactivity

Much of this “noise” is reproducible
- “assay interference”
- Result of interaction of chemical with complex biology in the assay

EDSP chemical universe is structurally diverse
- Solvents
- Surfactants
- Intentionally cytotoxic compounds
- Metals
- Inorganics
- Pesticides
- Drugs

Assay-to-assay variation

All appropriate assays are active but efficacy and potency vary

“Noise” or real variation in biology between cell types?

In Vitro Reference Chemical Performance

Agonist

- Moderate: 17α-Estradiol
- Strong: Diethylstilbestrol (DES)
- Strong: 17β-Estradiol
- Strong: 17α-Ethynyl estradiol
- Strong: mestranol
- Moderate: Estrone
- Weak: Genistein
- Weak: Bisphenol B
- Weak: Bisphenol A
- Weak: Daidzein
- Moderate: 4-tert-Octylphenol
- Weak: 4-Cumylphenol
- Weak: 5α-Dihydrotestosterone
- Weak: p,p’-DDT
- Very Weak: 17α-Methyltestosterone
- Very Weak: Apigenin
- Very Weak: Methoxychlor
- Very Weak: Kaempferol
- Very Weak: Butylbenzyl phthalate
- Weak: Kepone
- Very Weak: Chrysin
- Very Weak: Ethylparaben
- Very Weak: p,p’-DDE
- Very Weak: p-n-Nonylphenol
- Very Weak: Fenarimol
- Very Weak: Di-n-butyl phthalate
- Inactive: Haloperidol
- Inactive: Spirolactone
- Inactive: Reserpine
- Inactive: Procymidine
- Inactive: Phenobarbital Sodium
- Inactive: Linuron
- Inactive: Ketoconazole
- Inactive: Hydroxyflumethamide
- Inactive: Flutamide
- Inactive: Cycloheximide
- Inactive: Corticosterone
- Inactive: Atazanavir
- Very Weak: Diethylhexyl phthalate
- Very Weak: Diclof

Antagonist

- Active: Raloxifene
- Active: 4-Hydroxytamoxifen (E/Z)
- Active: Tamoxifen citrate
- Active: Tamoxifen
- Inactive: Di-n-butyl phthalate
- Inactive: Diclofenac
- Inactive: Kepone
- Inactive: Diethylstilbestrol (DES)
- Inactive: 17α-Ethynyl estradiol
- Inactive: Genistein
- Inactive: Bisphenol A
- Inactive: Safflower-Clinium
- Active: Apigenin
- Inactive: Butylbenzyl phthalate
- Inactive: Chrysin
- Inactive: p,p’-DDE
- Inactive: Progesterone
- Inactive: Diethylhexyl phthalate
Identifying Uterotrophic Reference Chemicals from the Literature

Literature Searches: 1800 Chemicals

Data Review: 700 Papers, 42 Descriptors, x2

Uterotrophic Database
98 Chemicals
442 GL uterotrophic bioassays

High-Level Filter

6 Minimum Criteria

"Guideline-Like" (GL)

Selection Criteria

In Vivo ER Reference Chemicals
30 Active, 13 Inactive

Kleinstreuer et al: “A Curated Database of Rodent Uterotrophic Bioactivity” (submitted)
Model predicts *in vivo* uterotrophic assay as well as uterotrophic predicts uterotrophic.

Restrict to chemicals with consistent results from the literature.

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Positive</td>
<td>29</td>
</tr>
<tr>
<td>True Negative</td>
<td>50</td>
</tr>
<tr>
<td>False Positive</td>
<td>1</td>
</tr>
<tr>
<td>False Negative</td>
<td>1</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.97</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.97</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Explicitly Add Uncertainty to In Vitro Assay Data

Watt et al. (in prep)
CERAPP: using QSAR for further prioritization

• Collaborative Estrogen Receptor Activity Prediction Project

• Goals:
 – Use ToxCast ER score (or other data) to build many QSAR models
 – Use consensus of models to prioritize chemicals for further testing

• Assumptions
 – ToxCast chemicals cover enough of chemical space to be a good “global” training set
 – Consensus of many models will be better than any one individually

• Process
 – Curate chemical structures
 – Curate literature data set
 – Build many models
 – Build consensus model
 – Evaluate models and consensus
CERAPP Consensus evaluation

Key point: As greater consistency is required from literature sources, QSAR consensus model performance improves.

Total Database
Binders: 3961
Agonists: 2494
Antagonists: 2793
CERAPP Summary

- EDSP Universe (10K)
- Chemicals with known use (40K) (CPCat & ACToR)
- Canadian Domestic Substances List (DSL) (23K)
- EPA DSSTox – structures of EPA/FDA interest (15K)
- ToxCast and Tox21 (In vitro ER data) (8K)

~32K unique structures
5-10% predicted to be ER-active
Prioritize for further testing
ER Phenol Read-Across Model

Accuracy increases as
1. Better data is used in the evaluation
2. Neighbors are closer (structure and physchem)

Filtering 1 (Log P_{kow} & MV)

Filtering 2 (No. of Literature Sources \geq 3)
Can the ER Model be used for prioritization?

- “… the ER AUC appears to be an appropriate tool for chemical prioritization for … the EDSP universe compounds.”

Can the ER model substitute for the Tier 1 ER in vitro and uterotrophic assays?

- “… replacement of the Tier 1 in vitro ER endpoints …with the ER AUC model will likely be a more effective and sensitive measure for the occurrence of estrogenic activity…”
- “… the Panel did not recommend that the uterotrophic assay be substituted by the AUC model at this time. The Panel suggested that the EPA considers: 1) conducting limited uterotrophic and other Tier 1 in vivo assay testing, using the original Tier 1 Guidelines (and/or through literature curation)”

Based on follow-up presented here (FR notice, June 18 2015) …

- “EPA concludes that ER Model data are sufficient to satisfy the Tier 1 ER binding, ERTA and uterotrophic assay requirements.”
Data Transparency: EDSP21 Dashboard

• Goal: To make EDSP21 data easily available to all stakeholders
 – Assay-by-assays concentration-response plots
 – Model scores – AUC agonist and antagonist
 – ER QSAR calls
 – Other relevant data

• https://actor.epa.gov/edsp21
Summary

• EDSP is in need of new approach to handle large testing universe
 – Reduce cost, speed throughput

• Estrogen Receptor Model is first example of this
 – 54 chemicals in low-throughput Tier 1 assays
 – 1800 chemicals tested and published in high-throughput
 – 1000 more in queue – 2016 planned release

• Next steps
 – Androgen receptor (1800 chemicals tested, modeling and validation in progress)
 – Steroidogenesis (1000 chemicals with preliminary data)
 – Thyroid – assay development and testing underway for several targets (THR, TPO, deiodinases, ...)

Acknowledgements

NCCT Staff Scientists
Rusty Thomas
Kevin Crofton
Keith Houck
Ann Richard
Richard Judson
Tom Knudsen
Matt Martin
Grace Patlewicz
Woody Setzer
John Wambaugh
Tony Williams
Steve Simmons
Chris Grulke
Jim Rabinowitz

NCCT Postdocs
Todor Antonijevic
Audrey Bone
Kristin Connors
Danica DeGroot
Jeremy Fitzpatrick
Jason Harris
Dustin Kapraun
Agnes Karmaus
Max Leung
Kamel Mansouri
LyLy Pham
Prachi Pradeep
Caroline Ring
Eric Watt

NIH/NCATS
Menghang Xia
RuiLi Huang
Anton Simeonov

NTP
Warren Casey
Nicole Kleinstreuer
Mike Devito
Dan Zang

Kamel Mansouri
Nicole Kleinstreuer
Eric Watt
Prachi Pradeep
Patience Browne