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ABSTRACT 

The first version of the Integrated Climate and Land Use Scenarios (ICLUS) project 
modeled population, residential development, and impervious surface cover changes by decade 
to the year 2100 consistent with four Intergovernmental Panel on Climate Change (IPCC) 
emissions scenarios and a baseline.  This report discusses improvements to the underlying 
demographic and spatial allocation models of the ICLUS that result in version 2 (v2) consistent 
with two of the new Shared Socioeconomic Pathways (SSPs) and two Representative 
Concentration Pathways (RCPs).  Improvements include the use of updated data sets, integration 
of changing climate variables within the migration model, inclusion of transportation network 
capacity and its increase over time, growth in commercial and industrial land uses, and the use of 
population density-driven demands for residential housing, commercial development, and 
industry.  This report demonstrates the effect of these improvements by comparing national and 
regional results among the SSP and RCP combinations and the two climate models selected.  
ICLUS v2 shows differences in population migration patterns by including climate variables that 
change over time rather than ones that are static.  Additionally, changing commercial and 
industrial land uses can drive patterns of new urban growth with consequences for many 
environmental endpoints.  
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PREFACE 

This report was prepared jointly by the Office of Research and Development (ORD) at 
the U.S. Environmental Protection Agency (EPA), ICF International, Colorado State University, 
and Conservation Science Partners.  The report describes the updates to data sets and models that 
constitute ICLUS version 2 (v2).  Because this is an update to ICLUS version 1 (v1), many of the 
concepts and models build on the original report (U.S. EPA, 2009).  Users familiar with ICLUS 
v1 can use this report as a reference guide to understand what changes have been made and the 
implications for the resulting data sets and maps.  Output data sets and maps are intended to be 
used in a scenario context to assess the risks, vulnerabilities, impacts, and adaptation options of 
climate change.    
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EXECUTIVE SUMMARY 

The Integrated Climate and Land Use Scenarios (ICLUS) version 1 (v1) furthered land 
change modeling by providing nationwide housing development scenarios to 2100.  ICLUS 
version 2 (v2) builds on this modeling approach by updating population and land use data sets 
and addressing two sets of limitations identified in ICLUS v1.  This report documents the 
changes made to the underlying data sets used for model parameterization and to the 
demographic and spatial allocation models.  The purpose is to address limitations encountered in 
ICLUS v1 and identified, in part, by the ICLUS user community.   

The first set of limitations is within the ICLUS v1 migration component of the 
demographic model, which incorporated only five years of human migration data, only 
road-based connections among counties, and a static climate variable.  To address these 
limitations, ICLUS v2 uses a data set from the Internal Revenue Service (IRS) of 
county-to-county migration from 1991−2000 to parameterize the migration model.  Intercounty 
connectivity calculations include fixed mass transit as well as roads.   

Another update to the migration model is the inclusion of dynamic climate variables as 
part of the amenity parameters.  ICLUS v1 used static amenity variables, including older 
county-level historical climate data.  ICLUS v2 now parameterizes the model with updated 
historical climate data (1981−1999) and includes projected climate variables for each time step 
to 2100.  Analyses in this report use two different climate models: (1) the First Institute of 
Oceanography-Earth System Model (FIO-ESM) and (2) the Hadley Global Environment Model 
2 Atmosphere-Ocean (HadGEM2-AO) to illustrate the effect of dynamic climate variables on 
migration patterns.  Specific climate variables include January and July humidity-adjusted 
temperature and summer (June, July, August) and winter (December, January, February) 
precipitation incorporated as the running average of the previous 10 years of climate model 
output.  Comparisons of the results with and without projected climate variables show that 
differences in regional migration patterns occur when dynamic climate variables are included.  
Differences in the distribution of population between model runs using climate variables and 
results of model runs using static climate variables are more similar to each other than are 
differences in migration patterns between combinations emissions and demographic scenarios.  
Different fertility and migration rates in the scenarios exert much larger influences on the overall 
migration patterns than changes in climate amenities.   

Several additional changes in the ICLUS v2 demographic model resulted from updates of 
data sets.  The use of the 2010 U.S. Census Bureau’s data in the demographic model results in 
new national population projections for each of the scenarios documented in this report.  Because 
the IRS database does not contain demographic information, the migration model in ICLUS v2 
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combines all age groups into a single population, whereas ICLUS v1 recorded separate migration 
information for populations under and over 50 years old.   

The second set of limitations identified was within the ICLUS v1 spatial allocation 
model, which used population to calculate housing density based on household size, while all 
other land use classes remained static.  ICLUS v2 uses statistical relationships between 
population density, road capacity, and land use classes to allocate new land uses at the next time 
step based on the demands of the growing population.  Demand calculations are done nationally 
for each developed land use class and transition probabilities from one land use to another 
incorporate differences in growth patterns for each of seven regions of the conterminous United 
States, similar to U.S. Census Bureau divisions.  In addition to residential housing classes, 
commercial and industrial land uses also change at each time step.   

The spatial allocation model also incorporates updated data sets for land use (a new U.S. 
National Land Use Dataset [US-NLUD] based on the 2011 National Land Cover Database 
[NLCD] and many other detailed data on land use), transportation (roads and fixed mass transit), 
and developable area derived from the 2012 U.S. Geological Survey (USGS) Protected Areas 
Database.  The model uses land use transitions from 2000 to 2010 as the basis for all future land 
use changes.  The spatial allocation model projects transitions for five residential housing classes 
and commercial and industrial land uses.  The sequence of land use class changes is based on the 
theory that the highest and best use prevails, generally as determined by land value.  The spatial 
allocation model uses output from the demographic model to calculate demand for each land use 
class in relation to population density.  New land uses are allocated as patches that reflect a 
region-specific distribution of sizes and shapes.  Patch placement is determined by the antecedent 
land use class and accessibility, and placement of residential patches also takes into account 
distance to commercial areas.   

The resulting land use allocation replaces low-density residential development by higher 
density land uses as a population grows within ICLUS geographic units.  Low-density 
development generally expands outward.  The development of higher density residential, 
commercial, and industrial classes levels off in terms of demand at high population densities, 
exhibiting a threshold effect.  This threshold shows that these land use classes are not rapidly 
replaced once developed, and that there are observed limitations in the density of particular land 
use classes in dense metropolitan areas.  Similarly, transportation capacity also reaches a 
threshold.  Dense cities add new road capacity more slowly than do smaller cities.   

The emergence of new socioeconomic and emissions scenarios (e.g., SSPs and RCPs) 
utilized in ICLUS v2, as opposed to the previous emissions storylines used in ICLUS v1, limits 
the usefulness of direct comparisons between outputs from both ICLUS versions.  Instead, this 
report compares results from the SSP-RCP combinations implemented in ICLUS v2.  
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Improvements in ICLUS v2 allow discussions of results in terms of national changes, as well as 
regional and subregional changes over time.   

The output of the demographic model is similar to globally based population estimates 
for the United States that are consistent with the SSPs.  ICLUS v2 population estimates for the 
United States by 2100 are slightly higher for both SSP1 and SSP5 than those derived by KC and 
Lutz (2014) for SSP1 and SSP5 from the global estimates for the United States, although the 
relative difference in population between the scenarios in 2100 is similar.  The use of two 
population estimates, one higher and one lower, allows for an interpretation of differences in 
impacts between the two scenarios.  By using population estimates that are consistent with the 
SSPs, the resulting impacts can be put into a context consistent with other efforts using those 
socioeconomic storylines.  Regionally, differences in population growth are greater between the 
SSPs than differences between climate models used with the same SSP.  However, comparisons 
between model runs with dynamic climate variables and static climate show regional differences 
in population of up to 4%.  Subregionally, there are additional differences that are reinforced by 
the choice of climate model used in the migration model.  These differences are more distinct at 
higher population densities and during the last half of the century, especially when using SSP5, 
which has higher fertility rates than SSP1.   

The national-scale land use projections show nearly identical trends when comparing 
outcomes under the same SSP assumption; the choice of climate model has no discernible effect 
on the overall amount of projected development.  However, there are differences in amount and 
allocation of land uses when comparing between SSPs and examining changes regionally.  
Regional allocation patterns reflect existing differences across the conterminous United States 
that continue to shape patterns into the future.  While nearly all developed land use classes 
increase in nearly all regions, the magnitude of changes reflects current trends, such that 
low-density residential classes continue to increase in the Intermountain West more so than in 
other regions, and regions with higher densities continue to increase their urban land uses.   

Overall, ICLUS v2 provides users with the ability to model population and land use 
changes consistent with SSP and RCP scenarios and specific climate models to improve 
integrated climate and land use assessments.  While this report only uses SSP1-RCP4.5 (lower 
population growth, lower emissions) and SSP5-RCP8.5 (higher population growth, higher 
emissions) scenarios in conjunction with two climate change models, FIO-ESM and 
HadGEM2-AO, to illustrate ICLUS v2 improvements, the model structure allows users the 
flexibility to select any SSP, RCP, and climate model combination.  The use of statistically based 
transition and demand models also allows users to change parameters for further scenario 
explorations that alter development pathways from current trajectories.  Improvements in ICLUS 
v2 facilitate the analysis of scenarios of climate change impacts, vulnerability, and adaptation 
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options, including the use of ICLUS v2 outputs in models projecting emissions from developed 
land uses to determine consequences for water and air quality endpoints, as well as human 
health.   



1 

1.  INTRODUCTION 

Changes in climate and land use are global drivers of environmental impacts.  The 
interactions between climate and land use changes are complex and can result in challenges for 
ecosystems and environmental health.  The motivation for the U.S. Environmental Protection 
Agency (EPA) Integrated Climate and Land Use Scenarios (ICLUS) project originated with the 
recognition of this complex relationship and the absence of an internally consistent set of land 
use scenarios that support national assessments of climate change effects.  This report describes 
updates to the ICLUS model data, methods, and outputs described in Land-Use Scenarios: 
National-Scale Housing-Density Scenarios Consistent with Climate Change Storylines 
(U.S. EPA, 2009).2  The goal of the current report is to describe the changes between the ICLUS 
version 1 (v1) data sets and modeling approach and ICLUS version 2 (v2) that are intended to 
improve on the demographic and spatial model outputs.   

ICLUS v1 developed future scenarios of population, housing density, and impervious 
surfaces that were consistent with the Intergovernmental Panel on Climate Change (IPCC) 
Special Report on Emissions Scenarios (SRES) storylines (Nakicenovic and Swart, 2000).  
ICLUS v1 integrated two main components: a demographic model and a spatial allocation model 
(see Figure 1).  ICLUS v1 helped advance land change modeling by providing nationwide 
development scenarios to 2100.  ICLUS v2 builds on this modeling approach by addressing two 
sets of limitations.  First, the demographic model in v1 incorporated a limited timeframe of 
movement data, intercounty connectivity solely based on roads, and a static climate variable in 
its migration model.  Second, the spatial allocation model used population to calculate housing 
density based on household size, while all other land use types remained static, including 
commercial and industrial uses.  In addition to addressing these limitations, ICLUS v2 
incorporates updated data sets of population, land use, and land cover.  The addition of dynamic 
future climate variables draws on the most recent climate data, which use Representative 
Concentration Pathways (RCPs) rather than SRES storylines (van Vuuren et al. 2011).  The 
RCPs are targets of greenhouse gas concentrations that general circulation models reach by the 
year 2100 to depict a range of climate change outcomes.  Thus, ICLUS v2 is now consistent with 
the most recent suite of climate change scenarios, linking RCP-driven climate model output with 
Shared Socioeconomic Pathways (SSPs; O’Neill et al. 2014).  Though the effect of dynamic 
future climate variables on migration is small, the cumulative changes yield different settlement 
patterns that enable scenario-based analyses of impacts and vulnerabilities of environmental 
endpoints.   

                                                 
2 Download the ICLUS version 1 report: https://cfpub.epa.gov/ncea/global/recordisplay.cfm?deid=203458. 

https://cfpub.epa.gov/ncea/global/recordisplay.cfm?deid=203458
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Figure 1.  Comparison of ICLUS v1 and ICLUS v2.  The two model versions 
are conceptually very similar.  ICLUS v2 reflects substantial updates to key inputs 
as well as a modified geographic framework.  Estimates of percentage impervious 
surface change for ICLUS v2 will be produced subsequent to this report. 

This report covers the updates to the demographic model in Section 2 and the spatial 
allocation model in Section 3.  Figure 2 provides an orientation of the flow of data and processes 
within ICLUS v2.  The output of the demographic model, the population data, is one input to the 
data sets further described in Section 3.  Section 4 focuses on model outputs, both demographic 
and land use, and compares these outputs among the scenarios implemented.  Descriptions of the 
updates and analyses of v2 outputs are intended to assist users of the ICLUS data sets and maps 
to understand which changes were made, why, and what the consequences for the outputs are. 
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Figure 2.  ICLUS v2 spatial allocation flow diagram.  Land use change is 
modeled by allocating new patches (comprised of 90 m × 90 m pixels) until the 
demand for new pixels of each land use is satisfied.  The likelihood of an existing 
pixel converting to a new land use is a function of both transportation capacity 
(i.e., the accessibility of the pixel) and the existing land use.  For residential 
classes, proximity to commercial pixels is treated as an amenity and will attract 
new growth.  Transportation capacity grows in relation to population density 
(green boxes).  Likewise, the demand for new pixels is driven by population 
growth (blue boxes). 

2.  UPDATES TO THE MIGRATION MODEL 

The ICLUS demographic model consists of a cohort-component model and a migration 
model that project county-level population for the conterminous United States on an annual basis 
from 2010 to 2100 for a number of socioeconomic scenarios and climate projections.  The 
cohort-component methodology projects fertility, mortality, and international migration.  The 
model also includes a submodel to project county-to-county domestic migration influence by 
amenity variables such as climate (U.S. EPA, 2009).   
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The baseline population and demographic characteristics in ICLUS v2 use the most 
recent 2010 U.S. Census Bureau data (NCHS, 2011) but the same fertility and migration rates as 
ICLUS v1.  The combinations of demographic components of change (i.e., fertility, mortality, 
migration) was revisited for ICLUS v2 to be consistent with published descriptions of RCPs and 
SSPs (Samir and Lutz, 2014; van Vuuren and Carter, 2014).  Model updates discussed in this 
report use combinations of RCPs and SSPs that succinctly demonstrate a range of possible 
ICLUS v2 projections with respect to climatic changes and population growth.  We used a 
peer-reviewed crosswalk of the SSPs and RCPs to the SRES scenario framework to identify 
combinations of SSPs and RCPs (van Vuuren and Carter, 2014) that resemble the bounding 
scenarios used to demonstrate the range of impacts explored with ICLUS v1 (e.g., Bierwagen et 
al., 2010; Voorhees et al., 2011; Georgescu et al., 2014).  We selected the combination of SSP5 
and RCP8.5 to represent a high emissions, high population-growth scenario, and the combination 
of SSP1 and RCP4.5 as a lower emissions, lower population-growth scenario.  Like ICLUS v1, 
the population-growth scenarios were generated using projections of immigration, fertility, and 
mortality produced by the U.S. Census Bureau (2000).  Specifically, the SSP5-RCP8.5 scenario 
uses the U.S. Census Bureau’s high fertility, high domestic migration, and medium immigration 
rates; SSP1-RCP4.5 uses medium fertility, high domestic migration, and medium immigration.  
These combinations are qualitatively consistent with rates for high-income countries globally 
(Samir and Lutz, 2014) and generally correspond to the SRES A1Fi (high emissions) and B1 
(low emissions) scenarios, respectively (van Vuuren and Carter, 2014).   

The focus of the remainder of Section 2 is on implementing the migration model within 
the cohort-component model.  The following subsections describe changes to the migration 
component of the ICLUS v1 demographic model, including updates to domestic movements and 
the incorporation of climate change projections.  Section 4.1 shows the results of the updated 
model and compares these to ICLUS v1 outputs.   
 
2.1.  UPDATING THE MIGRATION MODEL 

The demographic component in ICLUS v1 included a migration model that simulated 
domestic migration by estimating flows between pairs of counties.  ICLUS v2 updates the 
underlying data used to parameterize the migration model, adds new independent variables, 
incorporates a county-to-county migration data set that covers a longer historical time period 
than the data set in ICLUS v1, and aggregates some counties into metropolitan and micropolitan 
statistical areas, defined as 50,000 people or more in an urban area and at least 10,000 but less 
than 50,000 people, respectively.  Finally, amenity variables use recent climate data for model 
calibration and update these data each decade with model output of future climate variables.   
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2.1.1.  Parameterizing Domestic Migration  
ICLUS v2 incorporates definitions of both metropolitan and micropolitan statistical areas 

(OMB, 2010) and aggregates counties into geographic units accordingly.3  This change 
effectively reduces the number of migration origin and destination locations and simplifies 
analysis of the historic migration information by excluding many short-distance moves 
(i.e., moves within metropolitan or micropolitan statistical areas).  In addition, a small number of 
independent cities that were not absorbed into metropolitan or micropolitan areas were merged 
with an adjacent county.  The resulting geographic framework consists of 2,256 units, composed 
of metropolitan and micropolitan statistical areas and stand-alone rural counties, referred to 
hereafter as ICLUS geographic units (GUs; see Figure 3).   
 
 

 
 

 

Figure 3.  ICLUS v2 geographic units include metropolitan statistical areas 
(MSAs), micropolitan statistical areas, and stand-alone counties. 

                                                 
3 Metropolitan and micropolitan statistical areas are delineated by the U.S. Office of Management and Budget 
(OMB) and are the result of the application of published standards to Census Bureau data.  A metropolitan statistical 
area contains a core urban area of population 50,000 or more, and a micropolitan statistical area contains an urban 
core of at least 10,000 (but less than 50,000).  Metro or micro areas represent larger regions to reflect broad social 
and economic interactions (as measured by commuting to work) within the urban core.   
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The ICLUS v1 migration model used a temporally limited data set to parameterize 
county-to-county movements across the conterminous United States, specifically the 1995 to 
2000 Public Use Microdata Samples (PUMSs; U.S. Census Bureau, 2003).  Although this data 
set includes millions of migration records (n = 2,397,007), it covers just a single 5-year time 
span.  ICLUS v2 uses 10 years (1991 to 2000) of the IRS (2014) county-to-county annual 
migration data to parameterize the migration model4.  The values in the migration data set, 
combined with specific county-level information, such as population size, growth rates, climate, 
and connectivity to other counties, are used to parameterize the updated migration model.  The 
decade of IRS data chosen to calibrate the migration model captures relatively recent responses 
to climate and overlaps with the climate data used in model parameterization described in 
Section 2.1.3.   

The IRS data set provides a full count of all income tax filers based on year-to-year 
changes in or continuity of address reported on individual income tax returns.  Data are 
expressed in terms of inflows (the number of new residents who moved to a county and where 
they originated) and outflows (the number of residents leaving a county and where they went).  
The data set covers all counties in the United States but only reports county-to-county migrations 
when 10 or more such migrations occurred.   

The IRS data present multiple advantages over the PUMS data.  First, unlike the PUMS 
migration data used in ICLUS v1, the IRS migration data are true county-to-county records.  The 
PUMS migration data represent migrations between Migration Public-Use Microdata Areas 
(MIGPUMAs).  This required a two-stage conversion, from MIGPUMA to Public Use Microdata 
Areas (PUMAs), and then from PUMAs to counties.  Second, the IRS data represent full counts 
of all income tax filers, while the PUMS data are based on a statistical sample.  Third, and most 
importantly, the IRS data used in this analysis are annual data for the years 1991−2000, 
compared with a single 5-year period of PUMS data. 

However, the IRS data has a different set of limitations not present in the PUMS data.  
First, age is not included in the IRS data.  The ICLUS v1 migration model consisted of two age 
groups (ages 0−49 years and ages 50 years and older).  ICLUS v2, therefore, does not separate 
the model into different age groups.  Second, the IRS data are based on the number of income tax 
filers and exemptions, not the number of people.  The number of exemptions, however, closely 
matches the number of people (IRS, 2014).  Consequently, people who did not file income tax 
returns are excluded from the IRS data, and their migrations would not be captured in ICLUS v2.  
Third, in cases where fewer than 10 migrations were recorded between any county pair, 
migration flows are aggregated in the IRS data.  Flows of fewer than 10 migrants represent about 

                                                 
4 These data are available for public download: http://www.irs.gov/uac/SOI-Tax-Stats-Migration-Data.   

http://www.irs.gov/uac/SOI-Tax-Stats-Migration-Data
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7% of total migrations but were not included in the analysis due to lack of specific 
origin/destination pairing.   

From the IRS data set, we extracted two key variables used in this analysis: (1) total 
outflow expressed as a percentage of the county population and (2) individual county-to-county 
migration records. 
 
2.1.2.  Functional Connectivity 

ICLUS v2 also includes updated measures of connectivity.  Like ICLUS v1, 
population-weighted centroids were generated for each of the 2,256 geographic units.  Centroids 
for a few units were manually moved inside of their respective geographic boundaries.  To 
evaluate the connectedness of each geographic unit, a network-based travel time was calculated 
for every possible origin-destination combination.  Travel times were estimated using StreetMap 
North America5 and the Network Analyst extension for ArcGIS 10.3.  The population-weighted 
centroids were snapped to the nearest network feature, including regular ferry routes where 
applicable.   
 
2.1.3.  Historic Climate Amenities 

Linkages between climate variables and human migrations are reported in the literature 
(e.g., Alonso, 1971; Cragg and Kahn, 1996; Rappaport, 2007; Feng et al., 2010; Maxwell and 
Soulѐ, 2011; Sinha and Cropper, 2013) and form the basis for our exploration of including 
changing climate variables in the migration model.  The influence of climate on migration 
decisions is only one of many possible amenity-based influences and is smaller than other factors 
like jobs, housing costs, and family, which are implicitly represented in our migration model.  
The explicit inclusion of climate variables allows for the development of land use scenarios that 
incorporate climate change model output and are consistent with SSPs and RCPs.  ICLUS v1 
used a static set of 30-year average climate data based on 1941−1970 records (McGranahan, 
1999).  ICLUS v2 improves on the inclusion of a climate amenity value in two ways.  First, the 
historic climate data were updated to cover the 1981−1999 time period, which coincides with the 
IRS migration data.  Second, future projections of climate change are used to update these 
amenity values at each time step of the migration model.  Together, these improvements allow 
the ICLUS v2 migration model to better reflect the human responses to climatic changes based 
on the historical estimate of such responses.   

                                                 
5 http://resources.arcgis.com/en/help/main/10.1/index.html#/About_StreetMap_North_America/ 
001z00000039000000/. 

http://resources.arcgis.com/en/help/main/10.1/index.html#/About_StreetMap_North_America/001z00000039000000/
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In order to incorporate both observed and projected climate amenity values in the 
migration model, data covering the observed historical period and future time period need to be 
consistent.  ICLUS v1 used January temperature, January sunlight, July temperature, and July 
humidity as the climate amenity variables.  However, sunlight variables generally are not 
available as output from general circulation models (GCM) used to model climate change and 
therefore were not used in ICLUS v2.  Furthermore, results from Sussman et al. (2014) suggest 
that precipitation is a key climate amenity driving housing prices and should not be omitted in a 
migration model.  Results from Sussman et al. (2014) informed the ultimate selection of climate 
variables to include in ICLUS v2.   

Climate variables also need to be resolved at the spatial scale of ICLUS geographic units 
(or smaller) for consistency with the migration model.  While raw GCM output covers much 
larger geographic areas, the use of downscaled products reduces the spatial resolution.  Historical 
and projected climate data are available for download from the World Climate Research 
Programme’s (WCRP’s) Coupled Model Intercomparison Project Phase 5 (CMIP5) multimodel 
data set with bias-correcting and spatial-downscaling (BCSD) methodology applied 
(Wood et al., 2004; Maurer et al., 2007).6  The BCSD methodology uses statistical bias 
correction to interpret GCM output over a large spatial domain based on current observations.  
The principal potential weakness of this approach is an assumption of stationarity (i.e., the 
relationship between large-scale precipitation and temperature and local precipitation and 
temperature in the future will be the same as in the past).  Thus, the method can successfully 
account for orographic effects that are observed in current data, but not for impacts that might 
result from the interaction of changed wind direction and orographic effects.  A second 
assumption included in the bias-correction step is that any biases exhibited by a GCM for the 
historical period will also be exhibited in simulations of future periods.   

The variables selected for use in the migration model were average monthly 
humidity-adjusted temperature (January and July) and average seasonal precipitation (December 
through February, or “winter,” and June through August, or “summer”), although a number of 
permutations were tested to maximize model fit.  These included: 
 
 

• Comparing the role of absolute temperature versus changes in temperature relative to the 
mean; 

• Comparing the role of absolute precipitation versus changes in precipitation relative to 
the mean; 

                                                 
6 Bureau of Reclamation/Santa Clara University/Lawrence Livermore archive of downscaled IPCC model runs 
available at http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/. 

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
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• Considering the impact of including temperature-squared and precipitation-squared terms 
as quadratic terms;  

• Comparing temperature versus humidity-adjusted temperature (a function of temperature 
and humidity); and 

• Considering alternative specifications of precipitation (monthly, seasonal, annual, etc.). 

 
 

The precipitation variables used in ICLUS v2 were calculated from climate model output 
downscaled using the BCSD methodology.  Humidity-adjusted temperature is generally not 
available as a downscaled climate model output.  Instead, this variable was calculated using a 
polynomial equation (eq 1-1) relating humidity-adjusted temperature to absolute temperature and 
relative humidity (Rothfusz, 1990): 
 
 

Humidity-adjusted temperature is calculated by: 

𝑇𝑇𝐻𝐻  =  −42.379 + (2.04901523 ×  𝑇𝑇) + (10.1433127 × 𝑅𝑅𝑅𝑅) − (0.22475541 × 𝑇𝑇 × 𝑅𝑅𝑅𝑅)
− (0.00683783 ×  𝑇𝑇2) − (0.05481717 × 𝑅𝑅𝑅𝑅2) + (0.00122874 × 𝑇𝑇2 × 𝑅𝑅𝑅𝑅)
+ (0.00085282 × 𝑇𝑇 × 𝑅𝑅𝑅𝑅2) − (0.00000199 ×  𝑇𝑇2 ×  𝑅𝑅𝑅𝑅2) 

(1-1) 

Where: 
𝑇𝑇𝐻𝐻 = average monthly humidity-adjusted temperature 
𝑇𝑇 = average monthly air temperature in degrees Fahrenheit 
𝑅𝑅𝑅𝑅 = average monthly relative humidity 

 
 
Humidity-adjusted temperature (𝑇𝑇𝐻𝐻) was calculated only when absolute temperature (𝑇𝑇) was 
greater than 80°F and relative humidity was greater than 40%.  When either of those conditions 
was not met, unadjusted T was used. 
 
2.1.4.  Climate Change Model Selection 

The selection of climate data for the migration model is another opportunity for 
consistency with the SSP and RCP scenarios.  For each of the RCP8.5 and RCP4.5 emission 
scenarios, we identified two climate change projections that generally capture the range of 
potential climate change for the contiguous United States.  We constructed scatterplots of all 
climate projections in the BCSD CMIP climate projection archive using climate amenity 
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descriptions to form axes of “summer” and “winter” scatterplots and duplicated those scatterplots 
for both emissions scenarios.  As shown in Figure 4 below, the scatterplots provide a simple, 
visual heuristic device to identify climate projections that bracket a broad range of future climate 
change uncertainty.  Using the plots in Figure 4, we selected projections from the HadGEM2-AO 
and FIO-ESM climate models for the analyses included in this report.  The selection of these two 
climate models accomplished two goals: first, we wanted to represent the range of temperature 
and precipitation changes in terms of a high and a low model, and second, we wanted to use the 
same two models for both RCP 4.5 and RCP 8.5.  Therefore, while the two climate models 
selected do not always have the minimum or maximum temperature or precipitation values in the 
scatterplot, they are the two models that balance our two goals most effectively.  
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Figure 4.  Scatterplots used to select climate projections used in this report.  
Dashed lines show median values.  The HadGEM2-AO and FIO-ESM climate 
projections circled in red were selected for this report because they generally 
spanned the range of climate outcomes regardless of emissions scenario (RCP4.5 
and RCP8.5) or season (winter precipitation/January temperature and summer 
precipitation/July temperature). 

 

2.1.5.  Redesign and Recalibration of the Migration Model  
Each of the updated data sources required some modification to the migration model.  In 

order to accommodate the IRS data, the two age groups (under or over 50) used in ICLUS v1 
were combined into a single population for ICLUS v2.  The migration model also calculates 
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migrations annually because the IRS data are based on single-year records.  ICLUS v1 was based 
on 5-year migration records.  

In addition, an important constraint was introduced to the updated migration model that 
gives more reasonable population projections across the ICLUS v2 geographic framework.  The 
IRS migration records for 1991−2000 were grouped such that total migration between and 
among metropolitan statistical areas (MSAs), micropolitan statistical areas, and stand-alone 
(rural) counties could be quantified.  The relative proportions shown in Figure 5 are used at each 
annual time step to adjust the raw migrations calculated by the migration model.  For example, at 
each annual time step migration flows between MSAs are rescaled to equal 70% of the national 
migration total; total annual migration from rural counties to micropolitan statistical areas will 
make up 1.6% of the national total, as depicted by each of the flows in Figure 5.   
 
 

 

 
 

Figure 5.  Proportion of total migration between MSAs, micropolitan 
statistical areas, and rural counties.   
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The migratory flows shown in Figure 5 are consistent with U.S. Census Bureau data 
reported for the 1995−2000 time period (U.S. Census Bureau, 2003).  Incorporating these values 
into the ICLUS v2 migration model provides two important advantages.  First, we are able to 
capture important macro-level trends, such as a net migration deficit for MSAs.  Second, these 
values serve as useful parameters for scenario exploration in future phases of ICLUS 
development.   
 
2.1.5.1.  Revised functional form and model statistics 

The historical migration records and historical climate amenities discussed above were 
combined so that a record in the migration data table contained the number of migrations from 
one ICLUS Geographic Units (GU) to another, the attributes of the origin unit, the attributes of 
the destination unit, and the functional distance between them.  Attributes of the GUs include 
population density, growth rate in the previous time period, developable area, and climate 
variables.  Equation 2-1 shows the variables used in the migration model.  To estimate the 
number of migrants, we used negative binomial regression with a natural log link.  Predictor 
variables were transformed as needed to control for skewness or heavy tails and were 
standardized (Schielzeth, 2010).  Because we expected that the amenity values associated with 
temperature would depend on precipitation, we included interactions between those terms for 
both summer and winter origin and destination units.  As suggested by Dormann et al. (2013) 
and to avoid the effects of collinearity, we used only predictor variables with absolute 
correlations less than 0.70 (all correlations except those for summer and winter temperature were 
less than 0.40).  The migration model equation used balances theoretical considerations with 
overall performance.   
 
 

The migration model calculation is: 

ln�𝐹𝐹𝑖𝑖𝑖𝑖� = 𝛽𝛽0 + 𝛽𝛽1 × ln�𝐷𝐷𝑖𝑖𝑖𝑖� +  �𝛽𝛽2 × ln(𝑃𝑃𝑖𝑖) + 𝛽𝛽3 × ln�𝑃𝑃𝑖𝑖�� + 

�𝛽𝛽4 × 𝐺𝐺𝑖𝑖−4 + 𝛽𝛽5 × 𝐺𝐺𝑖𝑖−4� + �𝛽𝛽6 × ln(𝐴𝐴𝑖𝑖) + 𝛽𝛽7 × ln�𝐴𝐴𝑖𝑖�� + 

�𝛽𝛽8 × 𝑆𝑆𝑅𝑅𝑖𝑖 + 𝛽𝛽9 × 𝑆𝑆𝑅𝑅𝑖𝑖� + �𝛽𝛽10 × 𝑊𝑊𝑅𝑅𝑖𝑖 + 𝛽𝛽11 × 𝑊𝑊𝑅𝑅𝑖𝑖� + 

�𝛽𝛽12 × 𝑆𝑆𝑃𝑃𝑖𝑖 + 𝛽𝛽13 × 𝑆𝑆𝑃𝑃𝑖𝑖� + �𝛽𝛽14 × 𝑊𝑊𝑃𝑃𝑖𝑖
1/2 + 𝛽𝛽15 × 𝑊𝑊𝑃𝑃𝑖𝑖

1/2� + 

�𝛽𝛽16 × 𝑆𝑆𝑅𝑅𝑖𝑖 × 𝑆𝑆𝑃𝑃𝑖𝑖 + 𝛽𝛽17 × 𝑆𝑆𝑅𝑅𝑖𝑖 × 𝑆𝑆𝑃𝑃𝑖𝑖� + 

�𝛽𝛽18 × 𝑊𝑊𝑅𝑅𝑖𝑖 × 𝑊𝑊𝑃𝑃𝑖𝑖
1/2 + 𝛽𝛽19 × 𝑊𝑊𝑅𝑅𝑖𝑖 × 𝑊𝑊𝑃𝑃𝑖𝑖

1/2� 
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(2-1) 

 
Where: 

i = origin 

j = destination 

Fij = people migrating from unit i to unit j between year n and n + 1 
βk = intercept or slopes quantifying the relationship between the parameters and number of 

migrants 
Dij = functional distance between unit i and j 
P = population density 
G = population growth rate, previous time step 

A = developable land area 

SH = mean summer (July) apparent temperature, 10 year running average 

SP = mean summer (June, July, August) precipitation, 10 year running average 

WH = mean winter (January) apparent temperature, 10 year running average 

WP = mean winter (December, January, February) precipitation, 10 year running average  

 
 
2.2.  MIGRATION MODEL INTERPRETATION 

The migration model parameters are derived from a generalized linear modeling 
approach, so common measures of model performance are not available.  However, 
Nagelkerke’s R2 was equal to 0.62 for the final model specification (Faraway, 2006).   

Interpretation of the role of climate variables in the model is difficult, largely because 
both origin and destination locations are affected simultaneously.  Furthermore, migration is 
calculated between all possible origin-destination pairs, meaning the observed net migration is 
the difference between two opposing flows.  Despite this complexity, the effects of variables in 
the migration model may be characterized three ways.   

First, the sign and magnitude of the coefficient indicates whether a variable will tend to 
generally increase or decrease migrations.  For example, winter temperature (WH) has a positive 
coefficient for both the origin (WHi = 0.141) and destination (WHj = 0.207) locations.  If all other 
variables were held constant, more total migrations would occur between places with warm 
winters, relative to places with cold winters in our model, though this is not a cause and effect 
relationship of the climate variables.  The magnitude of this influence is less than that of 
population density (Pi = 0.530 and Pj = 0.430), which exerts the largest influence on migration 
(see Table 1).   
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Second, comparing the origin and destination coefficients indicates the net directional 
influence of that variable.  For example, if all other factors are equal, the net flow of migrants 
will be to locations with warmer winter temperatures (WHi < WHj) and less winter precipitation 
(WPi > WPj; see Table 1).   
 
 

Table 1.  Migration model results.  Parameters are sorted by whether they 
applied to origin or destination county (i or j), and matching pairs of 
parameters share a row.  Differences in slope estimates between matching 
pairs of parameters are provided in the last column.  Variables are defined in 
Equation 2-1.  𝜷𝜷𝒌𝒌�  is the estimate of the variable. 

 

 
 

Parameter 𝜷𝜷𝒌𝒌�  p Parameter 𝜷𝜷𝒌𝒌�  p �𝜷𝜷𝒌𝒌𝒌𝒌� − 𝜷𝜷𝒌𝒌𝒌𝒌� � 

Intercept 4.472 <0.0001         

Dij −1.048 <0.0001         

Pi 0.530 <0.0001 Pj 0.430 <0.0001 0.100 

Gi 0.027 <0.0001 Gj −0.051 <0.0001 0.078 

Ai 0.385 <0.0001 Aj 0.352 <0.0001 0.033 

SHi −0.080 <0.0001 SHj −0.042 <0.0001 0.038 

WHi 0.141 <0.0001 WHj 0.207 <0.0001 0.066 

SPi −0.088 <0.0001 SPj −0.082 <0.0001 0.006 

WPi −0.077 <0.0001 WPj −0.101 <0.0001 0.024 

SHi × SPi 0.022 <0.0001 SHj × SPj 0.019 <0.0001   

WHi × WPi 0.002 0.3040 WHj × WPj 0.040 <0.0001   

Lastly, the relative contribution of each climate variable to net migration patterns is also 
related to the absolute difference between the origin and destination coefficients (the last column 
in Table 1), although we did not test the significance of this different.  For example, winter 
temperature is the most influential climate variable in the ICLUS v2 migration model, given both 
the relative size of the absolute difference between the origin and destination coefficients and the 
size of the coefficients relative to other climate variables.  Summer temperature, winter 
precipitation, and summer precipitation variables follow winter temperature in influence on net 
migration.   
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3.  UPDATES TO THE SPATIAL ALLOCATION MODEL 

ICLUS v1 used the Spatially Explicit Regional Growth Model (SERGoM) to project 
future increases of housing density at a relatively fine spatial resolution (Theobald, 2005; 
Bierwagen et al., 2010).  This update to the spatial allocation model addresses reviewers’ 
comments on ICLUS v1 and incorporates advances in the literature on land use change 
modeling.  The new literature suggests that land use models should (1) incorporate spatial 
dynamics7 and multiple sources of spatial heterogeneity, (2) explicitly describe transitional 
dynamics of urban land use, (3) incorporate direct effects of market adjustments, (4) use 
local-scale heterogeneity to determine urban spatial dynamics (Irwin, 2010), and (5) integrate 
top-down and bottom-up methods that incorporate the effects of national and global drivers of 
change while also accounting for local drivers of change and feedbacks (Sohl et al., 2010).  For 
ICLUS v1, SERGoM met the conditions for (1), (4), and partially (5).  The revised allocation 
model in ICLUS v2 addresses (2) by using a transition probability model, partially addresses (3) 
by incorporating an assumption of maximum utility of land use (Alonso, 1964), and strengthens 
(5) by using a finer spatial and thematic resolution.  Another major change in ICLUS v2 is that 
the land use modeled in ICLUS v1 was the dynamic growth of a single (residential) land use in 
ICLUS v1, although commercial and industrial lands were identified and held constant through 
time.  ICLUS v2 uses a deterministic demand-allocation approach, similar to SERGoM, which 
assumes many aspects of future growth will resemble the recent past (i.e., 2000 to 2010), though 
over time land use changes would result in different overall patterns.  Different from ICLUS v1, 
v2 sequentially allocates patches from seven of the 19 discrete land use classes (LUC) used in 
ICLUS v2: five levels of residential, plus commercial and industrial.  Thus, in ICLUS v2 
commercial and industrial LUCs no longer remain constant.   
 
3.1.  OVERVIEW OF THE UPDATED SPATIAL ALLOCATION MODEL 

The updated spatial allocation model incorporates information from multiple spatial 
scales.  At the national scale, all 2,256 ICLUS GUs (see Figure 3) in the conterminous United 
States were used to construct a statistical model that generates local demands for new pixels 
(90 m × 90 m) of land use based on changes in population density.  The demand model captures 
a log-log relationship that is consistent with a theory of city growth broadly relevant to many 
aspects of city form and function (Bettencourt et al., 2007; Bettencourt, 2013; Batty, 2013).  
Satisfying the demands for new land use involves using transition probabilities and land use 
patch size and shape distributions that are region specific.  Finally, local patterns of 
                                                 
7 A spatially dependent dynamic process is one in which a change over time at one location is dependent on the state 
or changes in the state at other locations.   
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transportation capacity and accessibility to commercial areas inform future spatial patterns of 
growth.  Figure 2 (see Section 1) illustrates the spatial allocation process and references specific 
sections for each step in the flow diagram.  The areas used to calculate regionally specific 
distributions and demands are similar to U.S. Census Bureau regions (see Figure 6).   
 
 

 

 
 

Figure 6.  Regions used in ICLUS v2.  Region 1–West Coast; Region 2–
Intermountain West; Region 3–North Central; Region 4–South Central; Region 
5–Great Lakes; Region 6–Southeast; Region 7–Northeast. 

The application of regions within ICLUS v2 is intended to maintain differences in land 
use patterns across the country and over time.  Within each region (see Figure 6), patterns of land 
use change between 2000 and 2010 were summarized to form a land use transition matrix that 
captured the probability of a given pixel converting to a specific land use category given (1) the 
antecedent LUC and (2) the accessibility of the pixel.8  ICLUS v2 prioritizes pixels by transition 
probability in order from highest to lowest.  We similarly allocate new land use pixels beginning 
with highest value land uses (e.g., Industrial, Commercial) and continuing in order to the lowest 
value land uses (i.e., exurban-low).  The process of allocating new land use pixels to the most 

                                                 
8 Accessibility is defined using the capacity (i.e., people per hour) of transportation infrastructure, and is updated at 
each time step.  This aspect of the model is elaborated later, in Sections 3.2 and 3.5.1. 
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likely remaining location continues until demand for each LUC has been satisfied.  While 
somewhat simplistic, this approach nevertheless reflects classic land use theory, that is, a pattern 
of transition to the highest and best use for a given location (Chisolm, 1962).  New land uses are 
then allocated as patches using a distribution of patch shapes and sizes for each LUC unique to 
each region.  These patches are used in ICLUS v2 at each time step such that the size, shape, and 
frequency of new patches within a region reflect the new patches observed when comparing 
2010 land use to 2000 land use.   

The allocation of residential land use patches also considers accessibility to commercial 
areas.  This consideration holds to the precept that people will generally prefer to live close to 
areas that offer employment opportunities, as well as the goods, services, and other amenities 
associated with commercial development.  A similar concept was used in ICLUS v1 and yields a 
modeling framework that is responsive to emergent urban areas. 
 
3.2.  CREATING THE INITIAL ACCESSIBILITY-CAPACITY SURFACE 

When allocating new housing units, ICLUS v1 used a nationwide surface of travel time 
to preferentially weight new growth in areas most accessible to existing development, including 
transitions to higher density development and new development.  A key limitation of the ICLUS 
v1 model was that this travel time surface was static at each time step, and therefore was not 
updated to reflect improvements to transportation networks.  ICLUS v2 uses a more 
sophisticated surface of accessibility that incorporates the capacity of roads and fixed mass 
transit (i.e., people per hour), and is also updated at each time step.  We refer to this as the 
capacity surface.   

The spatial allocation model is initialized with a capacity surface for the year 2010.  To 
generate the capacity surface, we follow methods outlined in Theobald (2008), which are 
summarized here.  Conceptually, this followed three steps, with details about each step in the 
following paragraphs.  First, we identified urban cores (e.g., central business districts) at multiple 
resolutions.  Second, we calculated the travel time to the nearest urban core for each pixel, which 
reflects the polycentric nature of modern human settlements.  For road infrastructure, we assume 
travel speeds occur at typical speed limits for different road types, including fixed mass transit, 
and for off-road pixels we used walking speeds.  We then calculated the travel time from the 
centroid of each urban core through the transportation infrastructure using cost-distance analysis 
as determined by distance and travel time.  This calculation was performed for each pixel.  
Finally, we incorporated the different capacity of roads by increasing accessibility linearly by the 
number of highway lanes.   

Urban cores were built directly on the LUCs by converting developed LUCs to the 
following weights: exurban high = 1; suburban and institutional (only where the National Land 
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Cover Database [NLCD] identified developed areas with values of 23 or 24) = 5; urban low and 
transportation = 8; and urban high and commercial = 10.  These values were then aggregated by 
summing their values to 270-m resolution.  We then identified the upper half of values (greater 
than mean of 136) and calculated a kernel density on these cells with a radius of 1 mile.  Then, 
we identified the cells resulting from the kernel-density operation that have values in the upper 
half of values.  To get at urban areas as a multiscale phenomenon, we generated urban core areas 
at six spatial scales using the natural log of the number of cells.  These areas of urban clusters 
range from: 1.2, 3.2, 8.8, 23.9, 64.7, and 175.0 km2.  We then identified the centroid of each of 
these clusters at the six different scales and used these as the starting location from which to 
calculate travel time.  The benefit to this approach is that the centroid of the urban area is defined 
by the land use pattern.   

The next step was to create the cost weights that reflect the assumed travel speeds 
through the transportation infrastructure.  We assumed the same travel speeds as in ICLUS v1 
but updated the transportation infrastructure to the U.S. Census Bureau Topologically Integrated 
Geographic Encoding and Referencing (TIGER) 2010 roads.9  For each of the six urban cluster 
starting locations, we generate a cost-distance layer that reflected the travel time from the urban 
core through the infrastructure.  We then combine the six time travel surfaces by averaging them 
to generate a travel time surface.   

The accessibility surface provides a platform on which to allocate new growth, but it does 
not yet account for differences and changes in the capacity of the infrastructure.  That is, most 
infrastructure changes are simply to widen or increase the number of lanes on a given road, 
rather than to generate a brand new highway through a roadless area.  New, typically low-density 
development can, and does, occur in large, roadless, previously undeveloped tracts of land even 
though the model does not explicitly add roads to the landscape (further described below in 
Section 3.4.1 and Figure 8).   

To transform the travel time surface into a capacity surface (measured as passenger cars 
per hour per lane), we calculated the number of cars that could be handled by converting travel 
time to units of hours, then multiplying by the number of lanes of road.  State and U.S. highways 
and interstates that had information on the number of lanes in the National Transportation Atlas 
Database10 were used, otherwise we assumed only a single lane (each way).  We also accounted 
for fixed mass transit (i.e., light rail).  We assumed that a light rail system added the equivalent 
in capacity as a single lane of interstate highway (roughly 2,000 passenger cars per hour per 

                                                 
9 ftp://ftp2.census.gov/geo/tiger/TIGER2010/ROADS/. 
10 http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_atlas_database/ 
index.html. 

ftp://ftp2.census.gov/geo/tiger/TIGER2010/ROADS/
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_atlas_database/index.html
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_atlas_database/index.html
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lane)11 because we did not have individual transit information on the number of cars, number of 
passengers carried in each car, and other pertinent data. 

We converted the continuous capacity surface into a series of eight capacity classes.  To 
identify the class thresholds, we calculated class breaks using the “Natural Breaks (Jenks)” 
method in ArcGIS and then modified class breaks slightly using visual analysis of five 
“representative” urban areas: San Francisco, Portland, Denver, Atlanta, and New York City.  The 
classes are at breaks of: 1 > 1,300; 2 = 900 to 1,300; 3 = 600 to 900; 4 = 300 to 600; 5 = 200 to 
300; 6 = 150 to 200; 7 = 100 to 150; and 8 = ≤ 100.  We used these classes to compute the 
transition probabilities of growth as a function of the broader neighborhood location of change, 
rather than the more local scale that the strict LUC transitions provided.  That is, for each land 
use type, we found the transition probabilities for each capacity class independently (or jointly).  
The capacity class values for time step t − 1 are combined with the land use surface from t − 1 to 
yield a transition probability surface at time step t (see Figure 2).   
 
3.3.  ICLUS V2 LAND USE CLASSES 

In ICLUS v2 land use is represented by 19 discrete categories delineated in the U.S. 
National Land Use Dataset (US-NLUD; Theobald, 2014).  The US-NLUD contains 
high-resolution (90 m × 90 m pixels) land use information for the years 2000 and 2010 and 
provides the statistical underpinnings for ICLUS v2 land use change probabilities.  The 
US-NLUD synthesizes data from multiple sources, including remotely sensed data, to map the 
primary land use at a given location.  Parameterization of ICLUS v2 is based on land use 
transitions from 2000 to 2010, which may not remain constant over time.  Changes to transition 
probabilities are not explored in this report, but may be implemented in a scenarios context 
within the ICLUS v2 framework.   

From the US-NLUD, we retained four nonresidential land use categories (commercial, 
industrial, institutional, and transportation) within the developed land use group, and further 
subdivided the residential-urban and residential-rural subgroups to form five categories of 
residential intensity.  Urban residential uses are defined at the 1.6-dwelling units per acre (DUA; 
3.95 units per hectare) threshold based on the U.S. Census Bureau definition of urban population 
of 1,000 people per square mile (Theobald, 2001).  The urban high category is greater than 
10 DUA based on typical densities at which public transportation is viable (Ewing and Cervero, 
2010).  Suburban areas have residential densities below the urban low threshold but greater than 
the 0.4 DUA threshold, which is commonly the density at which services such as municipal 
sewer and water supply are provided.  Lower densities are split into two additional categories 

                                                 
11 http://www.fhwa.dot.gov/ohim/hpmsmanl/appn2.cfm. 

http://www.fhwa.dot.gov/ohim/hpmsmanl/appn2.cfm
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with exurban high as 0.1−0.4 DUA and exurban low as 0.02−0.1 DUA.  We also included nine 
other land use/land cover categories that can be converted into developed land uses, such as 
cropland, grazing, and timber.  The complete list of LUCs used in ICLUS v2 is shown in 
Table 2.  Further detail on the entire US-NLUD can be found in Theobald (2014).   

Table 2.  Land Use Classes used in the ICLUS v2 model. 

Code Group Class Name 

0 Water Natural water 

1 Reservoirs, canals 

2 Wetlands 

3 Protected Recreation, conservation 

4 Working/production Timber 

5 Grazing 

6 Pasture 

7 Cropland 

8 Mining, barren land 

9 Developed Parks, golf courses 

10 Exurban, low density 

11 Exurban, high density 

12 Suburban 

13 Urban, low density 

14 Urban, high density 

15 Commercial 

16 Industrial 

17 Institutional 

18 Transportation 

3.3.1.  Quantifying Land Use Changes, 2000−2010 
To examine relative changes in land use between 2000 and 2010, we estimated the 

amount of land assigned to each of the seven developed LUCs and used the counts in 2000 and 
2010 as observed values in chi-squared goodness-of-fit tests.  For this analysis, the 90 m pixels 
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were aggregated to 1 km pixels for computational efficiency.  As the first step in the analysis, 
both nationally and in each ICLUS region, we tested whether the total percentage of land in 
developed LUCs increased from 2000 to 2010.  Then we tested whether or not the percentage of 
developed land assigned to the seven individual developed LUCs changed between 2000 and 
2010.  Only allowable transitions (see Table 3) were considered.  The results of these statistical 
tests show whether development increased significantly (p <0.05) between 2000 and 2010 
nationally and for each region and whether development patterns (i.e., relative proportions of the 
developed classes) changed significantly over the same period (p <0.05).  Appendix A presents 
results for each of the seven ICLUS regions.   

If development patterns changed significantly, we examined the changes among the 
seven developed classes for which ICLUS v2 models transitions.  We first compared the odds 
that a unit of land remained in the same developed LUC from 2000 to 2010 to the odds that it 
transitioned to a different developed LUC for 2010.  If the confidence interval (CI) of the 
calculated odds ratio (OR) spanned zero, the percentage of developed land assigned to that 
particular class did not change significantly between the two time periods.  If the OR was 
statistically significantly greater or less than zero, then the percentage of developed land assigned 
to that particular class increased or decreased in 2010, respectively.   

We compared the odds that a unit of land remained in the same residential LUC from 
2000 and 2010 to the odds that it transitioned to the next most developed residential class for 
2010.  The five residential classes are only allowed to transition in one direction: progressively 
from exurban low to urban high.  This resulted in four comparisons: (1) exurban high versus 
exurban low, (2) suburban versus exurban high, (3) urban low versus suburban, (4) urban high 
versus urban low.  If the CI of the calculated OR spanned zero, the relative amount of land 
assigned to the two residential classes did not differ between 2000 and 2010 (i.e., the amounts of 
the two residential classes were not distinguishable).  If the OR was significantly greater or less 
than zero, relatively more or less land, respectively, was assigned to the higher density 
residential class in 2010.  To correct for multiple comparisons and keep the family-wise error 
rate at 0.05, confidence intervals of 98.3% were used.  Furthermore, because the data were 
aggregated at a 1-km2 resolution rather than at 8,100 m2 (the native resolution of the model), our 
results should be considered conservative.   

Combining the data from all ICLUS regions, both the percentage of land assigned to 
developed use classes (χ2 = 34,501.40, [degrees of freedom] df = 1, p <0.0001; Table 3, A; 
Figure 7, C) and the relative amount of land assigned to each of the seven developed LUCs 
(χ2 = 276.07, df = 8, p <0.0001; Table 3, B) increased between 2000 and 2010.  Among the 
developed classes, the proportion of developed land in the urban low, commercial, and industrial 
LUC decreased, the proportion of developed land in the exurban low, suburban, and urban high 
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LUCs increased between 2000 and 2010, and the proportion of developed land in the exurban 
high LUC did not change significantly between 2000 and 2010 (see Figure 7, A).  Relative 
growth in the urban high LUC was significantly larger than in the urban low LUC (see Figure 7, 
B).  Conversely, relative growth in the urban low LUC was significantly less than in the 
suburban LUC.  The relative growth in the suburban LUC tested statistically was not 
significantly different than exurban high LUC, and growth in the exurban high LUC was not 
significantly different than the exurban low LUC (see Figure 7, B). 
 
 

 

 
 

Table 3.  Goodness-of-fit test results comparing Land Use Classes in 2000 
and 2010, nationally.  Values are limited to developable area and Land Use 
Classes that transition in the model.  (A) Land assigned to developed and 
undeveloped Land Use Classes.  (B) Percentage developed land assigned to 
the seven developed Land Use Classes. 

(A) Land Use Type 2000 2010 
Developed 12.60% 16.61% 

Undeveloped 87.40% 83.39% 

χ2 = 34,501.40 df: 1 p-value: <0.0001 

(B) Developed LUC 2000 2010 
Exurban low 53.04% 53.33% 

Exurban high 26.00% 26.14% 

Suburban 8.93% 9.11% 

Urban low 7.81% 7.48% 

Urban high 0.44% 0.52% 

Commercial 2.38% 2.22% 

Industrial 1.40% 1.20% 

χ2 = 276.07 df: 8 p-value: <0.0001 
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Figure 7.  Land use comparisons between 2000 and 2010, nationally.  (A) 
Odds ratios (ORs) and confidence intervals that a unit of land stayed in the same 
developed LUC from 2000 to 2010 compared to the odds that it switched to a 
different developed LUC for 2010; (B) ORs and confidence intervals that a unit of 
land stayed in the same residential LUC from 2000 and 2010 compared to the 
odds that it switched to the next most developed residential class for 2010; and 
(C) OR comparing developed and undeveloped LUCs. 

3.4.  TRANSITION-PROBABILITY MODEL 
We calculated the transition probabilities between LUCs empirically from the baseline 

change layers (i.e., 2000 and 2010 land use layers).  We identified transitions that were plausible 
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and then further identified transitions that were plausible but could not be supported by the 
underlying data (see Table 4) to correct for spurious changes that resulted from artifacts in the 
various data sets.  For example, the institutional land use data set does not contain information 
about the year that land use first appeared; therefore, we could not infer any change in the 
institutional category.  Furthermore, as in ICLUS v1, land uses transition to increasing intensity 
and, therefore, “backwards” transitions are excluded (e.g., urban to suburban).  Note that this 
also requires generation of a modified land use data set for 2000, such that the classes are 
consistent logically with 2010.  In ICLUS v2, 2010 is the base year for future projections; thus, 
the 2000 data set needed to be consistent with 2010 information.   



26 

Table 4.  Land Use Classes transitions from 2000 (rows) to 2010 (columns) incorporated into ICLUS v2.  Filled 
circles (●) denote transitions that were included in the model; shading is added for emphasis.  Empty circles (○) 
denote plausible transitions that were excluded for the purpose of model simplification.  Hatches (x) denote 
plausible transitions that were excluded from the model because temporal data were not available.  Unmarked 
transitions were excluded from the model because they were considered unlikely or infrequent and temporal 
data were not available. 

W
at

er
 

W
et

la
nd

 

R
ec

 C
on

 

Ti
m

be
r 

G
ra

ze
 

Pa
st

ur
e 

C
ro

p 

M
in

in
g 

Pa
rk

s 

Ex
ur

b 
L 

Ex
ur

b 
H

 

Su
bu

rb
 

U
rb

an
 L

 

U
rb

an
 H

 

C
om

m
 

In
du

st 

In
st

 

Tr
an

s 

Water x 

Wetland x x x x x x x ● ● ● ● ● ● ● x x 

Recreation and Conservation x x x x x x x x x x x x x x x 

Timber x x ○ ○ ○ x x ● ● ● ● ● ● ● x x 

Grazing x x ○  ○ ○ x x ● ● ● ● ● ● ● x x 

Pasture x ○ ○ ○ x x ● ● ● ● ● ● ● x x 

Cropland x ○ ○ x x ● ● ● ● ● ● ● x x 

Mining x x x x x x x x x x x 

Parks and Open Space x x x x x x x x x 

Exurban Low ○ ○ ○ ○ x x ● ● ● ● ● ● x x 

Exurban High x x ○ ● ● ● ● ● x x 

Suburban x x x ○ ○  ● ● ● ○ x x 

Urban Low x x ○ ○ ○ ● ● x x 

Urban High x x ○ ○ ○ ○   ● x x 

Commercial x x ○ ○ ○ ○ ○ ● x x 

Industrial and Utility x x x ○ ○ ○ ○ ○ ○ x x 

Institutional x x x    x x x x x x 

Transportation x x 
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3.4.1.  Empirical Estimation of Transition Probabilities 
A series of multinomial generalized additive models (GAMs) were used to model LUC 

transitions using the VGAM package in R (Yee, 2010; R Core Team, 2015).  The GAMs predict 
the probability that a pixel transitioned from one LUC to another between 2000 and 2010 by 
transportation capacity class.  Capacity class here is determined by binning raw capacity values 
into eight ordinal values, 1−8, where lower values represent higher transportation capacity 
(described in Section 3.2).  The 53 possible transitions between LUCs were modeled in two 
stages.  First, for each ICLUS region, we modeled the probability that a pixel transitioned into 
each LUC, p(LUCj), by capacity class, where subscript j is the LUC in 2010.  These seven 
regional, “marginal” models had capacity class as their predictor variable and LUCj as a 
categorical response variable (seven levels: exurban low, exurban high, suburban, urban low, 
urban high, commercial, and industrial; see Figure 8).  Second, seven “conditional” models for 
the LUCj in each region model the probability that a pixel transitioned from a LUC in 2000 
(represented as subscript i) if it transitioned into LUCj in 2010, p(LUCi|j), by capacity class.  
Each of these models had capacity class as its predictor variable and LUCi|j as a categorical 
response variable (up to ten levels depending on the region and LUCj: wetland, timber, grazing, 
pasture, cropland, exurban low, exurban high, suburban, urban low, urban high, and 
commercial).   

These sets of models are the basis for probability calculations that a pixel transitioned 
from one LUC to another by multiplying the corresponding two model predictions together, that 
is, for a given capacity class and region, the probability that a LUC transitioned from LUCi to 
LUCj is p(LUCij) = p(LUCj) × p(LUCi|j).  Pixels that did not transition and response categories 
with zero pixels were not included in the analysis and were given transition probabilities of zero.  
The many transitions containing a small number of pixels required limiting the degrees of 
freedom used in the smoothing function to three.  Each multinomial GAM used a logit link, and 
the LUC with the largest number of pixels was set as the reference category for comparison 
purposes.  
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Figure 8.  Predicted transition probability by capacity class into Land Use 
Classes in 2010.  Each panel shows the probability of a pixel transitioning to each 
of seven land uses based on observed 2000 to 2010 changes. 
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Due to the large number of models, Tables B-1 to B-7 (see Appendix B) show only 
model outputs with statistically significant individual smoothing terms and global tests.  Global 
test results, which compare models with capacity class as a predictor variable to intercept only 
models using the difference in the deviance and residual df between models, showed that 
capacity class was a highly significant predictor of transition probability overall (p <0.0001 in all 
cases, Tables B-1 to B-7).  Figure 8 shows the relationships between the probability of 
transitioning into LUCj in 2010 and capacity class for the seven regional, marginal models.  
Figures B-1 to B-7 (see Appendix B) also show the full regional transitional probabilities, 
created by multiplying the marginal and conditional models together.  Generally, pixels were 
more likely to transition into higher density residential classes at lower capacity class values and 
vice versa with some regional variability on that overall pattern (see Figure 8 and Appendix B).  
The intermediate density residential LUC showed unimodal responses, while the probability of 
transitioning into urban high and exurban low monotonically decreased and increased in higher 
capacity classes, respectively.  Transitions into the commercial LUC displayed more regional 
variability, with some monotonically decreasing with capacity class or displaying unimodal 
behavior.  Industrial transitions, however, were relatively low overall.  The transition 
probabilities do allow for irregular growth patterns that do not always follow the most likely 
pattern (Appendix B).  For example, the suburban LUC can transition into the commercial LUC, 
which then becomes a new commercial core and an attractor for new residential growth.  
Although the general pattern of transitions into the seven LUC held across the regions, we expect 
the regional variability in observed transitions to produce different growth patterns over the 
80-year projection period. 
 
3.5.  LAND USE AND CAPACITY DEMAND MODELS 

To estimate LUC demands and changes in capacity, we created eight GAMs to predict 
LUC density from population density within each ICLUS GU (see Figure 2 for representation of 
ICLUS GUs).  Capacity and each of the seven developed LUCs has its own GAM, created using 
the mgcv package in R (Wood, 2004; R Core Team, 2015).  Each model includes population 
density, ln((people + 1) km−2), as its primary predictor variable and either capacity density per 
km−2, ln(capacity km−2) or LUC pixel density, ln((pixels + 1) km−2), as its response variable.  
Density calculations use both 2000 and 2010 population data within each ICLUS GU and the 
developable area for each ICLUS GU, estimated from the 2010 U.S. Census and USGS 
Protected Areas Database of the United States (USGS, 2012), respectively.   

Comparison of the difference in estimated number of pixels for each LUC or capacity, 
the dependent variables of the eight GAMs, between adjacent time periods is the basis of the 
demand calculation for each decade from 2020 to 2100.  For example, 2050 demands were 
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calculated by subtracting modeled 2040 from 2050 pixel counts or capacity.  The pixel counts 
and capacity for each ICLUS GU and decade were calculated by back transforming the value 
ŷi,t + εi,2010, where ŷi,t is the modeled response for a specified ICLUS GU and decade, and εi,2010 is 
the raw residual associated with the 2010 measurement for that GAM and ICLUS GU.  Adding 
the raw residual for 2010 ensured that all ICLUS GU densities were scaled to their actual 
densities in 2010, and that each GU followed a course parallel to the estimated density curve 
over time on the log scale.  In effect, this can be thought of as estimating proportional changes in 
LUC density or capacity from proportional changes in population density.  ICLUS v2 does not 
generate LUC or capacity demands for counties that are projected to lose population, meaning 
land use patterns in these counties do not change.   

Table C-1 (see Appendix C) presents summary results of the GAMs with a brief 
overview presented here.  Smoothing terms of the eight models are highly significant (p <0.0001 
for all cases) and the adjusted R2 of the curves ranges from 0.550 for the exurban low model to 
0.889 for the suburban model.  Relationships between ln(population density) and ln(pixel 
density) are displayed in Figure 9.  For all exurban low and high classes, the relationship 
between population and pixel density was unimodal, and monotonically increasing for all others.  
This matched our expectation regarding urban land use succession (i.e., higher density pixels 
should displace lower density pixels at high accessibility locations, while low-density pixels 
displace nonurban land uses at the urban fringe).  Urban high, the highest density class, continues 
to increase rapidly with population density, while the rates of increase for other classes level off.  
Generally, the persistence of high-density residential classes at high population densities 
suggests urban areas are either better mixed (less likely to be replaced with growth) or that 
expansion and replacement rates of these classes balance as cities expand outward.  Similar to 
high density residential classes, commercial and industrial classes tend to level off in counties 
with high population densities.  This leveling off indicates that these classes are not rapidly 
replaced or that growth and replacement rates balance as counties grow.  Similar to the urban 
high residential class, transportation capacity initially increases approximately exponentially and 
then linearly at higher population densities.   
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Figure 9.  Predicted log transformed pixel or capacity density (km−2) (± 2 SE) 
by log transformed population density (km−2).  Each panel shows a smooth 
curve for a different Land Use Classes or for mean capacity nationally. 
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3.5.1.  Updating the Accessibility-Capacity Surface 
As shown in Figure 2, the surface of continuous capacity values at time step t − 2 is 

updated and used to form a surface of land use transition probabilities at time step t.  To 
complete this update, we generate demand for new capacity units as a function of population 
density and proportionally allocate that demand using region-specific weights calculated from 
the 2000 and 2010 capacity surfaces.  These weights are specific to each combination of LUC i 
and region k.  First we calculated the sum of capacity units Ĉ by land use and region, averaged 
across 2000 and 2010:  
 
 

 
 

𝐶̂𝐶𝑖𝑖,𝑘𝑘 =  
𝐶𝐶2000 𝑖𝑖,𝑘𝑘 +  𝐶𝐶2010 𝑖𝑖,𝑘𝑘

2
 

(3-1) 

Next, we calculated a relative weight W for each LUC, where 𝐶̂𝐶𝑀𝑀𝑀𝑀𝑀𝑀 is the maximum 
result from Equation 3-1 for region k and 0 ≤ Wi,k ≤ 1: 
 
 

 
 

𝑊𝑊𝑖𝑖,𝑘𝑘 =  
𝐶̂𝐶𝑖𝑖,𝑘𝑘
𝐶̂𝐶𝑀𝑀𝑀𝑀𝑀𝑀

 

(4-1) 

Equation 4-1 yields the final weights used to allocate new capacity units through time.  
Each time the capacity update function is called, new capacity units U for pixel P are given as: 
 
 

 
 

𝑈𝑈𝑃𝑃 =  
𝑊𝑊𝑃𝑃

𝑊𝑊𝑇𝑇
× 𝐷𝐷𝑇𝑇 

(5-1) 

where WP is the weight value from Equation 4-1; WT is the sum of pixel weights for the entire 
geographic unit being processed; and DT is the countywide demand for new capacity units.  
Equation 5-1 represents the culmination of the capacity update function.   
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3.6.  LAND USE PATCH ALLOCATION PROCESS 
At each time step, the allocation of new land use pixels occurs on a county-by-county 

basis.  Industrial pixels are allocated first, based on the reasoning that fundamental services such 
as water and electric utilities have the least flexibility in terms of location siting.  Commercial is 
allocated next, and the process continues iteratively through the urban, suburban, and exurban 
residential classes following the highest-to-lowest order of land use intensity and value.  After 
the allocation of commercial patches, the model calculates a cost-distance surface such that each 
pixel in the county is assigned a functional distance from commercial areas.  All five residential 
LUCs include this cost-distance surface as a spatial allocation weight for new patches.  The order 
in which LUCs are allocated, and the inclusion of accessibility to commercial pixels as an 
amenity for residential classes, results in a land use change pattern that is generally consistent 
with classic land use economic theory (Alonso, 1964).  This process also allows new commercial 
and urban centers to form that alter the cost-distance surface in the next time step.   

ICLUS v2 uses the observed set of land use patches as an analog for future development 
patterns.  That is, for each LUC-region combination, a patch is drawn at random from the set of 
patches that appeared between 2000 and 2010.  That patch is compared against the transition 
probability surface and placed at the location of the highest median probability, with the 
constraint that all probabilities considered must be greater than zero.  In the case of ties between 
two or more locations, one location is selected at random.  This process is repeated until the 
demand for each land use is satisfied.  If there are no remaining pixels with a greater-than-zero 
probability of being converted, then any remaining demand is carried over to the next time step.   

As in ICLUS v1, we assume that the vast majority of land use changes will be to a higher 
intensity or value, and thus restrict new patches of land use from replacing pixels of a higher use.  
There is no “undevelopment” in either ICLUS v1 or ICLUS v2, although we recognize that in a 
few urban areas (e.g., Detroit, Michigan) recent and unprecedented economic conditions have 
resulted in conversion of higher density areas to less developed land uses.   

The patch allocation process uses morphological functions from the Python programming 
language,12 specifically the SciPy13 package (Jones et al., 2001).  An important change in this 
new version of the ICLUS model is the use of pseudorandom numbers at two stages of the patch 
allocation process: (1) patch selection and (2) choosing between locations of equal probability.  
It is not the goal of the ICLUS project to generate probabilistic forecasts of land use change; 
therefore, stochastic processes were not incorporated into any phase of the model.  Instead, 

                                                 
12 www.python.org.   
13 The binary_hit_or_miss function from scipy.ndimage is used to identify valid locations for a new patch.  The 
median_filter function is then used to identify the valid location(s) of the highest median transition probability. 

http://www.python.org/
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Python’s random number generator was “seeded” at the start of the initial patch allocation 
process for each county.  For this, we used the integer version of the five-digit county Federal 
Information Procession Standard (FIPS) code.  This step ensures that, holding all other 
parameters constant, consecutive runs of the model will yield identical results.14 
 

4.  RESULTS 

This section discusses the consequences of the data set and model updates for ICLUS v2.  
Similar to the overall model flow, Section 4.1 provides results for the demographic model, and 
Section 4.2 describes land use changes.   

The discussion of the demographic model begins at the national level, then examines 
regional population trends including the effect of changing climate variables in the migration 
model.  This subsection delves into further detail on the influence of climate on domestic 
migration by ICLUS geographic units in relation to climate variables.  These maps demonstrate 
the absolute and relative influence that climate change has on domestic migration in the 
ICLUS v2 modeling approach.  The discussion on migration concludes with an analysis of the 
relative contribution of the different scenarios, climate models, and regions on migration 
patterns.   

The discussion of land use changes initially focuses on the addition of commercial and 
industrial classes to the set of transitioning land uses.  This section also examines growth in all 
developed LUCs by region over time.  Finally, comparisons of standardized LUCs between 
ICLUS v1 and v2 show the overall differences in output that result from all of the data set and 
model updates.   
 
4.1.  POPULATION PROJECTIONS 
4.1.1.  National Projections 

Figure 10 shows projections of total population for the conterminous United States.  
Nationally, the ICLUS SSP5 scenario results in the highest total population because of higher 
fertility rates than the ICLUS SSP1 scenario.  The relative difference in population in 2100 
between ICLUS SSP1 and 5 (229 million) is similar to the relative difference between the 
International Institute for Applied Systems Analysis (IIASA) SSP1 and 5 scenarios 
(247 million), allowing qualitative comparisons and exploration of differences in impacts 

                                                 
14 Results shown in this report were generated on a computer using Windows 7 (64-bit) and Python version 2.7.10 
and SciPy version 0.16.  Executing the ICLUS v2 model on computers with different software will yield different 
random number draws, despite the “seeding” process described above.   
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between scenarios.  Both SSP scenarios fall within the range of the U.S. Census Bureau’s 2000 
projections (see Figure 10).   
 
 

 
 

 
 

Figure 10.  Total population for the conterminous United States to 2100 
showing projections for ICLUS v2.  For comparison, historic and projected 
population from the U.S. Census Bureau, and projected population from the 
International Institute for Applied Systems Analysis (IIASA)15 are shown.  The 
most recent census projection (2014) aligns well with the SSP1 projection used in 
this report through 2060. 

4.1.2.  Regional Projections 
By region, ICLUS v2 total population projections are similar within the same SSP-RCP 

combination but use different climate model output in the migration model (see Figure 11).  
Even when climate change projections are selected to maximize differences, regional population 
projections will largely reflect demographic parameters such as fertility rates, net immigration 
assumptions, and so forth.  Section 4.1.4 discusses differences between scenarios at the 
subregional scale that arise from the spatial allocation model.   
 
                                                 
15 These population projections are available at https://secure.iiasa.ac.at/web-apps/ene/SspDb.   

https://secure.iiasa.ac.at/web-apps/ene/SspDb
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Figure 11.  Total population for each ICLUS region to 2100 under four 
scenario assumptions.  SSP1 is low population growth, SSP5 is high population 
growth; RCP 4.5 is low carbon emissions, RCP8.5 is high carbon emissions.  
With respect to temperature increases over the United States, FIO-ESM and 
HadGEM2-AO are among the models least and most sensitive to global 
emissions, respectively. 

4.1.3.  The Effect of Changing Climate Amenities 
A key feature introduced in ICLUS v2 is the integration of climate change as an amenity 

(or dis-amenity) in the migration model equation used to simulate domestic migration at each 
annual time step (see Section 2.1.4).  Using this additional information means that a wider range 
of spatial patterns are theoretically possible with respect to population distribution because each 
unique climate change projection should produce a unique pattern of domestic migration.  
Moreover, small differences between two similar climate change projections could yield 
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pronounced differences in migration patterns as the cumulative effect of simultaneously 
adjusting amenity values for each geographic unit at each annual time step plays out over time.   

Figure 12 shows the effect of climate change-induced migration by ICLUS region and 
scenario relative to a migration model that, like ICLUS v1, holds climate amenity variables 
constant over time for all scenarios.  There were no entirely consistent patterns with respect to 
population differences, as five regions (1, 3, 4, 6, and 7) had either higher or lower total 
populations by 2100 depending on the scenario.  The total population of Region 5 (Great Lakes) 
was higher relative to the no climate change model regardless of scenario, while in Region 2 
(Intermountain West) the opposite was true, especially under the ICLUS SSP5-RCP8.5 
scenarios.  Across all scenarios explored in this report, the effect of climate change-induced 
migration on total population for any ICLUS Region was no more than about ± 2,500,000 people 
(see Figure 12).   

This diversity of outcomes is not surprising given the complexity of the underlying 
model.  Each climate change projection presents a unique spatiotemporal pattern of migration 
model inputs.  These patterns in turn alter the spatial distribution of population over time and 
across the modeling domain and enhance or diminish migration feedbacks via other variables in 
the migration model equation (i.e., population density or growth rate).  While the relative net 
effect of these interactions may total millions of people for a given region, we note that these 
differences are a small fraction of total population.  Figure 13 shows that, in relative terms, the 
effect of climate change-induced migration is no more than ~4% of the regional population, as 
seen in Region 2 under SSP5-RCP8.5 using the HadGEM2-AO climate data.  Most differences 
are between ± 2% of the regional population regardless of scenario and climate model.   
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Figure 12.  The effect of climate change-induced domestic migration 
expressed as differences in millions of people.  Differences in regional 
population projection by emissions scenario and climate model are shown.  
Values are expressed as the difference from a “no climate change” version of the 
migration model.  SSP1 is low population growth, SSP5 is high population 
growth; RCP 4.5 is low carbon emissions, RCP8.5 is high carbon emissions.  
With respect to temperature increases over the United States, FIO-ESM and 
HadGEM2-AO are among the models least and most sensitive to global 
emissions, respectively. 
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Figure 13.  The effect of climate change-induced domestic migration 
expressed as percentage differences.  Relative differences in regional population 
projection by emissions scenario and climate model are shown.  Values are 
expressed as the percentage difference from a “no climate change” version of the 
migration model.  SSP1 is low population growth, SSP5 is high population 
growth; RCP 4.5 is low carbon emissions, RCP8.5 is high carbon emissions.  
With respect to temperature increases over the United States, FIO-ESM and 
HadGEM2-AO are among the models least and most sensitive to global 
emissions, respectively. 
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4.1.4.  Subregional Projections 
The effect of climate change on ICLUS v2 population projections can be further 

illustrated with difference maps comparing climate variables derived from the FIO-ESM and 
HadGEM2-AO climate projections and their respective population projections.  An examination 
and interpretation of the migration model is provided in Section 2.2; however, some general 
spatial relationships between climate variable differences and population differences are 
apparent.   

For example, under the SSP5-RCP8.5 scenario assumptions, total population in Region 6 
(Southeast) is generally higher when the migration model is driven by the HadGEM2-AO 
climate projection (see Figures 14, A and B, green areas).  In this comparison, all parameters and 
assumptions are identical except for the annual climate amenity values; therefore, differences in 
the spatial pattern of population are the cumulative result of migration differences where and 
when the climate projections diverge.   

The difference between the two climate models in terms of winter precipitation seems to 
play an important role in this particular spatial pattern.  While relatively warmer winter 
temperatures are projected by the HadGEM2-AO model over most of the country, the 
southeastern United States is one of the few areas to show relatively dryer winters by 
HadGEM2-AO.  The effect of markedly warmer winters (which would attract more migrants) 
projected by HadGEM2-AO across the northern plains is difficult to discern because of generally 
smaller, fewer, and more distant high-population areas relative to the southeastern United States.  
In addition, relatively more winter precipitation would also work to slow migration into and 
within the northern plains area.   

A comparison of population difference maps in Figures 14 and 15 shows somewhat 
larger migration differences under RCP4.5―the lower emissions scenario of the two.  This 
somewhat counterintuitive result is explained by the relatively larger difference between the two 
climate models as shown in the climate maps.  The spatial extent and magnitude of divergent 
projections is clear for virtually all combinations of variables and years.  The cumulative effect 
of these comparatively larger differences in climate variables results in comparatively larger 
migration differences. 

These maps demonstrate some implications of the ICLUS v2 modeling approach; 
however, care should be taken to avoid over-simplifying the apparent spatial relationship 
between climate variables and population shown in Figures 14 and 15.  The suite of interactions 
and feedbacks present in the migration model extends beyond the figures presented here, and 
cannot be exhaustively characterized by examples presented in this report.   
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Figure 14.  Differences in population and climate change projections driven 
by FIO-ESM and HadGEM2-AO under SSP5 and RCP8.5 assumptions for 
2050 and 2100.  (A) Population differences by ICLUS GU in 2050 and (B) in 
2100; (C) differences in change in winter temperature in 2050 and (D) in 2100; 
(E) differences in change in summer temperature in 2050 and (F) in 2100; (G) 
differences in change in winter precipitation in 2050 and (H) in 2100; (I) 
differences in summer change in precipitation in 2050 and (J) in 2100. 
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Figure 15.  Differences in population and climate projections driven by 
FIO-ESM and HadGEM2-AO under SSP1 and RCP4.5 assumptions for 2050 
and 2100.  (A) Population differences by ICLUS GU in 2050 and (B) in 2100; 
(C) differences in change in winter temperature in 2050 and (D) in 2100; 
(E) differences in change in summer temperature in 2050 and (F) in 2100; 
(G) differences in change in winter precipitation in 2050 and (H) in 2100; 
(I) differences in change in summer precipitation in 2050 and (J) in 2100. 
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To further investigate the differences among scenario, climate model, and region, we 
developed a fully factorial generalized least squares model to test the influence of these variables 
and their interactions on mean 10-year changes in population density.  The categorical 
independent variables include ICLUS GU initial population density (people per km2 in five size 
bins, P1: ≤5.0; P2: 5.1−15.0; P3: 15.1−45.0; P4: 45.1−135.0; P5: ≥135.1; see Figure 16), ICLUS 
region (seven regions; see Figure 6), SSP (two scenarios: SSP1, SSP5), and climate model (three 
levels: no climate change, FIO-ESM, HadGEM2-AO).  The model also includes all possible 
2-way, 3-way, and 4-way interactions among the variables.  To meet the assumption of 
homogeneity, we allowed each county size class to have its own residual variance (Zuur et al., 
2009).  We ran separate models to look at population differences between 2010−2050 and 
2060−2100 because results suggest higher divergence in populations by the end of the century 
(see Figures 14 and 15).   

During the initial decades modeled, 2010−2050, the magnitude of population change 
depends on the initial population density, which varies by region (single 2-way interaction; see 
Table 5, left).  ICLUS GUs with higher initial population densities have larger increases in 
population density overall and show the most distinct regional differences (see Figure 16, A).  In 
the second half of the century, 2060−2100, the magnitude of population change still depends on 
the initial population density, but varies by both region and SSP (two 2-way interactions; 
Table 5, right).  As in the initial decades, ICLUS GUs with higher initial population densities 
have larger increases overall and show the most distinct regional differences (see Figure 16, B).  
Similarly, differences between SSPs are more distinct at higher population densities (see 
Figure 16, C), in part because SSP5 uses a higher fertility rate and therefore has more people to 
distribute across ICLUS GUs.  The addition of the SSP variables in the late-century model shows 
that the pathways diverge during this time period, but are similar during the first half of the 
century.    
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Figure 16.  Average ICLUS GU 10-year population change by (A) starting 
population density and ICLUS region from 2010−2050, (B) starting 
population density and ICLUS region from 2060−2100, (C) starting 
population density and SSP from 2060−2100.  P1: ≤5.0; P2: 5.1−15.0; P3: 
15.1−45.0; P4: 45.1−135.0; P5: ≥135.1 people per km2.  
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Table 5.  GLS model results.  Model output includes degrees of freedom (df), 
F-statistic, and significance (p).  Nonsignificant terms (including interactions) 
are included for completeness. 

 
Change in population 

density: 
2010−2050 df F p 

Change in population 
density:  

2060−2100 df F p 

Initial population density 4 97.706 <0.0001 Initial population density 4 119.594 <0.0001 

ICLUS region 6 20.639 <0.0001 ICLUS region 6 34.111 <0.0001 

Socioeconomic pathway  1 0.183 0.6686 Socioeconomic pathway  1 1.534 0.2156 

Climate model 2 0.055 0.9462 Climate model 2 0.024 0.9761 

P × R 24 7.240 <0.0001 P × R 24 13.929 <0.0001 

P × S 4 0.343 0.8493 P × S 4 3.750 0.0047 

R × S 6 0.053 0.9994 R × S 6 1.441 0.1944 

P × M 8 0.071 0.9998 P × M 8 0.084 0.9996 

R × M 12 0.094 1.0000 R × M 12 0.246 0.9959 

S × M 2 0.008 0.9919 S × M 2 0.007 0.9929 

P × R × S 24 0.050 1.0000 P × R × S 24 0.501 0.9797 

P × R × M 48 0.034 1.0000 P × R × M 48 0.059 1.0000 

P × S × M 8 0.020 1.0000 P × S × M 8 0.007 1.0000 

R × S × M 12 0.017 1.0000 R × S × M 12 0.028 1.0000 

P × R × S × M 48 0.008 1.0000 P × R × S × M 48 0.009 1.0000 
P: Initial population density 
R: ICLUS Region 
S: Socioeconomic pathway 
M: Climate model  
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4.2.  LAND USE PROJECTIONS 
4.2.1.  National Projections 

The national-scale land use projections show nearly identical trends under the same SSP 
assumption; the choice of climate model has no discernible effect on the overall amount of 
projected development at the national level (see Figure 17).  Relative to SSP1, the larger national 
population under SSP5 drives more development overall, particularly with respect to exurban 
residential density (yellow wedge in all panels in Figure 17).  By 2100, the area of developed 
land in the conterminous United States increases by more than 80% of the 2010 value, yielding a 
total of more than 1.6 million square kilometers under the SSP5 scenario.  Under the SSP1 
scenario, the increase is nearly 50%, and yields more than 1.3 million square kilometers of 
developed land by 2100 (see Figure 17).   
 
 

 
Figure 17.  National land use projections from ICLUS v2 to 2100.  Trends in 
total area of exurban (exurban low + exurban high), suburban, urban (urban 
low + urban high), commercial, and industrial lands are shown under four 
scenarios. 
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Differences in the percentage changes in each of the LUCs emerge nationally when 
comparing SSP1-RCP4.5 and SSP5-RCP8.5 (see Figure 18).  The SSP1-RCP4.5 projection using 
FIO-ESM climate data has the smallest increases over time in terms of land use changes, as 
compared to the SSP5-RCP8.5 projection using HadGEM2-AO climate data.  These two 
scenario combinations represent the extremes explored in ICLUS v2 in terms of demographic 
and climatic change rates.  For SSP1-RCP4.5, only the combined urban category increases by 
more than 100% in 2100 and commercial land uses increase nearly that much.  This scenario 
consists of a relatively lower national population (SSP1) and lower anthropogenic perturbation of 
the climate system (RCP4.5) modeled with a demonstrably less sensitive climate model 
(FIO-ESM). 

Conversely, the SSP5-RCP8.5 (HadGEM2-AO) projection models more than a 100% 
increase in the extent of all developed LUCs already by 2050.  The extent of urban land increases 
by more than 200% by 2050 under this scenario, and more than quadruples by 2100.  This 
projection uses a very high population scenario (SSP5) and climate scenario of high 
anthropogenic forcing (RCP8.5) modeled with a demonstrably more sensitive climate model 
(HadGEM2-AO).  This combination of model variables leads to greater changes in the extent of 
developed lands than the SSP1-RCP4.5 (FIO-ESM) combination, even though the initial land use 
demands and transition probabilities are the same.  Changes in land use demands and transition 
probabilities represent a future pathway to explore further differences among ICLUS v2 
scenarios.   
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Figure 18.  Relative increases in the area of developed LUCs nationally at 
2050 (top row) and 2100 (bottom row).  The left column shows results for 
SSP1-RCP4.5 using FIO-ESM climate data; the right column shows results for 
SSP5-RCP8.5 using HadGEM2-AO climate data.  The SSP × RCP × climate 
model combinations shown at the top of the graphs bracket the range of national 
population projections, emissions scenarios, and climate model sensitivity, 
respectively, of all combinations considered in this report. 

4.2.2.  Regional Projections 
Summarizing the ICLUS v2 land use projections by region illustrates substantial 

differences between the SSP1-RCP4.5 and SSP5-RCP8.5 scenarios.  In almost every scenario 
run, developed land use categories in all regions increase (see Table 6).  The magnitudes of those 
increases vary based on the SSP (i.e., population) assumption being considered.   

ICLUS v2 projects a net decrease in the lowest residential density class (exurban-low) in 
Region 7 (Northeast) by 2100 under the SSP5-RCP8.5 (HadGEM2-AO) scenario (see Table 6).  
This singular instance of an extent decrease reflects the relatively high population density of the 
northeastern United States, and the concomitant demand for higher density residential 
development.  In that case, the conversion of exurban-low pixels to other developed uses has 
outpaced the demand for low-density residential pixels.   

The urban-high LUC shows the greatest percentage increase by 2050 in both SSPs 
considered, although smaller increases occur in Region 7 (Northeast) and, under SSP1-RCP4.5 
(FIO-ESM), in Region 5 (Great Lakes).  Substantial increases in commercial and industrial land 
uses occur in Regions 2−4 under both SSPs by 2050, with more moderate increases in the 
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remaining regions.  Region 2 (Intermountain West), which is currently less densely developed 
than most other regions, also has greater percentage increases in both exurban classes under both 
SSPs by 2050.  In 2100, this remains true for SSP1-RCP4.5 (FIO-ESM), although Regions 3 and 
4 have the next highest percentage increases compared to the other regions, while the increases 
in Regions 3 and 4 under SSP5-RCP8.5 (HadGEM2-AO) are more similar to Region 2 and larger 
than the other regions (see Table 6).  The overall regional pattern across both SSPs is that 
urban-high increases sooner than lower density land uses, and that generally the pattern of 
increases follows the density classes from urban-high to exurban-low.   
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Table 6.  Cumulative change in developed land use classes for 2050 (top row) 
and 2100 (bottom row) by Shared Socioeconomic Pathways (SSPs), 
Representative Concentration Pathways (RCPs) and climate model (in 
parentheses).  Values shown represent the change in square kilometers for 
each LUC since 2010.  Shading is used to describe that change as a 
percentage, with the darkest gray indicating a >100% change, medium gray 
50−100% change, light gray 0−50% change, and peach <0% change. 

 

 
 
 
4.2.3.  Subregional Projections 

Decadal land use maps show changes for three selected metropolitan areas (see 
Figures 19−24).  Net changes in other land uses classes (e.g., agriculture, recreation) are only 
negative and only occur as a result of transitions into developed classes.  For example, in the 
Portland, OR-Vancouver, WA metropolitan area most of the growth in low-density urban land 
uses results from conversion of suburban and exurban areas, although more conversions of 
cropland to urban low occur in the decades from 2050−2100 than the earlier time period under 
both SSPs (see Figures 19 and 20).  Similar trends also occur in cities in other regions (e.g., 
Springfield, MO; see Figures 21 and 22).  In contrast, some metropolitan areas that already have 
multiple high-density urban centers throughout the area (e.g., Washington, DC metropolitan 
area) and have high population growth convert more of the existing residential land uses to 
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additional high-density urban areas under both SSPs (see Figures 23 and 24).  These three 
metropolitan areas exemplify changes nationally in such areas and illustrate the spatial patterns 
produced using ICLUS v2.  
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Figure 19.  Land use change in the vicinity of the Portland, OR-Vancouver, 
WA Metro Area under the SSP1-RCP4.5 (FIO-ESM) scenario: 2010, 2050, 
and 2100. 
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Figure 20.  Land use change in the vicinity of the Portland, OR-Vancouver, 
WA Metro Area under the SSP5-RCP8.5 (HadGEM2-AO) scenario: 2010, 
2050, and 2100. 
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Figure 21.  Land use change in the vicinity of the Springfield, MO Metro 
Area under the SSP1-RCP4.5 (FIO-ESM) scenario: 2010, 2050, and 2100. 
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Figure 22.  Land use change in the vicinity of the Springfield, MO Metro 
Area under the SSP5-RCP8.5 (HadGEM2-AO) scenario: 2010, 2050, and 
2100. 
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Figure 23.  Land use change in the vicinity of the Washington-Arlington-
Alexandria, DC-VA Metro Area under the SSP1-RCP4.5 (FIO-ESM) 
scenario: 2010, 2050, and 2100. 
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Figure 24.  Land use change in the vicinity of the 
Washington-Arlington-Alexandria, DC-VA Metro Area under the 
SSP5-RCP8.5 (HadGEM2-AO) scenario: 2010, 2050, and 2100. 

5.  CONCLUSION 

The updated data sets and underlying statistical and spatial methods result in realizations 
of future land use changes that are substantially different from ICLUS v1.  The revisions made 
for ICLUS v2 have many advantages, particularly for assessments of future climate change 
impacts, vulnerabilities, and adaptation options.  These advantages include the ability to 
(1) develop future scenarios that include changes in commercial and industrial land uses, 
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(2) examine the effect of changes in transportation capacity through additional lane miles or 
added fixed mass transit, (3) examine trends in land use changes regionally, and (4) assess 
differences among scenarios consistent with current socioeconomic and emissions storylines 
(i.e., SSPs and RCPs).  However, some of the updates have disadvantages.  For example, the use 
of the IRS migration data set requires collapsing all age classes from the cohort component 
model into one population, compared with the two age groups used in ICLUS v1.  The loss of 
this demographic information theoretically results in less useful model outputs because the 
assessment of future health impacts related to climate change typically is improved by using 
segmented age groups.  This limitation is somewhat mitigated by the fact that ICLUS v1 only 
retained two broad population segments, over 50 and under 50.  An additional limitation of a 
single population is that people of different ages move in different patterns (e.g., Voorhees et al., 
2011) and may respond differently to future climate.  These behaviors are likely to have 
repercussions in the population and land use patterns generated by ICLUS v2.  Methods to add 
more detailed demographic information back into the migration model would make the 
population outputs from ICLUS v2 more useful for the health impacts communities, research on 
vulnerable populations, and examinations of potential environmental justice issues. 

ICLUS v2 represents significant progress in the development of land use change 
scenarios that are consistent with emissions story lines and has the flexibility to adapt to other 
emerging storylines from the climate change modeling community.  For example, land use 
transitions can be altered by changing the population density and land use demand relationships. 
The current transitions are based on a limited temporal segment of land use data (2000−2010) 
and remain constant over time.  These transition probabilities may change over time, and this 
change currently is not represented in the model.  There are several options for exploring 
changes in transitions over time.  For example, new land use change information can be used to 
compared predicted land uses to actual land uses in 2015.  This would yield information on 
deviations from near-term trends.  Exploring longer term implications of changes in land use 
transitions can employ a scenarios approach.  Both of these approaches can inform on potential 
trajectories and environmental impacts.   

The current ICLUS v2 land use transitions follow an expected development path from 
low to high densities, generally expanding outwards from population centers.  Higher density 
residential classes, commercial, and industrial development exhibit a threshold effect at high 
population densities, such that these land uses generally are not replaced once they are 
developed.  This tendency has implications in terms of the continuity of urban form, 
redevelopment patterns, creation of park and recreation areas, and other “undevelopment” 
(e.g., transitions from higher land use classes to lower ones as a result of declining population), 
which in turn influences subsequent development patterns.  One potential consequence of not 
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allowing LUCs to transition to lower density or nondeveloped uses is that these data sets 
overestimate impervious surface cover and its impacts, even though such surfaces may remain 
for many years following population loss from an area.  Alternatively, some industrial sites may 
be redeveloped into lower use classes such as residential housing, in this case also altering the 
impervious surface cover estimates and population densities.  While the current model does not 
explicitly include these types of transitions, the model structure does allow for the future 
exploration of these phenomena through scenarios.   

ICLUS v2 also makes significant progress in providing future estimates of commercial 
and industrial land use changes.  These estimates serve as inputs to a variety of environmentally 
relevant models that project changes in emissions and other air quality factors.  Additional 
research into the emergence of new commercial areas and densities and occurrences of mixed 
commercial and residential buildings in urban areas would be useful inputs into future ICLUS 
updates and land use change scenarios.  Data on the emergence of new commercial and industrial 
centers, as well as associated impervious surface cover, are critical for modeling future changes 
in a variety of air and water quality endpoints, including emissions of criteria air pollutants, 
greenhouse gases, and stormwater runoff.   

Another important advancement of ICLUS v2 is the inclusion of future climate change 
variables in the migration model.  While climate variables represent a relatively small 
instantaneous influence on migration, the cumulative effect of this influence through time on a 
process as complex as human migration results in meaningful spatial variability of population 
projections across the ICLUS GUs.  The strength of this influence also can be explored through 
scenarios that alter migration responses to climate change over time.  Additionally, differences in 
migration patterns can be explored as other climate model data are incorporated.   

The use of changing climate variables in the migration model does produce some 
differences in population distribution.  Differences in regional populations between static and 
dynamic climate variables are no more than approximately 4%.  Most differences are ±2% of the 
regional population, regardless of scenario and climate model combination.  Nationally, the 
choice of climate model has little effect on the overall development pattern.  However, this 
report only used two climate models as examples to implement the changes in the ICLUS v2 
models.  Other climate change models may have more extreme temperature or precipitation 
values in certain regions that may exert larger influences on population migration.  ICLUS v2 
users can explore impacts of other climate change model values as part of scenario and 
sensitivity analyses.  However, as projected temperatures and precipitation amounts become 
more extreme in some models, these values will be outside of the range of the data used to 
parameterize the migration equation. 
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The results presented in this report cover only two of the many possible GCMs and two 
emissions scenario.  Data from other climate change models can be incorporated easily into the 
migration model.  Additional emissions scenarios also can be explored.  Transition probabilities 
and land use and capacity class relationships can be modified to create land use patterns 
consistent with SSP and RCP combinations not explored in this report. 

As in ICLUS v1, this version focuses on developed land uses.  It would be useful to 
integrate ICLUS v2 with models using similar principles that change other land uses, such as 
agriculture and forestry—particularly for more comprehensive assessments of impacts, 
vulnerabilities, and adaptation options related to climate change.  The composition of 
agricultural, forest, and natural landscapes has changed and will continue to change over time in 
response to human, climatic, and other factors.  A large body of research exists that models 
changes in various species distributions under the SRES storylines (e.g., Thomas et al., 2012).  
These types of analyses can make use of the changing development patterns from the ICLUS 
output, and provide feedbacks from changes in the undeveloped landscape that can be 
incorporated into the ICLUS modeling structure.  Several models exist that can easily integrate 
ICLUS data and vice versa.  For example, the FOREcasting SCEnarios of Land-use Change 
model (FORESCE; Sohl et al., 2007) also uses scenario assumptions to examine changes in 
forest composition in the future, while the Forestry and Agricultural Sector Optimization Model 
(FASOM) can integrate changes in the available agricultural and forest land area to develop 
projections of future markets based on population demands (Zhang et al., 2014).  These types of 
feedbacks and interactions among changes in land use and land cover are an active area of 
research that are likely to improve future version of ICLUS output. 

The data sets resulting from ICLUS v2 can serve as inputs for other models to further 
investigate changes in environmental and human health endpoints.  Many models use population 
as a critical variable, and ICLUS v2 enables scenario-based explorations of the endpoints of such 
models.  These types of analyses also can explore such endpoints in the context of the global 
SSPs and RCPs because of the consistency of the ICLUS v2 outputs with those scenarios.  Other 
models also use a combination of population and land use variables for which ICLUS v2 can 
provide inputs.  In some cases, the scenarios of land use change provided by ICLUS v2 can add a 
novel forward-looking component to other models and further analyses of feedbacks among land 
uses or influences from land use changes on specific endpoints.  The range of data sets and the 
consistency of the data sets with SSPs and RCPs facilitates the use of ICLUS v2 in many 
applications.
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APPENDIX A.  REGIONAL LAND-USE CHANGES FOR 2000−2010 

A.1.  INTEGRATED CLIMATE AND LAND USE SCENARIOS (ICLUS) REGION 1 
(PACIFIC) LAND USE CHANGES 

In the Pacific region (Integrated Climate and Land Use Scenarios [ICLUS] Region 1), the 
percentage of land assigned to developed use classes increased between 2000 and 2010 (see 
Table A-1, A, Figure A-1, C).  Over the same period, the relative amount of land assigned to 
each of the seven developed land use classes (LUCs) also changed (see Table A-1, B). Among 
the developed classes, the proportion of developed land in the urban low LUC decreased, while 
the proportion of land in the urban high LUC increased between 2000 and 2010 (see Figure A-1, 
A). The relative amount of developed land in the exurban low, exurban high, suburban, 
commercial, and industrial LUCs did not change statistically significantly between 2000 and 
2010. Relative growth in the urban high LUC was larger than in the urban low LUC (see 
Figure A-1, B).  The relative amount of growth in paired comparisons of exurban high with 
exurban low, suburban with exurban high, and urban low with suburban LUCs show no 
statistically significant differences. 
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Table A-1.  Goodness-of-fit test results comparing LUCs in 2000 and 2010 in 
Integrated Climate and Land Use Scenarios (ICLUS) Region 1 (Pacific).  
Values are limited to developable area and LUCs that transition in the model.  (A) 
Land assigned to developed and undeveloped LUCs.  (B) Percentage developed 
land assigned to the seven developed LUCs. 

(A) Land Use Type 2000 2010 

Developed 13.33% 15.72% 

Undeveloped 86.67% 84.28% 

χ2: 873.48 DF: 1 p-value: <0.0001 

(B) Developed LUC 2000 2010 

Exurban low 39.28% 39.11% 

Exurban high 25.67% 26.44% 

Suburban 11.10% 10.70% 

Urban low 16.86% 16.27% 

Urban high 1.23% 1.60% 

Commercial 3.58% 3.76% 

Industrial 2.28% 2.12% 

χ2: 47.74 DF: 8 p-value: <0.0001 
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Figure A-1.  Land use comparisons between 2000 and 2010 in Integrated 
Climate and Land Use Scenarios (ICLUS) Region 1 (Pacific).  (A) Odds ratios 
(ORs) and confidence intervals comparing allocations among the seven developed 
LUCs; (B) ORs and confidence intervals comparing adjacent residential LUCs 
(high density versus low density); and (C) OR comparing developed and 
undeveloped LUCs. 

A.2.  INTEGRATED CLIMATE AND LAND USE SCENARIOS (ICLUS) REGION 2 
(INTERMOUNTAIN WEST) LAND USE CHANGES 

In the Intermountain West region (ICLUS Region 2), the percentage of land assigned to 
developed use classes increased between 2000 and 2010 (see Table A-2, A, Figure A-2, C).  
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Over the same period, the relative amount of land assigned to each of the seven developed LUCs 
also changed (see Table A-2, B).  Among the developed classes, the proportion of developed 
land in the exurban high, urban low, and industrial LUC decreased, while the proportion of 
developed land in the exurban low and urban high LUCs increased between 2000 and 2010 
(see Figure A-2, A).  The relative amount of developed land in the suburban and commercial 
LUCs did not change significantly between 2000 and 2010.  Relative growth in the urban high 
LUC was larger than the urban low LUC (see Figure A-2, B).  However, relative growth in the 
exurban high LUC was less than the exurban low LUC.  The relative amount of growth in the 
suburban LUC was not significantly different from the exurban high LUC, and the relative 
amount of growth in the urban low LUC was not significantly different from the suburban LUC. 

Table A-2.  Goodness-of-fit test results comparing LUCs in 2000 and 2010 in 
Integrated Climate and Land Use Scenarios (ICLUS) Region 2 
(Intermountain West).  Values are limited to developable area and LUCs that 
transition in the model.  (A) Land assigned to developed and undeveloped LUCs.  
(B) Percentage developed land assigned to the seven developed LUCs. 

(A) Land Use Type 2000 2010 

Developed 3.41% 4.53% 

Undeveloped 96.59% 95.47% 

χ2: 1,557.17 DF: 1 p-value: <0.0001 

(B) Developed LUC 2000 2010 

Exurban low 37.39% 40.62% 

Exurban high 29.45% 27.92% 

Suburban 12.05% 11.67% 

Urban low 13.86% 13.01% 

Urban high 0.58% 0.77% 

Commercial 4.39% 4.07% 

Industrial 2.28% 1.94% 

χ2: 99.84 DF: 8 p-value: <0.0001 
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Figure A-2.  Land use comparisons between 2000 and 2010 in ICLUS Region 
2 (Intermountain West).  (A) Odds ratios (ORs) and confidence intervals 
comparing allocations among the seven developed LUCs; (B) ORs and 
confidence intervals comparing adjacent residential LUCs (high density versus 
low density); and (C) OR comparing developed and undeveloped LUCs. 

A.3.  INTEGRATED CLIMATE AND LAND USE SCENARIOS (ICLUS) REGION 3 
(NORTH CENTRAL) LAND USE CHANGES 

In the North Central region (ICLUS Region 3), the percentage of land assigned to 
developed use classes increased between 2000 and 2010 (χ2 = 1,507.45, DF = 1, p < 0.0001; 
see Table A-3, A, Figure A-3, C).  Over the same period, the relative amount of land assigned to 
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each of the seven developed LUCs also changed (χ2 = 149.09, DF = 8, p < 0.0001; 
see Table A-3, B).  Among the developed classes, the proportion of developed land in the 
exurban high, suburban, urban low, and industrial LUC decreased, while the proportion of 
developed land in the exurban low and urban high LUCs increased between 2000 and 2010 
(see Figure A-3, A).  The relative amount of developed land in the commercial LUC did not 
change significantly for the same period.  Relative growth in the urban high LUC was larger than 
the urban low LUC (see Figure A-3, B).  Conversely, relative growth in the exurban high LUC 
was less than the exurban low LUC.  The relative amount of growth in the suburban LUC was 
not significantly different than the exurban high LUC, and the relative amount of growth in the 
urban low LUC was not significantly different than the suburban LUC. 

Table A-3.  Goodness-of-fit test results comparing LUCs in 2000 and 2010 in 
Integrated Climate and Land Use Scenarios (ICLUS) Region 3 (North 
Central).  Values are limited to developable area and LUCs that transition in the 
model.  (A) Land assigned to developed and undeveloped LUCs. (B) Percentage 
developed land assigned to the seven developed LUCs. 

(A) Land Use Type 2000 2010 

Developed 4.05% 5.10% 

Undeveloped 95.95% 94.90% 

χ2: 1,507.45 DF: 1 p-value: <0.0001 

(B) Developed LUC 2000 2010 

Exurban low 47.01% 50.55% 

Exurban high 27.72% 25.51% 

Suburban 9.17% 8.61% 

Urban low 9.93% 9.49% 

Urban high 0.24% 0.32% 

Commercial 3.62% 3.47% 

Industrial 2.31% 2.05% 

χ2: 149.09 DF: 8 p-value: <0.0001 
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Figure A-3.  Land use comparisons between 2000 and 2010 in ICLUS Region 
3 (North Central).  (A) Odds ratios (ORs) and confidence intervals comparing 
allocations among the seven developed LUCs; (B) ORs and confidence intervals 
comparing adjacent residential LUCs (high density versus low density); and (C) 
OR comparing developed and undeveloped LUCs. 

A.4.  INTEGRATED CLIMATE AND LAND USE SCENARIOS (ICLUS) REGION 4 
(SOUTH CENTRAL) LAND USE CHANGES 

In the South Central region (ICLUS Region 4), the percentage of land assigned to 
developed use classes increased between 2000 and 2010 (see Table A-4, A, Figure A-4, C).  
Over the same period, the relative amount of land assigned to each of the seven developed LUCs 
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also changed (see Table A-4, B).  In this particular region, the amount of developed land 
allocated to the exurban low and exurban high LUCs was lower in 2000 than expected 
(see Table A-4, B), and a large number of grazing land use pixels transitioned into these LUCs in 
2010.  However, values for the exurban low and exurban high LUCs were comparable to other 
regions in 2010, which suggests the model had difficulty distinguishing between exurban and 
agricultural classes in 2000.  As a result, comparisons among the LUCs below are not 
particularly meaningful, but are presented for completeness.  Among the developed classes, the 
proportion of developed land in the exurban high, suburban, urban low, urban high, commercial, 
and industrial LUCs decreased, while the proportion of developed land in the exurban low LUC 
increased between 2000 and 2010 (see Figure A-4, A).  Relative growth in the exurban high 
LUC was less than the exurban low LUC, relative growth in the suburban LUC was less than the 
exurban high LUC, and relative growth in the urban low LUC was less than the suburban LUC 
(see Figure A-4, B).  The relative amount of growth in the urban high LUC was not significantly 
different than the urban low LUC. 
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Table A-4.  Goodness-of-fit test results comparing LUCs in 2000 and 2010 in 
Integrated Climate and Land Use Scenarios (ICLUS) Region 4 (South 
Central).  Values are limited to developable area and LUCs that transition in the 
model.  (A) Land assigned to developed and undeveloped LUCs.  (B) Percentage 
developed land assigned to the seven developed LUCs. 

(A) Land Use Type 2000 2010 

Developed 3.90% 11.52% 

Undeveloped 96.10% 88.48% 

χ2: 41,129.98 DF: 1 p-value: <0.0001 

(B) Developed LUC 2000 2010 

Exurban low 19.28% 54.43% 

Exurban high 31.26% 25.62% 

Suburban 16.43% 8.07% 

Urban low 19.47% 7.19% 

Urban high 0.95% 0.34% 

Commercial 8.04% 2.78% 

Industrial 4.56% 1.57% 

χ2: 17,949.23 DF: 8 p-value: <0.0001 
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Figure A-4.  Land use comparisons between 2000 and 2010 in Integrated 
Climate and Land Use Scenarios (ICLUS) Region 4 (South Central).  
(A) Odds ratios (ORs) and confidence intervals comparing allocations among the 
seven developed LUCs; (B) ORs and confidence intervals comparing adjacent 
residential LUCs (high density versus low density); and (C) OR comparing 
developed and undeveloped LUCs. 

A.5.  INTEGRATED CLIMATE AND LAND USE SCENARIOS (ICLUS) REGION 5 
(GREAT LAKES) LAND USE CHANGES 

In the Great Lakes region (ICLUS Region 5), the percentage of land assigned to 
developed use classes increased between 2000 and 2010 (see Table A-5, A, Figure A-5, C).  
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Over the same period, the relative amount of land assigned to each of the seven developed LUCs 
also changed (see Table A-5, B).  Among the developed classes, the proportion of developed 
land in the exurban high and urban high LUCs increased, while the proportion of developed land 
in the exurban low LUC decreased between 2000 and 2010 (see Figure A-5, A).  The relative 
amount of developed land in the suburban, urban low, commercial, and industrial LUCs did not 
change significantly.  Relative growth in the exurban high LUC was larger than in the exurban 
low LUC, and relative growth in the urban high LUC was larger than the urban low LUC (see 
Figure A-5, B).  The relative amount of growth in the suburban LUC was not significantly 
different than the exurban high LUC, and the relative amount of growth in the urban low LUC 
was not significantly different than the suburban LUC. 

Table A-5.  Goodness-of-fit test results comparing LUCs in 2000 and 2010 in 
Integrated Climate and Land Use Scenarios (ICLUS) Region 5 (Great 
Lakes).  Values are limited to developable area and LUCs that transition in the 
model.  (A) Land assigned to developed and undeveloped LUCs. (B) Percentage 
developed land assigned to the seven developed LUCs. 

(A) Land Use Type 2000 2010 

Developed 20.12% 23.99% 

Undeveloped 79.88% 76.01% 

χ2: 2,329.40 DF: 1 p-value:<0.0001 

(B) Developed LUC 2000 2010 

Exurban low 53.02% 52.07% 

Exurban high 25.52% 26.40% 

Suburban 8.30% 8.31% 

Urban low 9.04% 9.02% 

Urban high 0.35% 0.47% 

Commercial 2.22% 2.28% 

Industrial 1.55% 1.44% 

χ2: 55.17 DF: 8 p-value: <0.0001 
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Figure A-5.  Land use comparisons between 2000 and 2010 in ICLUS Region 
5 (Great Lakes).  (A) Odds ratios (ORs) and confidence intervals comparing 
allocations among the seven developed LUCs; (B) ORs and confidence intervals 
comparing adjacent residential LUCs (high density versus low density); and (C) 
OR comparing developed and undeveloped LUCs. 

A.6.  INTEGRATED CLIMATE AND LAND USE SCENARIOS (ICLUS) REGION 6 
(SOUTHEAST) LAND USE CHANGES 

In the Southeast region (ICLUS Region 6), the percentage of land assigned to developed 
use classes increased between 2000 and 2010 (see Table A-6, A, Figure A-6, C).  Over the same 
period, the relative amount of land assigned to each of the seven developed LUCs also changed 



A-13 

(see Table A-6, B).  Among the developed classes, the proportion of developed land in the 
exurban low LUC decreased, while the proportion of developed land in the exurban high, 
suburban and urban low, urban high and commercial LUCs increased between 2000 and 2010 
(see Figure A-6, A).  The relative amount of developed land in the industrial LUC did not change 
significantly.  Relative growth in all of the LUC comparisons were greater in 2010 than in 2000 
(see Figure A-6, B).   

Table A-6.  Goodness-of-fit test results comparing LUCs in 2000 and 2010 in 
Integrated Climate and Land Use Scenarios (ICLUS) Region 6 (Southeast).  
Values are limited to developable area and LUCs that transition in the model.  (A) 
Land assigned to developed and undeveloped LUCs. (B) Percentage developed 
land assigned to the seven developed LUCs. 

(A) Land Use Type 2000 2010 

Developed 27.38% 34.17% 

Undeveloped 72.62% 65.83% 

χ2: 10,532.23 DF: 1 p-value: <0.0001 

(B) Developed LUC 2000 2010 

Exurban low 61.97% 57.74% 

Exurban high 24.18% 25.28% 

Suburban 7.55% 9.22% 

Urban low 3.87% 5.04% 

Urban high 0.17% 0.28% 

Commercial 1.47% 1.64% 

Industrial 0.79% 0.81% 

χ2: 1,562.88 DF: 8 p-value: <0.0001 
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Figure A-6.  Land use comparisons between 2000 and 2010 in Integrated 
Climate and Land Use Scenarios (ICLUS) Region 6 (Southeast).  (A) Odds 
ratios (ORs) and confidence intervals comparing allocations among the seven 
developed LUCs; (B) ORs and confidence intervals comparing adjacent 
residential LUCs (high density versus low density); and (C) OR comparing 
developed and undeveloped LUCs. 

A.7.  INTEGRATED CLIMATE AND LAND USE SCENARIOS (ICLUS) REGION 7 
(NORTHEAST) LAND USE CHANGES 

In the Northeast region (ICLUS Region 7), the percentage of land assigned to developed 
use classes increased between 2000 and 2010 (see Table A-7, A, Figure A-7, C).  Over the same 
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period, the relative amount of land assigned to each of the seven developed LUCs also changed 
(see Table A-7, B).  Among the developed classes, the proportion of developed land in the 
exurban low LUC decreased, while the proportion of developed land in the exurban high, 
suburban, urban low, urban high, and commercial LUCs increased (see Figure 13, A).  The 
relative amount of developed land in the industrial LUC did not change significantly between 
2000 and 2010 (see Figure A-7, A).  Relative growth in all of the LUC comparisons was greater 
in 2010 than in 2000, except for the urban low LUC, which was not significantly different from 
the suburban LUC (see Figure A-7, B). 

Table A-7.  Goodness-of-fit test results comparing LUCs in 2000 and 2010 in 
Integrated Climate and Land Use Scenarios (ICLUS) Region 7 (Northeast).  
Values are limited to developable area and LUCs that transition in the model.  (A) 
Land assigned to developed and undeveloped LUCs. (B) Percentage developed 
land assigned to the seven developed LUCs. 

(A) Land Use Type 2000 2010 

Developed 41.02% 46.97% 

Undeveloped 58.98% 53.03% 

χ2: 2,248.51 DF: 1 p-value: <0.0001 

(B) Developed LUC 2000 2010 

Exurban low 56.44% 54.21% 

Exurban high 27.18% 27.90% 

Suburban 8.33% 9.16% 

Urban low 5.54% 5.89% 

Urban high 0.66% 0.81% 

Commercial 1.22% 1.37% 

Industrial 0.64% 0.65% 

χ2: 178.10 DF: 8 p-value: <0.0001 
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Figure A-7.  Land use comparisons between 2000 and 2010 in Integrated 
Climate and Land Use Scenarios (ICLUS) Region 7 (Northeast).  (A) Odds 
ratios (ORs) and confidence intervals comparing allocations among the seven 
developed LUCs; (B) ORs and confidence intervals comparing adjacent 
residential LUCs (high density versus low density); and (C) OR comparing 
developed and undeveloped LUCs. 
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APPENDIX B.  REGIONAL TRANSITION PROBABILITY MODELS 

B.1.  INTEGRATED CLIMATE AND LAND USE SCENARIOS (ICLUS) REGION 1 
(PACIFIC) TRANSITION PROBABILITY MODELS 

Table B-1.  Estimated nonlinear degrees of freedom (edf) and significance of 
the smoothing terms for the multinomial Generalized Additive Models 
(GAMs).  The top marginal model predicts the probability of transitioning into 
each land use class (LUC)j in 2010, p(LUCj), by capacity class, while the bottom 
conditional models predict the probability of transitioning from each LUCi in 
2000 given that they transitioned into a particular LUCj in 2010, p(LUCi|j), by 
capacity class.  RefLevel is the reference level land use from which transitions are 
calculated. 

Smoothing Terms edf χ2 p 

For Transitions into LUC2010 by Capacity Class (RefLevel: Exurban Low) 
Capacity class (exurban high) 1.87 10,633.33 <0.0001 

Capacity class (suburban) 1.73 5,543.97 <0.0001 

Capacity class (urban low) 1.66 9,450.96 <0.0001 

Capacity class (urban high) 1.48 855.19 <0.0001 

Capacity class (commercial) 1.83 29,894.84 <0.0001 

Capacity class (industrial) 1.97 604.42 <0.0001 

Global test 16.55 1,463,202 <0.0001 

From LUC2000 for Transitions into Exurban Low by Capacity Class (RefLevel: Grazing) 
Capacity class (timber) 2.03 411.02 <0.0001 

Capacity class (pasture) 2.01 2,039.43 <0.0001 

Capacity class (cropland) 2.02 510.69 <0.0001 

Global test 9.07 9,242.02 <0.0001 

From LUC2000 for Transitions into Exurban High by Capacity Class (RefLevel: Exurban 
Low) 

Capacity class (timber) 2.00 221.42 <0.0001 

Capacity class (grazing) 1.98 10,906.72 <0.0001 

Capacity class (pasture) 2.03 215.47 <0.0001 

Capacity class (cropland) 2.08 93.19 <0.0001 

Global test 12.09 17,273.73 <0.0001 
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Table B-1.  Estimated nonlinear degrees of freedom (edf) and significance of 
the smoothing terms for the multinomial GAMs.  The top marginal model 
predicts the probability of transitioning into each LUCj in 2010, p(LUCj), by 
capacity class, while the bottom conditional models predict the probability of 
transitioning from each LUCi in 2000 given that they transitioned into a 
particular LUCj in 2010, p(LUCi|j), by capacity class.  RefLevel is the reference 
level land use from which transitions are calculated. (continued) 

Smoothing Terms edf χ2 p 

From LUC2000 for Transitions into Suburban by Capacity Class (RefLevel: Exurban 
High) 

Capacity class (wetlands) 1.94 11.08 0.0036 

Capacity class (timber) 2.19 76.11 <0.0001 

Capacity class (grazing) 2.12 85.46 <0.0001 

Capacity class (pasture) 2.23 85.63 <0.0001 

Capacity class (cropland) 2.37 363.75 <0.0001 

Capacity class (exurban low) 2.07 594.51 <0.0001 

Global test 18.91 15,207.84 <0.0001 

From LUC2000 for transitions into Urban Low by Capacity Class (RefLevel: Suburban) 
Capacity class (wetlands) 1.74 5.59 0.0469 

Capacity class (timber) 2.24 86.71 <0.0001 

Capacity class (grazing) 2.05 221.43 <0.0001 

Capacity class (pasture) 2.39 44.67 <0.0001 

Capacity class (cropland) 2.46 278.04 <0.0001 

Capacity class (exurban low) 2.18 490.91 <0.0001 

Capacity class (exurban high) 1.98 1,315.07 <0.0001 

Global test 22.03 10,766.11 <0.0001 
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Table B-1.  Estimated nonlinear degrees of freedom (edf) and significance of 
the smoothing terms for the multinomial GAMs.  The top marginal model 
predicts the probability of transitioning into each LUCj in 2010, p(LUCj), by 
capacity class, while the bottom conditional models predict the probability of 
transitioning from each LUCi in 2000 given that they transitioned into a 
particular LUCj in 2010, p(LUCi|j), by capacity class.  RefLevel is the reference 
level land use from which transitions are calculated. (continued) 

Smoothing Terms edf χ2 p 

From LUC2000 for Transitions into Urban High by Capacity Class (RefLevel: Urban 
Low) 

Capacity class (wetlands) 1.42 2.36 0.1966 

Capacity class (timber) 1.81 5.66 0.0486 

Capacity class (grazing) 1.78 11.73 0.0021 

Capacity class (pasture) 1.1 4.43 0.0409 

Capacity class (cropland) 1.95 8.8 0.0115 

Capacity class (exurban low) 1.98 25.38 <0.0001 

Capacity class (exurban high) 1.83 103.49 <0.0001 

Capacity class (suburban) 2.00 119.96 <0.0001 

Global test 21.84 2,022.44 <0.0001 

From LUC2000 for Transitions into Commercial by Capacity Class (RefLevel: Exurban 
High) 

Capacity class (exurban low) 2.07 270.23 <0.0001 

Capacity class (suburban) 1.74 272.1 <0.0001 

Capacity class (urban low) 1.73 378.23 <0.0001 

Capacity class (urban high) 1.61 6.07 0.0317 

Global test 11.14 20,068.51 <0.0001 

From LUC2000 for Transitions into Industrial by Capacity Class (RefLevel: Exurban 
High) 

Capacity class (grazing) 0.72 5.79 0.0096 

Capacity class (exurban low) 2.06 16.7 3.00 × 10−4 

Global test 4.79 1,078.55 <0.0001 
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Figure B-1.  Predicted transition probabilities by capacity class from LUCs 
in 2000 to LUCs in 2010 in Integrated Climate and Land Use Scenarios 
(ICLUS) Region 1 (Pacific).  Each panel shows transitions into a particular LUC 
in 2010.  These combined probabilities are the product of corresponding marginal 
and conditional models (i.e., for a given capacity class the probability of 
transitioning from LUCi into LUCj is P(LUCij) = P(LUCj) × P(LUCi|j). 
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B.2.  INTEGRATED CLIMATE AND LAND USE SCENARIOS (ICLUS) REGION 2 
(INTERMOUNTAIN WEST) TRANSITION PROBABILITY MODELS 

Table B-2.  Estimated nonlinear degrees of freedom (edf) and significance of 
the smoothing terms for the multinomial GAMs.  The top marginal model 
predicts the probability of transitioning into each LUC in 2010, p(LUCj), by 
capacity class, while the bottom conditional models predict the probability of 
transitioning from each LUC in 2000 given that they transitioned into a particular 
LUC in 2010, p(LUCi|j), by capacity class.  RefLevel is the reference level land 
use from which transitions are calculated. 

Smoothing Terms edf χ2 p 

For Transitions into LUC2010 by Capacity Class (RefLevel: Exurban Low) 
Capacity class (exurban high) 1.89 3,226.33 <0.0001 

Capacity class (suburban) 1.8 11,531.99 <0.0001 

Capacity class (urban low) 1.7 14,389.11 <0.0001 

Capacity class (urban high) 1.78 3,477.46 <0.0001 

Capacity class (commercial) 1.9 35,289.11 <0.0001 

Capacity class (industrial) 1.91 1,313.18 <0.0001 

Global test 16.98 1,050,212 <0.0001 

From LUC2000 for Transitions into Exurban Low by Capacity Class (RefLevel: Grazing) 
Capacity class (timber) 1.94 1,030.15 <0.0001 

Capacity class (pasture) 2 2,895.73 <0.0001 

Capacity class (cropland) 2.01 1,152.97 <0.0001 

Global test 8.95 5,582.88 <0.0001 

From LUC2000 for Transitions into Exurban High by Capacity Class (RefLevel: Exurban 
Low) 

Capacity class (timber) 2.13 492.9 <0.0001 

Capacity class (grazing) 1.96 3,483.53 <0.0001 

Capacity class (pasture) 2 94.44 <0.0001 

Capacity class (cropland) 2.04 180.76 <0.0001 

Global test 12.13 21,938.08 <0.0001 
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Table B-2.  Estimated nonlinear degrees of freedom (edf) and significance of 
the smoothing terms for the multinomial GAMs.  The top marginal model 
predicts the probability of transitioning into each LUC in 2010, p(LUCj), by 
capacity class, while the bottom conditional models predict the probability of 
transitioning from each LUC in 2000 given that they transitioned into a 
particular LUC in 2010, p(LUCi|j), by capacity class.  RefLevel is the reference 
level land use from which transitions are calculated. (continued) 

Smoothing Terms edf χ2 p 

From LUC2000 for Transitions into Suburban 
High) 

by Capacity Class (RefLevel: Exurban 

Capacity class (wetlands) 1.91 12.11 0.0021 

Capacity class (timber) 2.29 139.88 <0.0001 

Capacity class (grazing) 2.02 39.53 <0.0001 

Capacity class (pasture) 2.24 55.39 <0.0001 

Capacity class (cropland) 2.33 168.36 <0.0001 

Capacity class (exurban low) 2.02 481.68 <0.0001 

Global test 18.81 16,786.93 <0.0001 

From LUC2000 for Transitions into Urban Low by Capacity Class (RefLevel: Suburban) 
Capacity class (wetlands) 1.85 11.91 0.0021 

Capacity class (timber) 2.22 46.77 <0.0001 

Capacity class (grazing) 2.12 912.79 <0.0001 

Capacity class (pasture) 2.27 87.06 <0.0001 

Capacity class (cropland) 2.29 454.97 <0.0001 

Capacity class (exurban low) 2.21 619.65 <0.0001 

Capacity class (exurban high) 1.99 1,638.98 <0.0001 

Global test 21.96 12,595.07 <0.0001 

From LUC2000 for Transitions into Urban High by Capacity Class (RefLevel: Urban 
Low) 

Capacity class (wetlands) 1.05 3.04 0.0874 

Capacity class (timber) 1.26 6.91 0.0109 

Capacity class (grazing) 2.07 219.32 <0.0001 

Capacity class (pasture) 2.05 9.09 0.0113 

Capacity class (cropland) 1.51 11.57 0.0016 

Capacity class (exurban low) 2.23 56.06 <0.0001 
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Table B-2.  Estimated nonlinear degrees of freedom (edf) and significance of 
the smoothing terms for the multinomial GAMs.  The top marginal model 
predicts the probability of transitioning into each LUC in 2010, p(LUCj), by 
capacity class, while the bottom conditional models predict the probability of 
transitioning from each LUC in 2000 given that they transitioned into a 
particular LUC in 2010, p(LUCi|j), by capacity class.  RefLevel is the reference 
level land use from which transitions are calculated. (continued) 

Smoothing Terms edf χ2 p 
Capacity class (exurban high) 2.04 200.89 <0.0001 

Capacity class (suburban) 1.88 83.19 <0.0001 

Global test 22.09 1,850.01 <0.0001 

From LUC2000 for Transitions into Commercial by Capacity Class (RefLevel: Exurban 
High) 

Capacity class (exurban low) 2.01 195.61 <0.0001 

Capacity class (suburban) 1.95 521.53 <0.0001 

Capacity class (urban low) 1.96 272.46 <0.0001 

Capacity class (urban high) 1.70 5.78 0.013 

Global test 11.62 11,500.45 <0.0001 

From LUC2000 for Transitions into Industrial by Capacity Class 
High) 

(RefLevel: Exurban 

Capacity class (wetlands) 1.15 24.53 <0.0001 

Capacity class (grazing) 1.48 20.35 <0.0001 

Capacity class (pasture) 0.64 1.39 0.143 

Capacity class (exurban low) 2.08 36.75 <0.0001 

Global test 9.36 993.61 <0.0001 
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Figure B-2.  Predicted transition probabilities by capacity class from LUCs 
in 2000 to LUCs in 2010 in Integrated Climate and Land Use Scenarios 
(ICLUS) Region 2 (Intermountain West).  Each panel shows transitions into a 
particular LUC in 2010.  These combined probabilities are the product of 
corresponding marginal and conditional models, i.e., for a given capacity class the 
probability of transitioning from LUCi into LUCj is P(LUCij) = P(LUCj) × 
P(LUCi|j). 
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B.3.  INTEGRATED CLIMATE AND LAND USE SCENARIOS (ICLUS) REGION 3 
(NORTH CENTRAL) TRANSITION PROBABILITY MODELS 

Table B-3.  Estimated nonlinear degrees of freedom (edf) and significance of 
the smoothing terms for the multinomial GAMs.  The top marginal model 
predicts the probability of transitioning into each LUC in 2010, p(LUCj), by 
capacity class, while the bottom conditional models predict the probability of 
transitioning from each LUC in 2000 given that they transitioned into a particular 
LUC in 2010, p(LUCi|j), by capacity class.  RefLevel is the reference level land 
use from which transitions are calculated. 

Smoothing Terms edf χ2 p 

For Transitions into LUC2010 by Capacity Class (RefLevel: Exurban Low) 
Capacity class (exurban high) 1.86 4,754.47 <0.0001 

Capacity class (suburban) 1.8 16,711.47 <0.0001 

Capacity class (urban low) 1.74 13,319.25 <0.0001 

Capacity class (urban high) 2.18 22,346.04 <0.0001 

Capacity class (commercial) 1.85 9,804.43 <0.0001 

Capacity class (industrial) 1.94 1,802.87 <0.0001 

Global test 17.37 1,058,696 <0.0001 

From LUC2000 for Transitions into Exurban Low by Capacity Class (RefLevel: Grazing) 
Capacity class (timber) 2.02 22.43 <0.0001 

Capacity class (pasture) 2.01 3,718.37 <0.0001 

Capacity class (cropland) 2.01 237.31 <0.0001 

Global test 9.04 24,725.45 <0.0001 

From LUC2000 for Transitions into Exurban High by Capacity Class (RefLevel: Exurban 
Low) 

Capacity class (timber) 2.08 157.92 <0.0001 

Capacity class (grazing) 1.96 4,738.75 <0.0001 

Capacity class (pasture) 1.99 225.36 <0.0001 

Capacity class (cropland) 1.99 801.72 <0.0001 

Global test 12.02 9,249.58 <0.0001 
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Table B-3.  Estimated nonlinear degrees of freedom (edf) and significance of 
the smoothing terms for the multinomial GAMs.  The top marginal model 
predicts the probability of transitioning into each LUC in 2010, p(LUCj), by 
capacity class, while the bottom conditional models predict the probability of 
transitioning from each LUC in 2000 given that they transitioned into a 
particular LUC in 2010, p(LUCi|j), by capacity class.  RefLevel is the reference 
level land use from which transitions are calculated. (continued) 

Smoothing Terms edf χ2 p 

From LUC2000 for Transitions into Suburban by Capacity Class (RefLevel: Exurban 
High) 

Capacity class (wetlands) 1.97 123.14 <0.0001 

Capacity class (timber) 2.05 14.99 0.0006 

Capacity class (grazing) 2.04 101.77 <0.0001 

Capacity class (pasture) 2.11 216.86 <0.0001 

Capacity class (cropland) 2.16 262 <0.0001 

Capacity class (exurban low) 2.1 495.46 <0.0001 

Global test 18.43 19,567.29 <0.0001 

From LUC2000 for Transitions into Urban Low by Capacity Class (RefLevel: Suburban) 
Capacity class (wetlands) 1.74 22.39 <0.0001 

Capacity class (timber) 1.87 3 0.2027 

Capacity class (grazing) 2.07 214.66 <0.0001 

Capacity class (pasture) 2.07 160.27 <0.0001 

Capacity class (cropland) 2.2 36.16 <0.0001 

Capacity class (exurban low) 2.2 282.27 <0.0001 

Capacity class (exurban high) 2.03 955.3 <0.0001 

Global test 21.17 8,447.26 <0.0001 

From LUC2000 for Transitions into Urban High by Capacity Class (RefLevel: Urban 
Low) 

Capacity class (wetlands) 1.15 4.86 0.0343 

Capacity class (grazing) 2.29 40.23 <0.0001 

Capacity class (pasture) 1.74 11.91 0.0018 

Capacity class (cropland) 0.97 5.85 0.0149 

Capacity class (exurban low) 2.02 39.67 <0.0001 

Capacity class (exurban high) 2.03 139.47 <0.0001 
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Table B-3.  Estimated nonlinear degrees of freedom (edf) and significance of 
the smoothing terms for the multinomial GAMs.  The top marginal model 
predicts the probability of transitioning into each LUC in 2010, p(LUCj), by 
capacity class, while the bottom conditional models predict the probability of 
transitioning from each LUC in 2000 given that they transitioned into a 
particular LUC in 2010, p(LUCi|j), by capacity class.  RefLevel is the reference 
level land use from which transitions are calculated. (continued) 

Smoothing Terms edf χ2 p 
Capacity class (suburban) 1.85 163.45 <0.0001 

Global test 19.05 541.05 <0.0001 

From LUC2000 for Transitions into Commercial by Capacity Class (RefLevel: Exurban 
High) 

Capacity class (exurban low) 1.91 319.34 <0.0001 

Capacity class (suburban) 1.91 1,006.82 <0.0001 

Capacity class (urban low) 2.12 1,607.49 <0.0001 

Capacity class (urban high) 2.19 674.84 <0.0001 

Global test 12.13 9,102.24 <0.0001 

From LUC2000 for Transitions into Industrial by Capacity Class (RefLevel: Exurban 
High) 

Capacity class (exurban low) 2.21 31.74 <0.0001 

Global test 3.21 37.65 <0.0001 
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Figure B-3.  Predicted transition probabilities by capacity class from LUCs 
in 2000 to LUCs in 2010 in Integrated Climate and Land Use Scenarios 
(ICLUS) Region 3 (North Central).  Each panel shows transitions into a 
particular LUC in 2010.  These combined probabilities are the product of 
corresponding marginal and conditional models, i.e., for a given capacity class the 
probability of transitioning from LUCi into LUCj is P(LUCij) = P(LUCj) × 
P(LUCi|j). 
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B.4.  INTEGRATED CLIMATE AND LAND USE SCENARIOS (ICLUS) REGION 4 
(SOUTH CENTRAL) TRANSITION PROBABILITY MODELS 

Table B-4.  Estimated nonlinear degrees of freedom (edf) and significance of 
the smoothing terms for the multinomial GAMs.  The top marginal model 
predicts the probability of transitioning into each LUC in 2010, p(LUCj), by 
capacity class, while the bottom conditional models predict the probability of 
transitioning from each LUC in 2000 given that they transitioned into a particular 
LUC in 2010, p(LUCi|j), by capacity class.  RefLevel is the reference level land 
use from which transitions are calculated. 

Smoothing Terms edf χ2 p 

For Transitions into LUC2010 by Capacity Class (RefLevel: Exurban Low) 
Capacity class (exurban high) 1.93 1,729.42 <0.0001 

Capacity class (suburban) 1.95 12,232.72 <0.0001 

Capacity class (urban low) 1.89 7,131.93 <0.0001 

Capacity class (urban high) 2.06 498.58 <0.0001 

Capacity class (commercial) 1.90 3,650.58 <0.0001 

Capacity class (industrial) 1.87 543.53 <0.0001 

Global test 17.60 1,912,574 <0.0001 

From LUC2000 for Transitions into Exurban Low by Capacity Class (RefLevel: Grazing) 
Capacity class (timber) 1.99 341.64 <0.0001 

Capacity class (pasture) 2.01 6,979.23 <0.0001 

Capacity class (cropland) 2.00 277.28 <0.0001 

Global test 9.00 50,282.78 <0.0001 

From LUC2000 for Transitions into Exurban High by Capacity Class (RefLevel: Grazing) 

Capacity class (timber) 2.03 499.96 <0.0001 

Capacity class (pasture) 2 1,659.84 <0.0001 

Capacity class (cropland) 2 261.75 <0.0001 

Capacity class (exurban low) 1.99 806.3 <0.0001 

Global test 12.03 19,077.08 <0.0001 
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Table B-4.  Estimated nonlinear degrees of freedom (edf) and significance of 
the smoothing terms for the multinomial GAMs.  The top marginal model 
predicts the probability of transitioning into each LUC in 2010, p(LUCj), by 
capacity class, while the bottom conditional models predict the probability of 
transitioning from each LUC in 2000 given that they transitioned into a 
particular LUC in 2010, p(LUCi|j), by capacity class.  RefLevel is the reference 
level land use from which transitions are calculated. (continued) 

Smoothing Terms edf χ2 p 

From LUC2000 for Transitions into Suburban by Capacity Class (RefLevel: Grazing) 

Capacity class (wetlands) 2.07 190.8 <0.0001 

Capacity class (timber) 2.2 236.43 <0.0001 

Capacity class (pasture) 2.07 462.93 <0.0001 

Capacity class (cropland) 2.1 224.46 <0.0001 

Capacity class (exurban low) 2.04 22.22 <0.0001 

Capacity class (exurban high) 1.91 302.98 <0.0001 

Global test 18.39 5,044.57 <0.0001 

From LUC2000 for Transitions into Urban Low by Capacity Class (RefLevel: Grazing) 
Capacity class (wetlands) 1.91 3.03 0.2059 

Capacity class (timber) 2.15 20.35 <0.0001 

Capacity class (pasture) 2.18 20.45 <0.0001 

Capacity class (cropland) 2.28 21.35 <0.0001 

Capacity class (exurban low) 2.1 5.58 0.0676 

Capacity class (exurban high) 1.94 19.43 0.0001 

Capacity class (suburban) 1.95 545.75 <0.0001 

Global test 21.51 5,170.4 <0.0001 

From LUC2000 for Transitions into Urban High by Capacity Class (RefLevel: Urban 
Low) 

Capacity class (wetlands) 1.09 1.23 0.2935 

Capacity class (timber) 1.98 1.1 0.572 

Capacity class (grazing) 1.85 26.12 <0.0001 

Capacity class (pasture) 2.37 5.1 0.107 

Capacity class (cropland) 2.04 6.98 0.0317 

Capacity class (exurban low) 1.68 2.26 0.2599 
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Table B-4.  Estimated nonlinear degrees of freedom (edf) and significance of 
the smoothing terms for the multinomial GAMs.  The top marginal model 
predicts the probability of transitioning into each LUC in 2010, p(LUCj), by 
capacity class, while the bottom conditional models predict the probability of 
transitioning from each LUC in 2000 given that they transitioned into a 
particular LUC in 2010, p(LUCi|j), by capacity class.  RefLevel is the reference 
level land use from which transitions are calculated. (continued) 

Smoothing Terms edf χ2 p 

Capacity class (exurban high) 1.84 3.09 0.1888 

Capacity class (suburban) 1.85 1.45 0.4467 

Global test 22.7 352.8 <0.0001 

From LUC2000 for Transitions into Commercial by Capacity Class (RefLevel: Exurban 
High) 

Capacity class (exurban low) 2.15 32.86 <0.0001 

Capacity class (suburban) 1.99 147.97 <0.0001 

Capacity class (urban low) 2.06 60.21 <0.0001 

Capacity class (urban high) 0.68 2.48 0.0706 

Global test 10.88 1,823.53 <0.0001 

From LUC2000 for Transitions into Industrial by Capacity Class (RefLevel: Exurban 
High) 

Capacity class (exurban low) 1.99 25.82 <0.0001 

Global test 2.99 185.08 <0.0001 
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Figure B-4.  Predicted transition probabilities by capacity class from LUCs 
in 2000 to LUCs in 2010 in Integrated Climate and Land Use Scenarios 
(ICLUS) Region 4 (South Central).  Each panel shows transitions into a 
particular LUC in 2010.  These combined probabilities are the product of 
corresponding marginal and conditional models, i.e., for a given capacity class the 
probability of transitioning from LUCi into LUCj is P(LUCij) = P(LUCj) × 
P(LUCi|j). 
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B.5.  INTEGRATED CLIMATE AND LAND USE SCENARIOS (ICLUS) REGION 5 
(GREAT LAKES) TRANSITION PROBABILITY MODELS 

Table B-5.  Estimated nonlinear degrees of freedom (edf) and significance of 
the smoothing terms for the multinomial GAMs.  The top marginal model 
predicts the probability of transitioning into each LUC in 2010, p(LUCj), by 
capacity class, while the bottom conditional models predict the probability of 
transitioning from each LUC in 2000 given that they transitioned into a particular 
LUC in 2010, p(LUCi|j), by capacity class.  RefLevel is the reference level land 
use from which transitions are calculated. 

Smoothing Terms edf χ2 p 

For Transitions into LUC2010 by Capacity Class (RefLevel: Exurban Low) 
Capacity class (exurban high) 1.82 5,643.06 <0.0001 

Capacity class (suburban) 1.74 3,016.31 <0.0001 

Capacity class (urban low) 1.71 3,105.97 <0.0001 

Capacity class (urban high) 1.72 568.65 <0.0001 

Capacity class (commercial) 1.77 6,819.62 <0.0001 

Capacity class (industrial) 1.98 125.28 <0.0001 

Global test 16.74 1,646,923 <0.0001 

From LUC2000 for Transitions into Exurban Low by Capacity Class (RefLevel: Grazing) 
Capacity class (timber) 2.01 110.82 <0.0001 

Capacity class (pasture) 2.02 5,294.72 <0.0001 

Capacity class (cropland) 2.02 2,428.31 <0.0001 

Global test 9.05 16,604.58 <0.0001 

From LUC2000 for Transitions into Exurban High by Capacity Class (RefLevel: Exurban 
Low) 

Capacity class (timber) 2.22 909.1 <0.0001 

Capacity class (grazing) 1.96 4,938 <0.0001 

Capacity class (pasture) 2.03 99.87 <0.0001 

Capacity class (cropland) 2.04 195.63 <0.0001 

Global test 12.24 7,392.31 <0.0001 
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Table B-5.  Estimated nonlinear degrees of freedom (edf) and significance of 
the smoothing terms for the multinomial GAMs.  The top marginal model 
predicts the probability of transitioning into each LUC in 2010, p(LUCj), by 
capacity class, while the bottom conditional models predict the probability of 
transitioning from each LUC in 2000 given that they transitioned into a 
particular LUC in 2010, p(LUCi|j), by capacity class.  RefLevel is the reference 
level land use from which transitions are calculated. (continued) 

Smoothing Terms edf χ2 p 

From LUC2000 for Transitions into Suburban by Capacity Class (RefLevel: Exurban 
High) 

Capacity class (wetlands) 1.93 168.63 <0.0001 

Capacity class (timber) 2.21 126.68 <0.0001 

Capacity class (grazing) 1.98 112.65 <0.0001 

Capacity class (pasture) 2.14 136.16 <0.0001 

Capacity class (cropland) 2.3 299.09 <0.0001 

Capacity class (exurban low) 2.14 324.83 <0.0001 

Global test 18.7 14,336.52 <0.0001 

From LUC2000 for Transitions into Urban Low by Capacity Class (RefLevel: Suburban) 
Capacity class (wetlands) 1.88 47.52 <0.0001 

Capacity class (timber) 1.97 36.46 <0.0001 

Capacity class (grazing) 1.95 108.77 <0.0001 

Capacity class (pasture) 2.21 75.13 <0.0001 

Capacity class (cropland) 2.29 77.92 <0.0001 

Capacity class (exurban low) 2.1 348.34 <0.0001 

Capacity class (exurban high) 1.99 741.13 <0.0001 

Global test 21.4 8,664.14 <0.0001 

From LUC2000 for Transitions into Urban High by Capacity Class (RefLevel: Urban 
Low) 

Capacity class (wetlands) 1.95 0 1 

Capacity class (grazing) 2.15 8.44 0.0172 

Capacity class (pasture) 1.50 3.13 0.1373 

Capacity class (cropland) 1.79 5.13 0.0629 

Capacity class (exurban low) 2.00 16.35 0.0003 

Capacity class (exurban high) 2.05 20.07 <0.0001 



B-23 

Table B-5.  Estimated nonlinear degrees of freedom (edf) and significance of 
the smoothing terms for the multinomial GAMs.  The top marginal model 
predicts the probability of transitioning into each LUC in 2010, p(LUCj), by 
capacity class, while the bottom conditional models predict the probability of 
transitioning from each LUC in 2000 given that they transitioned into a 
particular LUC in 2010, p(LUCi|j), by capacity class.  RefLevel is the reference 
level land use from which transitions are calculated. (continued) 

Smoothing Terms edf χ2 p 

Capacity class (suburban) 1.94 104.79 <0.0001 

Global test 20.37 1,324.68 <0.0001 

From LUC2000 for Transitions into Commercial by Capacity Class (RefLevel: Exurban 
High) 

Capacity class (exurban low) 2.06 90.98 <0.0001 

Capacity class (suburban) 1.76 36.55 <0.0001 

Capacity class (urban low) 1.73 12.29 0.0015 

Capacity class (urban high) 1.46 2.26 0.2156 

Global test 11.01 12,256.77 <0.0001 

From LUC2000 for Transitions into Industrial by Capacity Class (RefLevel: Exurban 
High) 

Capacity class (exurban low) 2.01 5.08 0.0799 

Global test 3.01 278.67 <0.0001 
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Figure B-5.  Predicted transition probabilities by capacity class from LUCs 
in 2000 to LUCs in 2010 in Integrated Climate and Land Use Scenarios 
(ICLUS) Region 5 (Great Lakes).  Each panel shows transitions into a particular 
LUC in 2010.  These combined probabilities are the product of corresponding 
marginal and conditional models, i.e., for a given capacity class the probability of 
transitioning from LUCi into LUCj is P(LUCij) = P(LUCj) × P(LUCi|j). 
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B.6.  INTEGRATED CLIMATE AND LAND USE SCENARIOS (ICLUS) REGION 6 
(SOUTHEAST) TRANSITION PROBABILITY MODELS 

Table B-6.  Estimated nonlinear degrees of freedom (edf) and significance of 
the smoothing terms for the multinomial GAMs.  The top marginal model 
predicts the probability of transitioning into each LUC in 2010, p(LUCj), by 
capacity class, while the bottom conditional models predict the probability of 
transitioning from each LUC in 2000 given that they transitioned into a particular 
LUC in 2010, p(LUCi|j), by capacity class.  RefLevel is the reference level land 
use from which transitions are calculated. 

Smoothing Terms edf χ2 p 

For Transitions into LUC2010 by Capacity Class (RefLevel: Exurban Low) 
Capacity class (exurban high) 1.8 19,946.39 <0.0001 

Capacity class (suburban) 1.63 40,462.82 <0.0001 

Capacity class (urban low) 1.64 64,034.18 <0.0001 

Capacity class (urban high) 1.78 27,887.66 <0.0001 

Capacity class (commercial) 1.83 61,257.16 <0.0001 

Capacity class (industrial) 1.93 11,358.44 <0.0001 

Global test 16.62 8,232,880 <0.0001 

From LUC2000 for Transitions into Exurban Low by Capacity Class (RefLevel: Grazing) 
Capacity class (timber) 2.01 102.93 <0.0001 

Capacity class (pasture) 2.02 2,185.1 <0.0001 

Capacity class (cropland) 2.03 995.05 <0.0001 

Global test 9.06 183,239.3 <0.0001 

From LUC2000 for Transitions into Exurban High by Capacity Class (RefLevel: Exurban 
Low) 

Capacity class (timber) 2.02 325.96 <0.0001 

Capacity class (grazing) 1.95 35,257.99 <0.0001 

Capacity class (pasture) 2.04 676.23 <0.0001 

Capacity class (cropland) 2.05 1,016.18 <0.0001 

Global test 12.06 51,509.93 <0.0001 
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Table B-6.  Estimated nonlinear degrees of freedom (edf) and significance of 
the smoothing terms for the multinomial GAMs.  The top marginal model 
predicts the probability of transitioning into each LUC in 2010, p(LUCj), by 
capacity class, while the bottom conditional models predict the probability of 
transitioning from each LUC in 2000 given that they transitioned into a 
particular LUC in 2010, p(LUCi|j), by capacity class.  RefLevel is the reference 
level land use from which transitions are calculated. (continued) 

Smoothing Terms edf χ2 p 

From LUC2000 for Transitions into Suburban by Capacity Class (RefLevel: Exurban 
High) 

Capacity class (wetlands) 1.99 105.92 <0.0001 

Capacity class (timber) 2.1 118.7 <0.0001 

Capacity class (grazing) 1.96 3,812.02 <0.0001 

Capacity class (pasture) 2.11 821.79 <0.0001 

Capacity class (cropland) 2.17 931.83 <0.0001 

Capacity class (exurban low) 1.99 4,745.53 <0.0001 

Global test 18.32 94,724.94 <0.0001 

From LUC2000 for Transitions into Urban Low by Capacity Class (RefLevel: Suburban) 
Capacity class (wetlands) 1.97 151.68 <0.0001 

Capacity class (timber) 1.99 202.48 <0.0001 

Capacity class (grazing) 2.00 1,279.8 <0.0001 

Capacity class (pasture) 2.13 1,002.82 <0.0001 

Capacity class (cropland) 2.21 756.81 <0.0001 

Capacity class (exurban low) 2.07 6,374.45 <0.0001 

Capacity class (exurban high) 1.97 7,737.2 <0.0001 

Global test 21.34 56,526.73 <0.0001 

From LUC2000 for Transitions into Urban High by Capacity Class (RefLevel: Urban 
Low) 

Capacity class (wetlands) 1.58 14.89 0.0003 

Capacity class (timber) 1.29 8.3 0.0064 

Capacity class (grazing) 2.01 219.79 <0.0001 

Capacity class (pasture) 2.06 37.33 <0.0001 

Capacity class (cropland) 1.87 36.2 <0.0001 

Capacity class (exurban low) 1.99 342.86 <0.0001 
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Table B-6.  Estimated nonlinear degrees of freedom (edf) and significance of 
the smoothing terms for the multinomial GAMs.  The top marginal model 
predicts the probability of transitioning into each LUC in 2010, p(LUCj), by 
capacity class, while the bottom conditional models predict the probability of 
transitioning from each LUC in 2000 given that they transitioned into a 
particular LUC in 2010, p(LUCi|j), by capacity class.  RefLevel is the reference 
level land use from which transitions are calculated. (continued) 

Smoothing Terms edf χ2 p 

Capacity class (exurban high) 2.01 692.26 <0.0001 

Capacity class (suburban) 2.00 357.40 <0.0001 

Global test 22.81 3,211.57 <0.0001 

From LUC2000 for Transitions into Commercial by Capacity Class (RefLevel: Exurban 
High) 

Capacity class (exurban low) 1.98 241.71 <0.0001 

Capacity class (suburban) 1.90 2,772.21 <0.0001 

Capacity class (urban low) 1.95 2,106.21 <0.0001 

Capacity class (urban high) 1.85 257.98 <0.0001 

Global test 11.68 34,302 <0.0001 

From LUC2000 for Transitions into Industrial by Capacity Class (RefLevel: Exurban 
High) 

Capacity class (wetlands) 0.78 8.62 0.0022 

Capacity class (grazing) 2.39 252.5 <0.0001 

Capacity class (pasture) 1.89 59.64 <0.0001 

Capacity class (cropland) 1.44 12.58 0.0008 

Capacity class (exurban low) 2.11 129.01 <0.0001 

Global test 13.61 2,721.24 <0.0001 



B-29 



B-30 

Figure B-6.  Predicted transition probabilities by capacity class from LUCs 
in 2000 to LUCs in 2010 in Integrated Climate and Land Use Scenarios 
(ICLUS) Region 6 (Southeast).  Each panel shows transitions into a particular 
LUC in 2010.  These combined probabilities are the product of corresponding 
marginal and conditional models, i.e., for a given capacity class the probability of 
transitioning from LUCi into LUCj is P(LUCij) = P(LUCj) × P(LUCi|j). 
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B.7.  INTEGRATED CLIMATE AND LAND USE SCENARIOS (ICLUS) REGION 7 
(NORTHEAST) TRANSITION PROBABILITY MODELS 

Table B-7.  Estimated nonlinear degrees of freedom (edf) and significance of 
the smoothing terms for the multinomial GAMs.  The top marginal model 
predicts the probability of transitioning into each LUC in 2010, p(LUCj), by 
capacity class, while the bottom conditional models predict the probability of 
transitioning from each LUC in 2000 given that they transitioned into a particular 
LUC in 2010, p(LUCi|j), by capacity class. 

Smoothing Terms edf χ2 p 

For Transitions into LUC2010 by Capacity Class (RefLevel: Exurban Low) 
Capacity class (exurban high) 1.72 22,867.66 <0.0001 

Capacity class (suburban) 1.61 5,812.7 <0.0001 

Capacity class (urban low) 1.62 5,180.12 <0.0001 

Capacity class (urban high) 1.63 1,221.28 <0.0001 

Capacity class (commercial) 1.88 12,214.7 <0.0001 

Capacity class (industrial) 1.93 1,653.35 <0.0001 

Global test 16.39 2,190,093 <0.0001 

From LUC2000 for Transitions into Exurban Low by Capacity Class (RefLevel: Grazing) 
Capacity class (timber) 2.1 68.99 <0.0001 

Capacity class (pasture) 2.01 13,104.18 <0.0001 

Capacity class (cropland) 2.07 4,203.43 <0.0001 

Global test 9.17 72,913.49 <0.0001 

From LUC2000 for Transitions into Exurban High by Capacity Class (RefLevel: Exurban 
Low) 

Capacity class (timber) 2.01 327.83 <0.0001 

Capacity class (grazing) 1.99 16,657.91 <0.0001 

Capacity class (pasture) 2.04 263.96 <0.0001 

Capacity class (cropland) 2.16 1,047.29 <0.0001 

Global test 12.2 31,983.46 <0.0001 
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Table B-7.  Estimated nonlinear degrees of freedom (edf) and significance of 
the smoothing terms for the multinomial GAMs.  The top marginal model 
predicts the probability of transitioning into each LUC in 2010, p(LUCj), by 
capacity class, while the bottom conditional models predict the probability of 
transitioning from each LUC in 2000 given that they transitioned into a 
particular LUC in 2010, p(LUCi|j), by capacity class. (continued) 

Smoothing Terms edf χ2 p 

From LUC2000 for Transitions into Suburban by Capacity Class (RefLevel: Exurban 
High) 

Capacity class (wetlands) 1.98 600.77 <0.0001 

Capacity class (timber) 1.95 51.98 <0.0001 

Capacity class (grazing) 1.94 604.6 <0.0001 

Capacity class (pasture) 2.07 32.79 1.00 × 10−4 

Capacity class (cropland) 2.2 225.2 <0.0001 

Capacity class (exurban low) 2 205.86 <0.0001 

Global test 18.14 18,896.3 <0.0001 

From LUC2000 for Transitions into Urban Low by Capacity Class (RefLevel: Suburban) 
Capacity class (wetlands) 1.83 14.17 0.0007 

Capacity class (timber) 1.76 8.68 0.0099 

Capacity class (grazing) 1.93 103.01 <0.0001 

Capacity class (pasture) 2.19 47.36 <0.0001 

Capacity class (cropland) 2.15 115.43 <0.0001 

Capacity class (exurban low) 2.04 173.29 <0.0001 

Capacity class (exurban high) 1.97 713.07 <0.0001 

Global test 20.88 9,717.48 <0.0001 

From LUC2000 for Transitions into Urban High by Capacity Class (RefLevel: Urban 
Low) 

Capacity class (wetlands) 0.97 3.08 0.0757 

Capacity class (timber) 1.2 1.35 0.3004 

Capacity class (grazing) 1.88 32.85 <0.0001 

Capacity class (pasture) 1.55 3.21 0.1377 

Capacity class (cropland) 1.21 16.2 0.0001 

Capacity class (exurban low) 1.9 33.15 <0.0001 
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Table B-7.  Estimated nonlinear degrees of freedom (edf) and significance of 
the smoothing terms for the multinomial GAMs.  The top marginal model 
predicts the probability of transitioning into each LUC in 2010, p(LUCj), by 
capacity class, while the bottom conditional models predict the probability of 
transitioning from each LUC in 2000 given that they transitioned into a 
particular LUC in 2010, p(LUCi|j), by capacity class. (continued) 

Smoothing Terms edf χ2 p 

Capacity class (exurban high) 2.05 44.44 <0.0001 

Capacity class (suburban) 1.98 73.51 <0.0001 

Global test 20.74 1,673.8 <0.0001 

From LUC2000 for Transitions into Commercial by Capacity Class (RefLevel: Exurban 
High) 

Capacity class (exurban low) 1.97 576.07 <0.0001 

Capacity class (suburban) 1.82 80.49 <0.0001 

Capacity class (urban low) 1.78 15.94 0.0003 

Capacity class (urban high) 1.68 9.73 0.0052 

Global test 11.25 11,010.72 <0.0001 

From LUC2000 for Transitions into Industrial by Capacity Class (RefLevel: Exurban 
High) 

Capacity class (exurban low) 2.13 330.36 <0.0001 

Global test 3.13 469.32 <0.0001 
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Figure B-7.  Predicted transition probabilities by capacity class from LUCs 
in 2000 to LUCs in 2010 in Integrated Climate and Land Use Scenarios 
(ICLUS) Region 7 (Northeast).  Each panel shows transitions into a particular 
LUC in 2010.  These combined probabilities are the product of corresponding 
marginal and conditional models, i.e., for a given capacity class the probability of 
transitioning from LUCi into LUCj is P(LUCij) = P(LUCj) × P(LUCi|j). 
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APPENDIX C.  LAND USE CLASS (LUC) AND CAPACITY DEMAND MODELS 

Table C-1.  Generalized additive model (GAM) model output relating 
natural log (ln) transformed LUC density and capacity to ln transformed 
population density. Output includes an estimate of the intercept, estimated 
degrees of freedom (edf) for the smoothing term, the adjusted R2 associated with 
the model, the standard error (SE) associated with the estimate of the intercept and 
T and F statistics associated with the significance of the intercept and smoothing 
terms, respectively.  

GAM Relating ln(Exurban Low Pixel Density) to ln(Population Density) 

Parametric Terms Estimate SE T p 
Intercept 0.744 0.027 22.77 <0.0001 

Smoothing Terms edf F p 
Population density 5.899 773.2 <0.0001 

Adjusted R2 0.550 

GAM Relating ln(Exurban High Pixel Density) to ln(Population Density) 

Parametric Terms Estimate SE T p 
Intercept 0.455 0.011 41.63 <0.0001 

Smoothing Terms edf F p 
Population density 8.177 2,214 <0.0001 

Adjusted R2 0.812 

GAM Relating ln(Suburban Pixel Density) to ln(Population Density) 

Parametric Terms Estimate SE T p 
Intercept −0.745 0.007 −100.1 <0.0001 

Smoothing Terms edf F p 
Population density 7.021 4,453 <0.0001 

Adjusted R2 0.889 

GAM Relating ln(Urban Low Pixel Density) to ln(Population Density) 

Parametric Terms Estimate SE T p 
Intercept −1.365 0.010 −132.1 <0.0001 

Smoothing Terms edf F p 
Population density 7.005 2,218 <0.0001 

Adjusted R2 0.800 
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Table C-1.  Generalized additive model (GAM) model output relating 
natural log (ln) transformed LUC density and capacity to ln transformed 
population density. Output includes an estimate of the intercept, estimated 
degrees of freedom (edf) for the smoothing term, the adjusted R2 associated with 
the model, the standard error (SE) associated with the estimate of the intercept 
and T and F statistics associated with the significance of the intercept and 
smoothing terms, respectively. (continued) 

GAM Relating ln(Urban High Pixel Density) to ln(Population Density) 

Parametric Terms Estimate SE T p 
Intercept −5.559 0.013 −413.4 <0.0001 

Smoothing Terms edf F p 
Population density 6.730 1,819 <0.0001 

Adjusted R2 0.761 

GAM Relating ln(Commercial Pixel Density) to ln(Population Density) 

Parametric Terms Estimate SE T p 
Intercept −2.540 0.015 −175.1 <0.0001 

Smoothing Terms edf F p 
Population density 5.479 1,675 <0.0001 

Adjusted R2 0.713 

GAM Relating ln(Industrial Pixel Density) to ln(Population Density) 

Parametric Terms Estimate SE T p 
Intercept −23.182 0.018 −177.0 <0.0001 

Smoothing Terms edf F p 
Population density 6.056 1,051 <0.0001 

Adjusted R2 0.629 

GAM Relating ln(Capacity Density) to ln(Population Density) 

Parametric Terms Estimate SE T p 
Intercept 9.505 0.004 2,292 <0.0001 

Smoothing Terms edf F p 
Population density 7.939 1,109 <0.0001 

Adjusted R2 0.682 
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