

Integration of GCAM-USA into GLIMPSE: Update and demonstration

Dan Loughlin, Chris Nolte and Tai Wu U.S. EPA Office of Research and Development

Wenjing Shi and Yang Ou Fellows, Oak Ridge Institute for Science and Engineering

> Steve Smith and Catherine Ledna Joint Global Change Research Institute Pacific Northwest National Laboratory

GCAM Community Modeling Meeting Joint Global Change Research Institute, College Park, MD October 13, 2016

Forward

Objectives of this presentation

- Describe enhancements to GCAM-USA to support environmentalclimate-energy decision support
- Demonstrate Scenario Builder and Enhanced Model Interface graphical user interface components

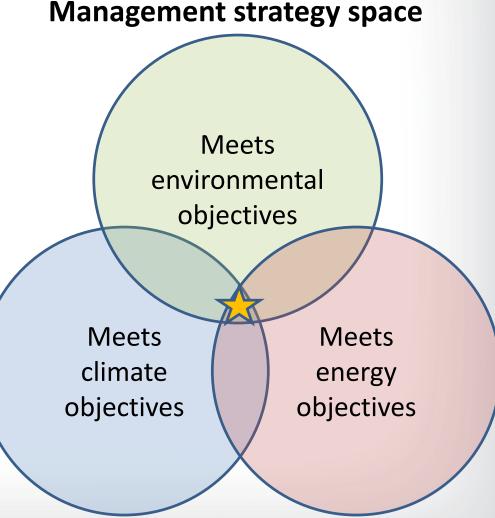
Intended audience

- The Global Change Assessment Model (GCAM) modeling community

Acknowledgments

 The GLIMPSE team includes the authors, as well as Samaneh Babaee, Raj Bhander, Troy Hottle, and Carol Lenox

Disclaimers


- The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.
- All results are provided for illustrative purposes only.

ORD's GLIMPSE project

Develop decision support tools for:

EPA

- Evaluating how candidate management strategies meet environmental, climate and energy objectives
- Characterizing tradeoffs among objectives
- Identifying strategies that efficiently meet all objectives

GCAM-USA activities in 2016

• GCAM-USA is being enhanced by:

SEPA

- harmonizing emission factors with U.S. estimates
- incorporating characterizations of air pollutant controls
- including representations of U.S. regulations
 - CAFE, CSAPR, CPP, NSPSs, RPSs
- enhancing the industrial sector representation
 - regionality, source categories
- prototyping decision support tools
 - Scenario Builder (front-end)
 - Enhanced Model Interface (back-end)

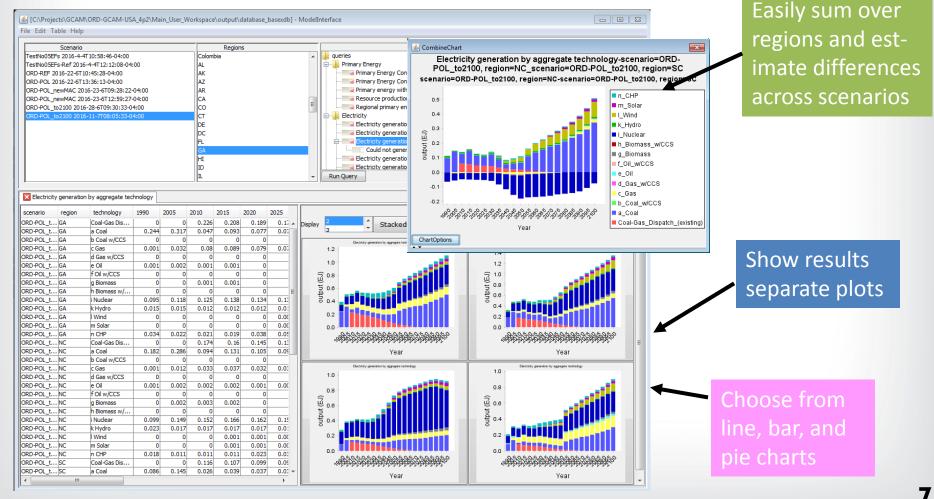
SEPA

Evaluation of emissions

SO₂ emissions (tons x1000) NOx emissions (tons x1000) GCAM-USA (lines) vs. EPA 2011eh platform (squares) GCAM-USA (lines) vs. EPA 2011eh platform (squares) 5000 6000 FGUs EGUs industrial industrial 5000 residential&commercial 4000 residential&commercial on-road on-road 4000 off-highway off-highway 3000 3000 2000 2000 1000 1000 0 0 2010 2015 2020 2025 2030 2010 2015 2020 2030 2025

- Off-highway NOx is low relative to the inventory, but this could be because of discrepancies in what is being compared
- Industrial sector SO2 from GCAM-USA are two times higher than the inventory. A hypothesis we are testing is that offroad mobile emissions included GCAM's industrial sector may not reflect mobile source fuel sulfur content limits. We also need to examine the assumed mix of industrial boilers, turbines, and engines in GCAM-USA.

Decision Support System integration


Scenario Builder: Managing scenarios Creating a new scenario - 0 % GCAM-USA Scenario Creator from existing Library of Candidate Scenario Components filter: Construct or Edit Scenario components Name: CO2CapNE_update File Name Address Created scenario Components: 2CapNortheast.txt C:\Projects\GCAM-GUI\io\ScenarioComponen... Mon Oct 26 16:49:54 .. File Name components CO2CapUSA.txt C:\Projects\GCAM-GUI\io\ScenarioComponen... Mon Oct 26 16:47:41 . CO2CapNortheast.txt CO2TaxNortheast.txt C:\Projects\GCAM-GUI\io\ScenarioComponen... Mon Oct 26 16:35:14 . CO2TaxUSA.txt C:\Projects\GCAM-GUI\io\ScenarioComponen... Mon Oct 26 16:33:19 .. SolarPVSubsidyUSA.txt C:\Projects\GCAM-GUI\io\ScenarioComponen... Mon Oct 26 16:53:27 ... C:\Projects\GCAM-GUI\io\ScenarioComponen... Mon Oct 26 16:52:17 ... SolarPVSubsidyWest.... Run Create New Edit Delete Working Scenarios filter: Run Name Components Run Date Analyze Management CO2TaxUSA Mon Oct 26 16:57:34 EDT 2015 CO2TaxUSA.txt: CO2TaxNortheast CO2TaxNortheast.txt; Mon Oct 26 16:57:34 EDT 2015 and execution CO2CapUSA Mon Oct 26 16:57:34 EDT 2015 CO2CapUSA.txt; of scenarios CO2CapNortheast Mon Oct 26 16:57:34 EDT 2015 CO2CapNortheast.txt; SolarPVSubsidyWest SolarPVSubsidyWest.txt; Mon Oct 26 16:57:34 EDT 2015 SolarPVSubsidvUSA SolarPVSubsidyUSA.txt; Mon Oct 26 16:57:34 EDT 2015

SEPA

Decision Support System integration

Enhancements to the Model Interface

SEPA

SEPA

Management strategy levers

Types

- Air pollutant taxes or caps*
- GHG taxes or caps*
- CAFE standard⁺
- Renewable Electricity Standard⁺
- Technology subsidies
- Forced technology penetration
- High-efficiency technology end-use requirements

Geographic application

- Global, global region, or national*
- Group of states or individual state*

Demo

9

andidate Scenario Com	iponents filter:			Construct or Edit Sc	enario	
File Name	Address	Created		Name:		
30pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\ic	\s Mon Feb 08 14:57:30		Components:	File Name	
40pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\ic	\s Mon Feb 08 14:57:45			rite Name	
50pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\ic	\s Mon Feb 08 14:57:55				
60pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\ic	\s Mon Feb 08 14:58:04				
70pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\ic	\s Mon Feb 08 14:58:14		No co	content in table	
80pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\ic	\s Mon Feb 08 14:58:23				
New Edit Delete		\s Mon Feb 08 14:58:32		RunCr	eate	
New Edit Delete	filter:	>×				
Vorking Scenarios Run Name	filter:	>×		Run Date	eate	
New Edit Delete Vorking Scenarios Run Name Ref4p2	filter: Compor Reference4p2.txt;	>×	Mon Feb 08			
New Edit Delete Vorking Scenarios Run Name Ref4p2 30pctCO2RdxUSA	filter:	→ ×	Mon Feb 08 Mon Feb 08	Run Date 14:04:24 EST 2016	Analyze	
New Edit Delete	filter: Compor Reference4p2.txt; 30pctCO2RdxUSA.txt;	→ ×	Mon Feb 08 Mon Feb 08 Mon Feb 08	Run Date 14:04:24 EST 2016 15:01:31 EST 2016	Analyze Run Selected	
New Edit Delete Vorking Scenarios Run Name Ref4p2 30pctCO2RdxUSA 40pctCO2RdxUSA 50pctCO2RdxUSA	filter: Compor Reference4p2.txt; 30pctCO2RdxUSA.txt; 40pctCO2RdxUSA.txt;	→ ×	Mon Feb 08 Mon Feb 08 Mon Feb 08 Mon Feb 08	Run Date 14:04:24 EST 2016 15:01:31 EST 2016 15:01:31 EST 2016	Analyze Run Selected	
New Edit Delete Vorking Scenarios Run Name Ref4p2 30pctCO2RdxUSA 40pctCO2RdxUSA	filter: Compor Reference4p2.txt; 30pctCO2RdxUSA.txt; 40pctCO2RdxUSA.txt; 50pctCO2RdxUSA.txt;	→ ×	Mon Feb 08 Mon Feb 08 Mon Feb 08 Mon Feb 08 Mon Feb 08	Run Date 14:04:24 EST 2016 15:01:31 EST 2016 15:01:31 EST 2016 15:01:31 EST 2016	Analyze Run Selected	

Scenario Builder graphical interface

Candidate Scenario Cor	mponents filter:			Construct or Edit Sce	enario
File Name	Address	Created		Name:	
30pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\s	Mon Feb 08 14:57:30		Components:	ile Name
40pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\s	jects\gcam-gui\version\gcam-core\io\s Mon Feb 08 14:57:45			
50pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\s	Mon Feb 08 14:57:55			
60pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\s	Mon Feb 08 14:58:04			
70pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\s	Mon Feb 08 14:58:14		No co	ntent in table
80pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\s	Mon Feb 08 14:58:23			
K C Edit Delete		Mon Feb 08 14:58:32		RunCre	eate
Edit Delete	e filter:	> ×			
Run Name	e filter:	> ×		Run Cree Run Date [] 14:04:24 EST 2016 []	Analyze
Ref4p2	e filter:	> ×	Mon Feb 08	Run Date	
Edit Delete ng Scenarios Run Name Ref4p2 30pctCO2RdxUSA	e filter: Component Reference4p2.txt;	> ×	Mon Feb 08 Mon Feb 08	Run Date 14:04:24 EST 2016	Analyze
Ref4p2 30pctCO2RdxUSA	e filter: Component Reference4p2.txt; 30pctCO2RdxUSA.txt;	> ×	Mon Feb 08 Mon Feb 08 Mon Feb 08	Run Date 14:04:24 EST 2016 15:01:31 EST 2016	Analyze Run Selected
K Edit Delete N Edit Delete N Scenarios Run Name Ref4p2 30pctC02RdxUSA 40pctC02RdxUSA 50pctC02RdxUSA	e filter: Component Reference4p2.txt; 30pctC02RdxUSA.txt; 40pctC02RdxUSA.txt;	> ×	Mon Feb 08 Mon Feb 08 Mon Feb 08 Mon Feb 08	Run Date 14:04:24 EST 2016 15:01:31 EST 2016 15:01:31 EST 2016	Analyze Run Selected
Ing Scenarios	e filter: Component Reference4p2.txt; 30pctC02RdxUSA.txt; 40pctC02RdxUSA.txt; 50pctC02RdxUSA.txt;	> ×	Mon Feb 08 Mon Feb 08 Mon Feb 08 Mon Feb 08 Mon Feb 08	Run Date 14:04:24 EST 2016 15:01:31 EST 2016 15:01:31 EST 2016 15:01:31 EST 2016	Analyze Run Selected

Creating a new scenario component

💷 New Scenario (Component		
Preset Custon	n		
Component:		Values: Populate Delete Clear Applied to:	
Action:	Emission Cap (Mt) 🔹	Year Value world	
Sector:	System Wide 🔹		
Parameter:	CO2 ~		
Populate:			
Туре:	Initial w/% Growth 🔹		
Start Year:	2020	No content in table	
End Year:	2100		
Initial Amount:			
Growth (%):			
		Add	
		Save	

New Scenario Component window

📃 New Scenario (Component		- • •
Preset Custon	n		
Component:		Values: Populate Delete Clear Applied to:	
Action:	Emission Cap (Mt)	Year Value world	
Sector:	System Wide		
Parameter:	CO2		
Populate:			
Туре:	Initial w/% Growth 🔹		
Start Year:	2020	No content in table	
End Year:	2100		
Initial Amount:			
Growth (%):			
		Add	
		Save	

Choosing the type of the component

💷 New Scenario (Component		- • •
Preset Custon	n		
Component:		Values: Populate Delete Clear Applied to:	
Action:	Emission Cap (Mt) 🛛 👻	Year Value world	
Sector:	Emission Cap (Mt)		
Parameter:	Emission Tax (\$/t)		
	Renewable Elec Std (%)		
Populate:	CAFE (MPG)		
Туре:	Initial w/% Growth 👻		
Start Year:	2020	No content in table	
End Year:	2100		
Initial Amount:			
Growth (%):			
		Add	
		Save Close	

Menu of component types (to be expanded)

New Scenario Component		
Preset Custom		
Component:	Values: Populate Delete Clear Applied to:	
Action: Emission Tax (\$/t) -	Year Value I world	
Sector: Emission Cap (Mt)		
Parameter: Emission Tax (\$/t)		
Renewable Elec Std (%)		
Populate AFE (MPG)		
Type: Initial w/% Growth 👻		
Start Year: 2020	No content in table	
End Year: 2100		
Initial Amount:		
Growth (%):		
	Add	
	Save Close	

Choosing to apply an emission tax

New Scenario	Component		
Preset Custor	m		
Component:		Values: Populate Delete Clear Applied to:	
Action:	Emission Tax (\$/t) 🔹	Year Value world	
Sector:	System Wide 👻		
Parameter:	CO2 -		
Populate:			
Туре:	Initial w/% Growth 🔹		
Start Year:	2020	No content in table	
End Year:	2100		
Initial Amount:			
Growth (%):			
		Add	
		Save Close	

Applied system-wide to CO2

💷 New Scenario	Component		
Preset Custo	om		
Component:		Values: Populate Delete Clear Applied to:	
Action:	Emission Tax (\$/t) 🔹	Year Value world	
Sector:	System Wide 🔹		
Parameter:	CO2 -		
Populate:			
Туре:	Initial w/% Growth 🔹		
Start Yea	2020	No content in table	
End Yea	2100		
Initial Amount	t:		
Growth (%):			
		Add	
		Save	
			001010

Defining the tax magnitude and timing

💷 New Scenario (Component		
Preset Custon	n		
Component:		Values: Populate Delete Clear Applied to:	
Action:	Emission Tax (\$/t) 🔹	Year Value world	
Sector:	System Wide 👻		
Parameter:	CO2 ~		
Populate:			
Type:	Initial w/% Growth 👻		
Start Year:	Initial w/% Growth	No content in table	
End Year:	Initial w/Delta		
Initial Amount:	Initial and Final		
Growth (%):	Table w/% Change		
	Table w/Delta		
		Add	
		Save Close	

Options

🔜 New Scenario	Component			
Preset Custo	m			
Component:			Values: Populate Delete Clear Applied to:	
Action:	Emission Tax (\$/t)	•	Year Value world	
Sector:	System Wide	•		
Parameter:	CO2	•		
Populate:		_		
Туре:	Initial and Final	-		
Start Year:	Initial w/% Growth		No content in table	
End Year:	Initial w/Delta			
Initial Amount	Initial and Final			
Growth	Table w/% Change			
5	able w/Delta			
			Add	
			Save Close	00000

Selecting starting and ending tax – Intermediate values are interpolated

💷 New Scenario (Component		- • •
Preset Custon	n		
Component:		Values: Populate Delete Clear Applied to:	
Action:	Emission Tax (\$/t) 🔹	Year Value world	
Sector:	System Wide 🔹		
Parameter:	CO2 -		
Populate:			
Туре:	Initial and Final 🔹		
Start Year:	2020	No content in table	
End Year:	2100		
Initial Amount:			
Final Amount:			
		Add	
		Save Close	

💷 New Scenario	Component							- • •
Preset Custor	n							
Component:		Values:	Populate	Delete	Clear		Applied to:	
Action:	Emission Tax (\$/t) 🔹	Year		Valu	e		world	
Sector:	System Wide 🔹							
Parameter:	CO2 ~							
Populate:								
Туре:	Initial and Final 🔹							
Start Year:	2020		No con	tent in tab	e			
End Year:	2100							
Initial Amount:	50							
Final Amount:	500							
S.F.					Ad	bb		
			Sa	ve Clos	e			

Tax increases linearly from \$50/tCO2 in 2020 to \$500/tCO2 in 2100

💷 New Scenario (Component					
Preset Custon	n					
Component:			Values: Populate	Delete Clear	Applied to:	
Action:	Emission Tax (\$/t)	-	Sh	Value	world	
Sector:	System Wide	-	/20	50.00		
Parameter:	CO2	-	2025	78.12		
			2030	106.25		
Populate:			2035	134.38		
Туре:	Initial and Final	-	2040	162.50		
Start Year:	2020		2045	190.62		
End Year:	2100		2050	218.75		
Initial Amount:			2055	246.88		
			2060	275.00		
Final Amount:	500		2065	303.12		
			2070	331.25		
			2075	250.28 ~		
				Add		
			Si	Close		

Populating the table of values

🖳 New Scenario (Component				
Preset Custon	n				
Component:			Values: Populat	e Delete Clear	Applied to:
Action:	Emission Tax (\$/t)	-	Year	Value	x world
Sector:	System Wide	-	2020	50.00	USA
Parameter:	CO2	•	2025	78.12	Canada
			2030	106.25	EU-15
Populate:			2035	134.38	Europe_Non_EU
Туре:	Initial and Final	-	2040	162.50	European Free Trade Association
Start Year:	2020		2045	190.62	Japan
		_	2050	218.75	Australia_NZ
End Year:	2100	_	2055	246.88	Central Asia
Initial Amount:	50		2060	275.00	Russia
Final Amount:	500		2065	303.12	China
			2070	331.25	Middle East
			2075	250.28 ~	Africa_Eastern
				Add	
				Save Close	

Selecting to which regions the tax is applied

New Scenario Component Preset Custom Values: Component: Populate Delete Clear Applied to: Emission Tax (\$/t) Action: Ŧ Year Value • world System Wide 50.00 Sector: Ŧ 2020 USA \checkmark 2025 78.12 Canada CO2 V Ŧ Parameter: 106.25 EU-15 2030 V Europe_Non_EU 2035 134.38 Populate: European Free Trade Association 2040 162.50 Initial and Final Type: Ŧ Japan 2045 190.62 Start Year: 2020 Australia_NZ 218.75 2050 End Year: 2100 Central Asia 2055 246.88 Initial Amount: 50 Russia 275.00 2060 China Final Amount: 500 2065 303.12 Middle East 331.25 2070 Africa_Eastern 250.28 ~ 2075 1 5 Add Save Close

- -New Scenario Component Preset Custom Values: Component: Populate Delete Clear Applied to: Emission Tax (\$/t) Action: Ŧ Year Value • world System Wide 50.00 Sector: Ŧ 2020 USA \checkmark 2025 78.12 Canada CO2 Ŧ Parameter: 106.25 EU-15 2030 V Europe_Non_EU 2035 134.38 Populate: European Free Trade Association 2040 162.50 Initial and Final Type: Ŧ Japan 2045 190.62 Start Year: 2020 Australia_NZ 218.75 2050 End Year: 2100 Central Asia 246.88 2055 Initial Amount: 50 Russia 275.00 2060 China Final Amount: 500 2065 303.12 Middle East 331.25 2070 Africa_Eastern 250.28 ~ 2075 1 5 Add Close Save

Saving the scenario component

andidate Scenario Con	mponents filter:			Construct or Edit Sce	enario			
File Name	Address	Created		Name:				
50pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\	Mon Feb 08 14:57:55		Components:	ile Name			
50pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\	Mon Feb 08 14:58:04						
70pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\	Mon Feb 08 14:58:14						
80pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\	Mon Feb 08 14:58:23						
90pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\	No co	ntent in table					
Reference4p2.txt	c:\projects\gcam-gui\version\gcam-core\io\	Mon Feb 08 13:56:54						
SysTaxCO2Reg.txt	C:\Projects\GCAM-GUI\version\GCAM-Core\	i Mon Oct 03 21:55:07		Run Cre	ate 🔺 🔻			
SysTaxCO2Reg.txt New Edit Delete Vorking Scenarios		i Mon Oct 03 21:55:07		RunCre	ate 🔺 🔻			
New Edit Delete	•	> ``		Run Cre	eate			
New Edit Delete	filter:	> ``	Mon Feb					
New Edit Delete Vorking Scenarios Run Name	filter:	> ``		Run Date	Analyze Run Selected			
New Edit Delete Vorking Scenarios Run Name Ref4p2	filter: Compone Reference4p2.txt;	> ``	Mon Feb	Run Date 08 14:04:24 EST 2016	Analyze			
New Edit Delete Vorking Scenarios Run Name Ref4p2 30pctCO2RdxUSA	filter: Compone Reference4p2.txt; 30pctCO2RdxUSA.txt;	> ``	Mon Feb Mon Feb	Run Date 08 14:04:24 EST 2016 08 15:01:31 EST 2016	Analyze Run Selected			
New Edit Delete Vorking Scenarios Run Name Ref4p2 30pctCO2RdxUSA	filter: Compone Reference4p2.txt; 30pctCO2RdxUSA.txt; 40pctCO2RdxUSA.txt;	> ``	Mon Feb Mon Feb Mon Feb	Run Date 08 14:04:24 EST 2016 08 15:01:31 EST 2016 08 15:01:31 EST 2016	Analyze Run Selected			
New Edit Delete Vorking Scenarios Run Name Ref4p2 30pctCO2RdxUSA 40pctCO2RdxUSA 50pctCO2RdxUSA	filter: Compone Reference4p2.txt; 30pctCO2RdxUSA.txt; 40pctCO2RdxUSA.txt; 50pctCO2RdxUSA.txt;	> ``	Mon Feb Mon Feb Mon Feb Mon Feb	Run Date 08 14:04:24 EST 2016 08 15:01:31 EST 2016 08 15:01:31 EST 2016 08 15:01:31 EST 2016	Analyze Run Selected			

andidate Scenario Cor	mponents filter:			Construct or Edit Sce	nario	
File Name	Address	Created		Name:		
50pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io	s Mon Feb 08 14:57:55		Components: File Name		
60pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io	s Mon Feb 08 14:58:04		SysTaxCO2Reg.txt		
70pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io					
80pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io					
90pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io	s Mon Feb 08 14:58:32				
Reference4p2.txt	c:\projects\gcam-gui\version\gcam-core\io					
SysTaxCO2Reg.txt		\i Mon Oct 03 21:55:07		K CRun Cre	ate 🔺 🔻	
New Edit Delete	filter:	> ``		Run Cre		
New Edit Delete Vorking Scenarios Run Name	filter:	> ``		Run Cre	ate	
New Edit Delete Vorking Scenarios Run Name Ref4p2	filter: Compon Reference4p2.txt;	> ``	Mon Feb 08	Run Cre		
New Edit Delete Vorking Scenarios Run Name	filter:	> ``	Mon Feb 08 Mon Feb 08	Run Cre Run Date 14:04:24 EST 2016	Analyze	
New Edit Delete Vorking Scenarios Run Name Ref4p2 30pctCO2RdxUSA	filter: Compon Reference4p2.txt; 30pctCO2RdxUSA.txt;	> ``	Mon Feb 08 Mon Feb 08 Mon Feb 08	Run Cre Run Date 14:04:24 EST 2016 15:01:31 EST 2016	Analyze Run Selected	
New Edit Delete Vorking Scenarios Run Name Ref4p2 30pctCO2RdxUSA 40pctCO2RdxUSA	filter: Compon Reference4p2.txt; 30pctC02RdxUSA.txt; 40pctC02RdxUSA.txt;	> ``	Mon Feb 08 Mon Feb 08 Mon Feb 08 Mon Feb 08	Run Cre Run Date 14:04:24 EST 2016 15:01:31 EST 2016 15:01:31 EST 2016	Analyze Run Selected	
New Edit Delete Vorking Scenarios Run Name Ref4p2 30pctCO2RdxUSA 40pctCO2RdxUSA 50pctCO2RdxUSA	filter: Compon Reference4p2.txt; 30pctC02RdxUSA.txt; 40pctC02RdxUSA.txt; 50pctC02RdxUSA.txt;	> ``	Mon Feb 08 Mon Feb 08 Mon Feb 08 Mon Feb 08 Mon Feb 08	Run Cre Run Date 14:04:24 EST 2016 15:01:31 EST 2016 15:01:31 EST 2016 15:01:31 EST 2016	Analyze Run Selected	

Selecting which components to include in the scenario

GCAM-USA Scenario C	reator			
andidate Scenario Con	nponents filter:		Construct or Edit Sc	enario
File Name	Address	Created	Name: Test	
0pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\s	Mon Feb 08 14:57:55	Company	File Name
0pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\s	Mon Feb 08 14:58:04	SysTaxCO2_eg.txt	ne Name
0pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\s	Mon Feb 08 14:58:14	- Oystance - cynn	
0pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\s	Mon Feb 08 14:58:23		
0pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\s	Mon Feb 08 14:58:32		
eference4p2.txt	c:\projects\gcam-gui\version\gcam-core\io\s	Mon Feb 08 13:56:54		
ysTaxCO2Reg.txt	C:\Projects\GCAM-GUI\version\GCAM-Core\i	Mon Oct 03 21:55:07		
New Edit Delete	filter:		Run Cr	eate
Run Name	Component	s	Run Date	Analyze
Ref4p2	Reference4p2.txt;		Mon Feb 08 14:04:24 EST 2016	Run Selected
0pctCO2RdxUSA	30pctCO2RdxUSA.txt;		Mon Feb 08 15:01:31 EST 2016	Kun Selected
0pctCO2RdxUSA	40pctCO2RdxUSA.txt;		Mon Feb 08 15:01:31 EST 2016	Delete Selected

nempe	hererenee perso,	111011100 00 1410424 201 2010	Run Selected
30pctCO2RdxUSA	30pctCO2RdxUSA.txt;	Mon Feb 08 15:01:31 EST 2016	Kun Selected
40pctCO2RdxUSA	40pctCO2RdxUSA.txt;	Mon Feb 08 15:01:31 EST 2016	Delete Selected
50pctCO2RdxUSA	50pctCO2RdxUSA.txt;	Mon Feb 08 15:01:31 EST 2016	
60pctCO2RdxUSA	60pctCO2RdxUSA.txt;	Mon Feb 08 15:01:31 EST 2016	
70pctCO2RdxUSA	70pctCO2RdxUSA.txt;	Mon Feb 08 15:01:31 EST 2016	
80pctCO2RdxUSA	80pctCO2RdxUSA.txt;	Mon Feb 08 15:01:31 EST 2016	Options
< [) >	Help

Naming the scenario

andidate Scenario Cor	mponents filter:			Construct or Edit Sce	nario		
File Name	Address	Created		Name: Test			
50pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\s	Mon Feb 08 14:57:55		Components:	le Name		
50pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\s	Mon Feb 08 14:58:04		SysTaxCO2Reg.txt			
70pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\s	Mon Feb 08 14:58:14		by staxe of 2 meg. at			
80pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\s	Mon Feb 08 14:58:23					
90pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\s						
Reference4p2.txt	c:\projects\gcam-gui\version\gcam-core\io\s						
SysTaxCO2Reg.txt	C:\Projects\GCAM-GUI\version\GCAM-Core\i	Mon Oct 03 21:55:07					
New Edit Delete		> ``_	J	Run Cre	ate 🔺 🔻		
Vorking Scenarios	filter:	> ``]	Run Cre			
Vorking Scenarios Run Name	filter:	nts		Run Crea	ate 🔺 🔻		
Vorking Scenarios Run Name Ref4p2	filter: Compone Reference4p2.txt;	nts	Mon Feb 08	Run Crea Run Date 3 14:04:24 EST 2016			
Vorking Scenarios Run Name Ref4p2 30pctCO2RdxUSA	filter: Compone Reference4p2.txt; 30pctCO2RdxUSA.txt;	nts	Mon Feb 08 Mon Feb 08	Run Crei Run Date 3 14:04:24 EST 2016 3 15:01:31 EST 2016	Analyze Run Selected		
Vorking Scenarios Run Name Ref4p2 30pctCO2RdxUSA 40pctCO2RdxUSA	filter: Compone Reference4p2.txt; 30pctCO2RdxUSA.txt; 40pctCO2RdxUSA.txt;	nts	Mon Feb 08 Mon Feb 08 Mon Feb 08	Run Cree Run Date 3 14:04:24 EST 2016 3 15:01:31 EST 2016 3 15:01:31 EST 2016	Analyze		
Vorking Scenarios Run Name Ref4p2 30pctCO2RdxUSA 40pctCO2RdxUSA 50pctCO2RdxUSA	filter: Compone Reference4p2.txt; 30pctCO2RdxUSA.txt; 40pctCO2RdxUSA.txt; 50pctCO2RdxUSA.txt;	nts	Mon Feb 08 Mon Feb 08 Mon Feb 08 Mon Feb 08	Run Cree Run Date 3 14:04:24 EST 2016 3 15:01:31 EST 2016 3 15:01:31 EST 2016 3 15:01:31 EST 2016	Analyze Run Selected		
Vorking Scenarios Run Name Ref4p2 30pctCO2RdxUSA 40pctCO2RdxUSA 50pctCO2RdxUSA 60pctCO2RdxUSA	filter: Compone Reference4p2.txt; 30pctCO2RdxUSA.txt; 40pctCO2RdxUSA.txt; 50pctCO2RdxUSA.txt; 60pctCO2RdxUSA.txt;	nts	Mon Feb 08 Mon Feb 08 Mon Feb 08 Mon Feb 08 Mon Feb 08	Run Cree Run Date 3 14:04:24 EST 2016 3 15:01:31 EST 2016 3 15:01:31 EST 2016 3 15:01:31 EST 2016 3 15:01:31 EST 2016	Analyze Run Selected		
Vorking Scenarios Run Name Ref4p2 30pctCO2RdxUSA 40pctCO2RdxUSA 50pctCO2RdxUSA	filter: Compone Reference4p2.txt; 30pctCO2RdxUSA.txt; 40pctCO2RdxUSA.txt; 50pctCO2RdxUSA.txt;	nts	Mon Feb 08 Mon Feb 08 Mon Feb 08 Mon Feb 08 Mon Feb 08 Mon Feb 08	Run Cree Run Date 3 14:04:24 EST 2016 3 15:01:31 EST 2016 3 15:01:31 EST 2016 3 15:01:31 EST 2016	Analyze Run Selected		

Running scenario "Test"

Candidate Scenario Cor	mponents filter:		Co	nstruct or Edit	Scenario
File Name	Address	Created		me: Te	est
50pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\!	s Mon Feb 08 14:57:55		mponents:	File Name
60pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\	s Mon Feb 08 14:58:04	Sv Sv	sTaxCO2Reg.t	
70pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\!	s Mon Feb 08 14:58:14			
80pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\	s Mon Feb 08 14:58:23			
90pctCO2RdxUSA.txt	c:\projects\gcam-gui\version\gcam-core\io\:	s Mon Feb 08 14:58:32			
Reference4p2.txt	c:\projects\gcam-gui\version\gcam-core\io\:	s Mon Feb 08 13:56:54			
SysTaxCO2Reg.txt	C:\Projects\GCAM-GUI\version\GCAM-Core\	i Mon Oct 03 21:55:07			
New Edit Delete		>>		Run	Create 🔺 🔻
Vorking Scenarios	filter:	>			
Vorking Scenarios Run Name	filter:	ents	Run D	ate	Analyze
Vorking Scenarios Run Name Ref4p2	filter: Compone Reference4p2.txt;	ents	Mon Feb 08 14:04	ate :24 EST 2016	Analyze
Vorking Scenarios Run Name Ref4p2 30pctCO2RdxUSA	filter: Compone Reference4p2.txt; 30pctCO2RdxUSA.txt;	ents		ate :24 EST 2016 :31 EST 2016	Analyze
Vorking Scenarios Run Name Ref4p2 30pctCO2RdxUSA 40pctCO2RdxUSA	filter: Compone Reference4p2.txt;	ents	Mon Feb 08 14:04 Mon Feb 08 15:01	ate :24 EST 2016 :31 EST 2016 :31 EST 2016	Analyze Run Selected
Vorking Scenarios Run Name Ref4p2 30pctCO2RdxUSA 40pctCO2RdxUSA 50pctCO2RdxUSA	filter: Compone Reference4p2.txt; 30pctCO2RdxUSA.txt; 40pctCO2RdxUSA.txt;	ents	Mon Feb 08 14:04 Mon Feb 08 15:01 Mon Feb 08 15:01	ate :24 EST 2016 :31 EST 2016 :31 EST 2016 :31 EST 2016	Analyze Run Selected
Vorking Scenarios Run Name Ref4p2 30pctCO2RdxUSA 40pctCO2RdxUSA 50pctCO2RdxUSA 50pctCO2RdxUSA	filter: Compone Reference4p2.txt; 30pctCO2RdxUSA.txt; 40pctCO2RdxUSA.txt; 50pctCO2RdxUSA.txt;	ents	Mon Feb 08 14:04 Mon Feb 08 15:01 Mon Feb 08 15:01 Mon Feb 08 15:01	ate :24 EST 2016 :31 EST 2016 :31 EST 2016 :31 EST 2016 :31 EST 2016	Analyze Run Selected
Vorking Scenarios	filter: Compone Reference4p2.txt; 30pctCO2RdxUSA.txt; 40pctCO2RdxUSA.txt; 50pctCO2RdxUSA.txt; 60pctCO2RdxUSA.txt;	ents	Mon Feb 08 14:04 Mon Feb 08 15:01 Mon Feb 08 15:01 Mon Feb 08 15:01 Mon Feb 08 15:01	ate :24 EST 2016 :31 EST 2016 :31 EST 2016 :31 EST 2016 :31 EST 2016 :31 EST 2016	Analyze Run Selected

Invoking the Enhanced Model Interface to view results

🛃 [C:\Projects\GCAM\GCAM_4p2\Main_User_Workspace\output\database_basexdb] - ModelInterface

File Edit Table Help

Scenario	Regions	Queries
Ref4p2 2016-8-2T14:04:25-05:00	USA	🔺 📗 queries 🔺
30pctCO2RdxUSA 2016-8-2T15:01:32-05:00	Africa_Eastern	🔲 🖨 Primary Energy 📰
40pctCO2RdxUSA 2016-8-2T15:46:21-05:00	Africa_Northern	Primary Energy Consumption (Average Fossil Efficiency Conversion)
50pctCO2RdxUSA 2016-8-2T16:16:28-05:00	Africa_Southern	E Primary Energy Consumption (Direct Equivalent)
60pctCO2RdxUSA 2016-8-2T16:51:10-05:00	Africa_Western	
70pctCO2RdxUSA 2016-8-2T17:12:26-05:00	Australia_NZ	
80pctCO2RdxUSA 2016-8-2T17:39:01-05:00	Brazil	Regional primary energy costs
Reference 2016-9-8T08:47:31-04:00	Canada	Electricity
Test 2016-3-10T21:58:08+20:00	Central America and Caribbean	
	Central Asia	Electricity generation by region (central only)
	China	
	EU-12	Electricity generation by aggregate technology_dispatch
	EU-15	
	Europe_Eastern	Run Query Update Single Queries Create Remove Edit
J	Europe Non EU	epode Single Queres Create Reinove Luit

Enhanced Model Interface, showing scenarios that have been run, regions, and outputs

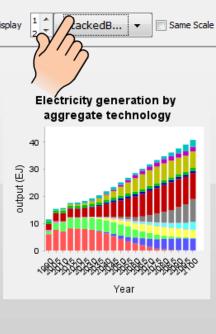
File Edit Table Help

																Quarter	
	Scen						egions				۱h					Queries	
		14:04:25-05:00			USA					<u> </u>		quer	es Primary Ene			<u>^</u>	
		2016-8-2T15:01:32-0				ca_Eastern						_					
		2016-8-2T15:46:21-0				ca_Norther										ion (Average Fossil Efficiency Conversion)	
		2016-8-2T16:16:28-0				ca_Southe				=		Primary Energy Consumption (Direct Equivalent)					
60pctC0	02RdxUSA	2016-8-2T16:51:10-0	5:00			ca_Wester	n										
70pctC0	02RdxUSA	2016-8-2T17:12:26-0	5:00		Aus	tralia_NZ											
80pctC0	80pctCO2RdxUSA 2016-8-2T17:39:01-05:00 Brazil								11	Regional primary energy costs							
Test 20	Test 2016-4-10T07:44:25-04:00 Canada								Ш	🚊 🚺 E	ectricity						
	Central America and Caribbean									Ш		📲 Electr	icity gener	ation by re	egion (incl rooftop PV and CHP)		
	Central Asia									Ш		🛛 a Electr	icity gener	ation by re	egion (central only)		
					Chir	na					Ш		📲 Electr	icity gener	ation by ag	ggregate technology	
					EU-	12					Ш				enerate list		
					EU-	15							Electr	icity gener	ation by a	ggregate technology_dispatch	
					Euro	ope_Easter	m						· · · ·				
						one Non F				Ψ.			uery		Update S	Single Queries Create Remove Edit	
											\sim	16					
Elect	ricity gener	ation by aggregate te	chnology								Ϊ	In	`				
										——(`		- /	/				
scenario		n technology	1990	2005	2010	2015	2020	2025	2030	2035	20		2045	2050	2055		
Test,date	e= USA	a Coal	6.029	7.68	7.105		8.118	7.949				p.274	5.301	4.302		Display 1 LineChart - Same Scale	
11 · · · · ·	e= USA	b Coal w/CCS	0	_	0	-	_	0.021		0.23		0.493	0.82	1.212	1.626	2 *	
<u> </u>	e= USA	c Gas	1.026	2,569	3.385	3.88	3.934	4.09		4.346		4.416	4.334	4.178	3.989		
Test,date	e= USA	d Gas w/CCS	0	0	0	0	0	0.041	0.149	0.344		0.669	1.036	1.434	1.826		
Test,date	e= USA	e Oil	0.451	0.455	0.145	0.111	0.103	0.104	0.102	0.098		0.098	0.098	0.104	0.106		
Test,date	e= USA	f Oil w/CCS	0	0	0	0	0	0.013	0.033	0.062		0.11	0.165	0.243	0.323		
Test,date	e= USA	g Biomass	0.079	0.111	0.115	0.064	0.084	0.118	0.158	0.195		0.233	0.257	0.27	0.263	Electricity generation by aggregate	
Test,date	e= USA	h Biomass w/	0	0	0	0	0	0.008	0.035	0.1		0.234	0.423	0.686	0.988	technology	
Test,date	e= USA	i Nuclear	2.201	2.919	3.02	3.213	3.199	3.282	3.542	3.969		4.665	5.342	6.04	6.737		
Test,date	e= USA	j Geothermal	0.058	0.06	0.063	0.117	0.141	0.208	0.327	0.477		0.613	0.74	0.795	0.795	10	
Test,date	:= USA	k Hydro	0.983	0.982	0.945	0.954	0.964	0.974	0.984	0.994		0.998	1.003	1.007	1.011		
Test.date	= USA	l Wind	0.011	0.064	0.343	0.458	0.503	0.631	0.911	1.358		1.751	2,452	3.294	4.079		
<u> </u>	= USA	m Solar	0.002		0.014		0.035			0.205		0.35	0.51	0.705	0.907	H G	
<u> </u>	= USA	n CHP	0.689		0.538	0.485	0.654	0.826	0.931	0.988		0.976	0.945	0.91	0.815		
Corporte		in shi	0.005	0.022	0.000	0, 100	0.001	0.020	0.001	0.000		5.570	01010	0.91	0.013	tin 6 dtn 4	
																060606060606060606060	
																~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
																Year	
•															P.	L	
											-			_			

#### Electricity production by technology for Test

#### 🔮 [C:\Projects\GCAM\GCAM_4p2\Main_User_Workspace\output\database_basexdb] - ModelInterface

#### 


File Edit Table Help

•

Scenario	Regions		Queries
Ref4p2 2016-8-2T14:04:25-05:00	USA	*	📔 queries 🔺
30pctCO2RdxUSA 2016-8-2T15:01:32-05:00	Africa_Eastern		🚊 🕒 Primary Energy
40pctCO2RdxUSA 2016-8-2T15:46:21-05:00	Africa_Northern		Primary Energy Consumption (Average Fossil Efficiency Conversion)
50pctCO2RdxUSA 2016-8-2T16:16:28-05:00	Africa_Southern	=	Primary Energy Consumption (Direct Equivalent)
60pctCO2RdxUSA 2016-8-2T16:51:10-05:00	Africa_Western		Primary energy with CCS (Direct Equivalent)
70pctCO2RdxUSA 2016-8-2T17:12:26-05:00	Australia_NZ		Resource production
80pctCO2RdxUSA 2016-8-2T17:39:01-05:00	Brazil		Regional primary energy costs
Test 2016-4-10T07:44:25-04:00	Canada		🚊 🔒 Electricity
	Central America and Caribbean		Electricity generation by region (incl rooftop PV and CHP)
	Central Asia		Electricity generation by region (central only)
	China		🛱 🛲 Electricity generation by aggregate technology
	EU-12		Could not generate list.
	EU-15		Electricity generation by aggregate technology_dispatch
	Europe_Eastern		Run Query Update Single Queries Create Remove Edit
I	Europe Non El	<b>T</b>	

#### Electricity generation by aggregate technology

scenario	region	technology	1990	2005	2010	2015	2020	2025	2030	2035	2040	2045	2050	2055		
Test,date=	USA	a Coal	6.029	7.68	7.105	8.216	8.118	7.949	7.634	7.051	6.274	5.301	4.302	3.396	Display 1	$^{\wedge}$
Test,date=	USA	b Coal w/CCS	0	0	0	0	0	0.021	0.088	0.23	0.493	0.82	1.212	1.626	2	$\sqrt{6}$
Test,date=	USA	c Gas	1.026	2.569	3.385	3.88	3.934	4.09	4.257	4.346	4.416	4.334	4.178	3.989		] / [
Test,date=	USA	d Gas w/CCS	0	0	0	0	0	0.041	0.149	0.344	0.669	1.036	1.434	1.826		
Test,date=	USA	e Oil	0.451	0.455	0.145	0.111	0.103	0.104	0.102	0.098	0.098	0.098	0.104	0.106		
Test,date=	USA	f Oil w/CCS	0	0	0	0	0	0.013	0.033	0.062	0.11	0.165	0.243	0.323		1
Test,date=	USA	g Biomass	0.079	0.111	0.115	0.064	0.084	0.118	0.158	0.195	0.233	0.257	0.27	0.263	E	lectri
Test,date=	USA	h Biomass w/	0	0	0	0	0	0.008	0.035	0.1	0.234	0.423	0.686	0.988		aggre
Test,date=	USA	i Nuclear	2.201	2.919	3.02	3.213	3, 199	3.282	3.542	3.969	4.665	5.342	6.04	6.737		
Test,date=	USA	j Geothermal	0.058	0.06	0.063	0.117	0.141	0.208	0.327	0.477	0.613	0.74	0.795	0.795	40	-
Test,date=	USA	k Hydro	0.983	0.982	0.945	0.954	0.964	0.974	0.984	0.994	0.998	1.003	1.007	1.011		
Test,date=	USA	l Wind	0.011	0.064	0.343	0.458	0.503	0.631	0.911	1.358	1.751	2.452	3.294	4.079	<u></u> 30	-
Test,date=	USA	m Solar	0.002	0.004	0.014	0.027	0.035	0.058	0.111	0.205	0.35	0.51	0.705	0.907	Ŭ Ŭ	
Test,date=	USA	n CHP	0.689	0.522	0.538	0.485	0.654	0.826	0.931	0.988	0.976	0.945	0.91	0.815	10 th	



Þ

#### Changing the thumbnail display type

Ш

#### 🛓 [C:\Projects\GCAM\GCAM_4p2\Main_User_Workspace\output\database_basexdb] - ModelInterface

#### 

Year

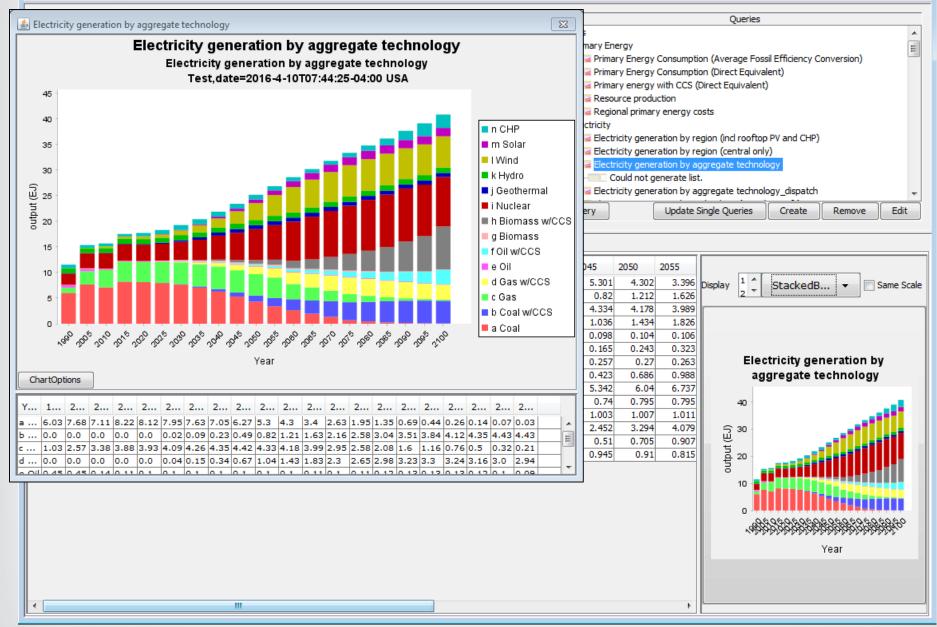
Þ

File Edit Table Help

Scenario	Regions	Queries						
Ref4p2 2016-8-2T14:04:25-05:00	USA	<b>^</b>	📔 queries 🔺					
30pctCO2RdxUSA 2016-8-2T15:01:32-05:00	Africa_Eastern		📄 🌗 Primary Energy 📃					
40pctCO2RdxUSA 2016-8-2T15:46:21-05:00	Africa_Northern							
50pctCO2RdxUSA 2016-8-2T16:16:28-05:00	Africa_Southern	=						
60pctCO2RdxUSA 2016-8-2T16:51:10-05:00	Africa_Western		Primary energy with CCS (Direct Equivalent)					
70pctCO2RdxUSA 2016-8-2T17:12:26-05:00	Australia_NZ		Resource production Regional primary energy costs					
80pctCO2RdxUSA 2016-8-2T17:39:01-05:00	Brazil							
Test 2016-4-10T07:44:25-04:00	Canada		🚊 🔒 Electricity					
	Central America and Caribbean		Electricity generation by region (incl rooftop PV and CHP)					
	Central Asia		Electricity generation by region (central only)					
	China		Electricity generation by aggregate technology Could not generate list. Electricity generation by aggregate technology_dispatch					
	EU-12							
	EU-15							
	Europe_Eastern		Run Query Update Single Queries Create Remove Edit					
J	Europe Non El	Ψ.	Create Relifove Edit					

#### Electricity generation by aggregate technology

scenario	region	technology	1990	2005	2010	2015	2020	2025	2030	2035	2040	2045	2050	2055	
Fest,date=	. USA	a Coal	6.029	7.68	7.105	8.216	8.118	7.949	7.634	7.051	6.274	5.301	4.302	3.396	6 Display ¹ _ StackedB □ Same Sca
est,date=	. USA	b Coal w/CCS	0	0	0	0	0	0.021	0.088	0.23	0.493	0.82	1.212	1.626	
est,date=	. USA	c Gas	1.026	2.569	3.385	3.88	3.934	4.09	4.257	4.346	4.416	4.334	4.178	3.989	9
est,date=	. USA	d Gas w/CCS	0	0	0	0	0	0.041	0.149	0.344	0.669	1.036	1.434	1.826	6
est,date=	. USA	e Oil	0.451	0.455	0.145	0.111	0.103	0.104	0.102	0.098	0.098	0.098	0.104	0.106	6
est,date=	. USA	f Oil w/CCS	0	0	0	0	0	0.013	0.033	0.062	0.11	0.165	0.243	0.323	
est,date=	. USA	g Biomass	0.079	0.111	0.115	0.064	0.084	0.118	0.158	0.195	0.233	0.257	0.27	0.263	3 Electricity generation by
est,date=	. USA	h Biomass w/	0	0	0	0	0	0.008	0.035	0.1	0.234	0.423	0.686	0.988	aggregate technology
est,date=	. USA	i Nuclear	2.201	2.919	3.02	3.213	3, 199	3.282	3.542	3.969	4.665	5.342	6.04	6.737	7
est,date=	. USA	j Geothermal	0.058	0.06	0.063	0.117	0.141	0.208	0.327	0.477	0.613	0.74	0.795	0.795	5 40
est,date=	. USA	k Hydro	0.983	0.982	0.945	0.954	0.964	0.974	0.984	0.994	0.998	1.003	1.007	1.011	
est,date=	. USA	l Wind	0.011	0.064	0.343	0.458	0.503	0.631	0.911	1.358	1.751	2.452	3.294	4.079	9 💮 30 -
est,date=	. USA	m Solar	0.002	0.004	0.014	0.027	0.035	0.058	0.111	0.205	0.35	0.51	0.705	0.907	
est,date=	. USA	n CHP	0.689	0.522	0.538	0.485	0.654	0.826	0.931	0.988	0.976	0.945	0.91	0.815	9 (ĵ 30 - 7 U) 5 Ind 20

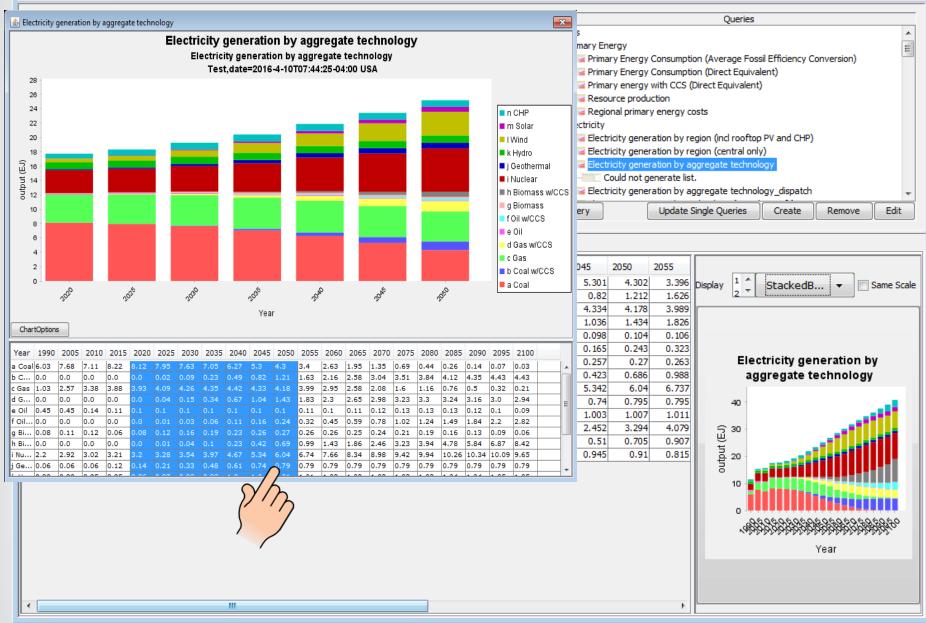

#### Clicking on the thumbnail...

-

Ш

[C:\Projects\GCAM\GCAM_4p2\Main_User_Workspace\output\database_basexdb] - ModelInterface

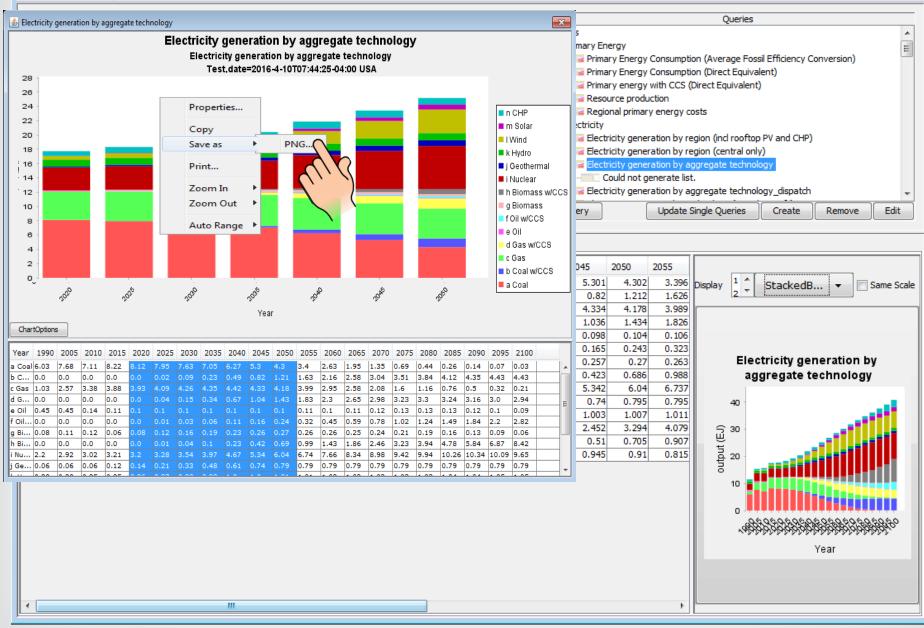
File Edit Table Help




X

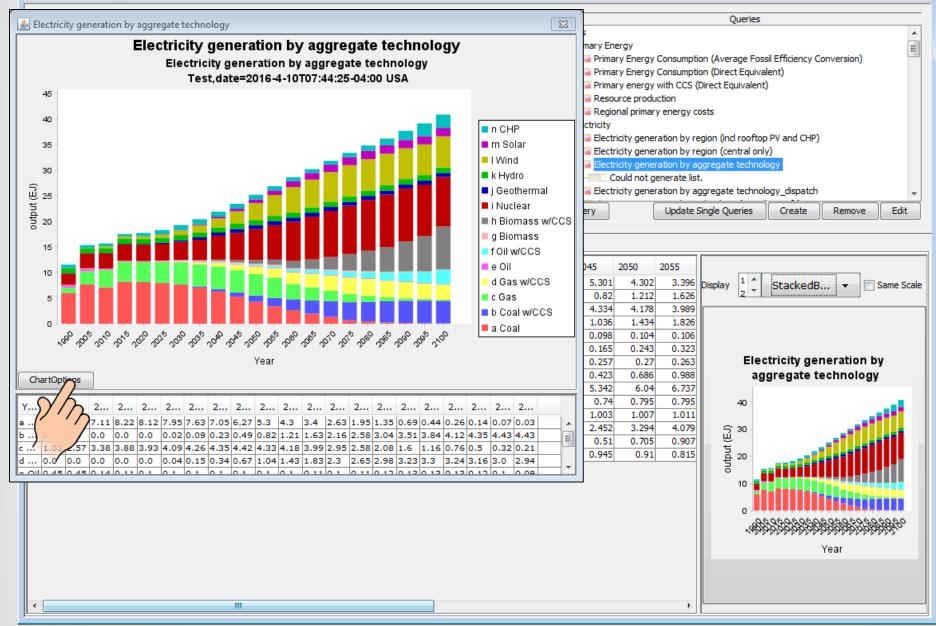
#### ... pops up full version

[C:\Projects\GCAM\GCAM_4p2\Main_User_Workspace\output\database_basexdb] - ModelInterface


File Edit Table Help



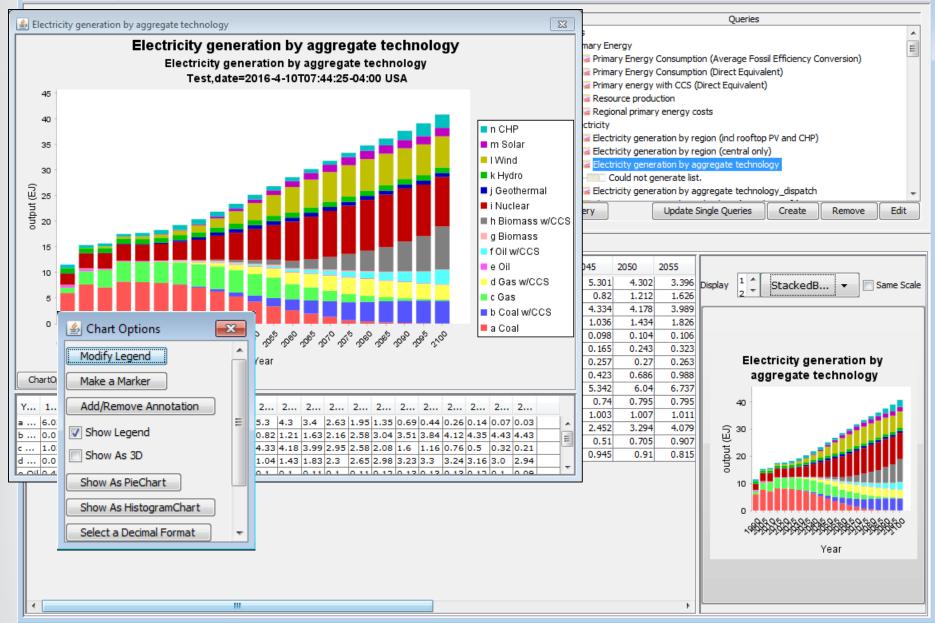
#### You can highlight which data to show on the graphic




File Edit Table Help

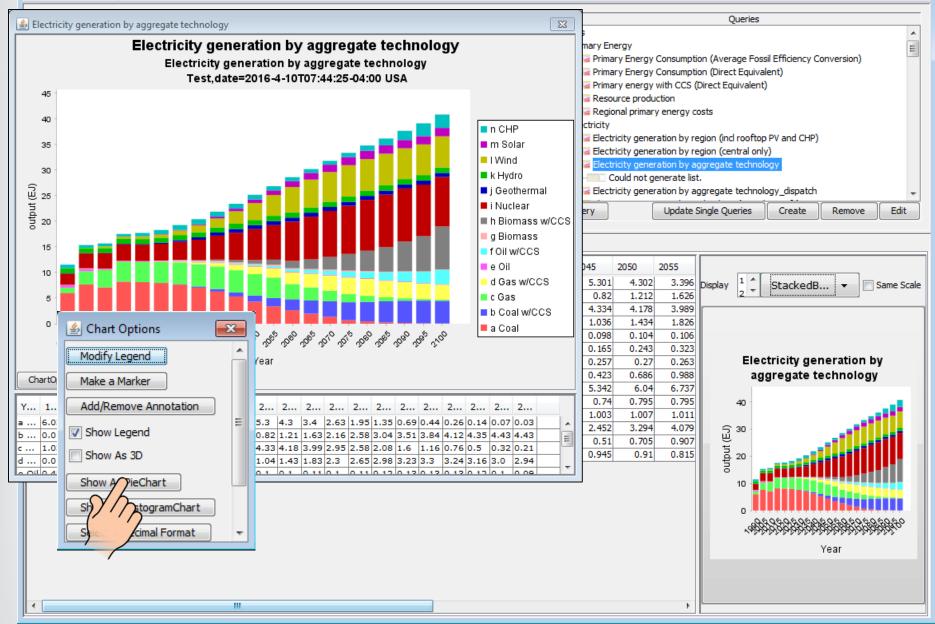


#### And save the graphic as a png file


File Edit Table Help

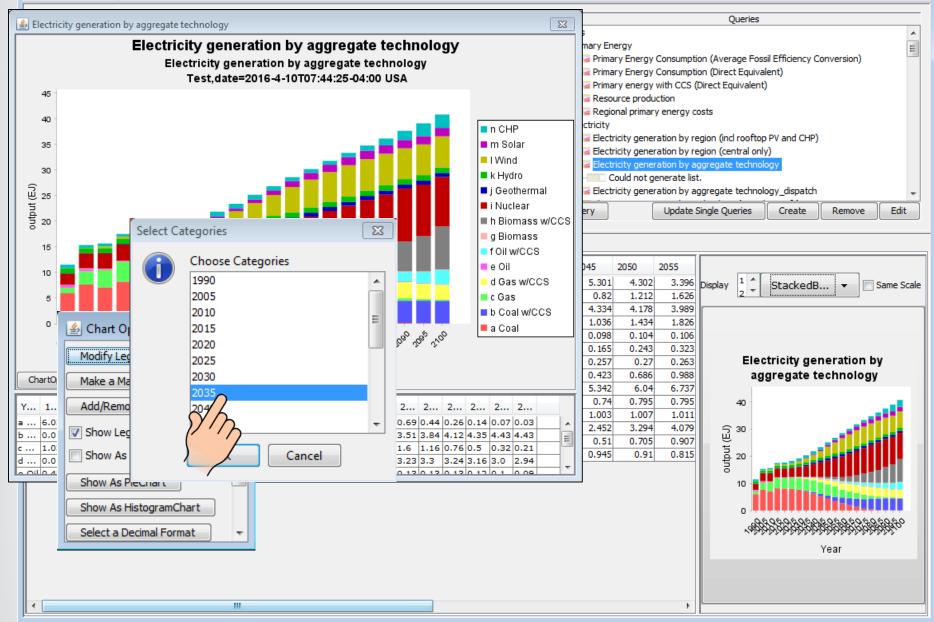


X


#### Plots support additional functions

File Edit Table Help

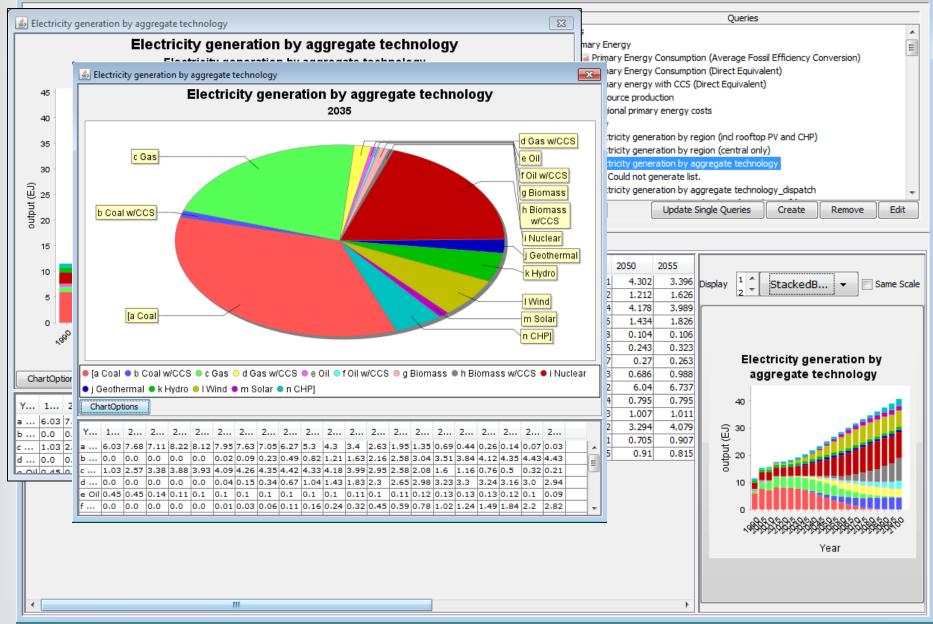



#### Plots support additional functions

File Edit Table Help

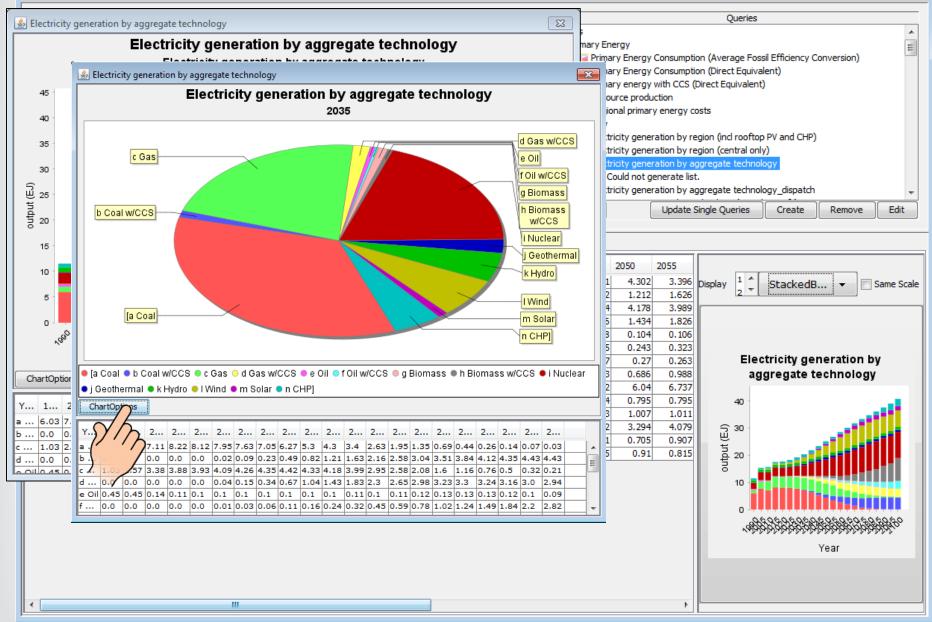


Plots support additional functions


File Edit Table Help

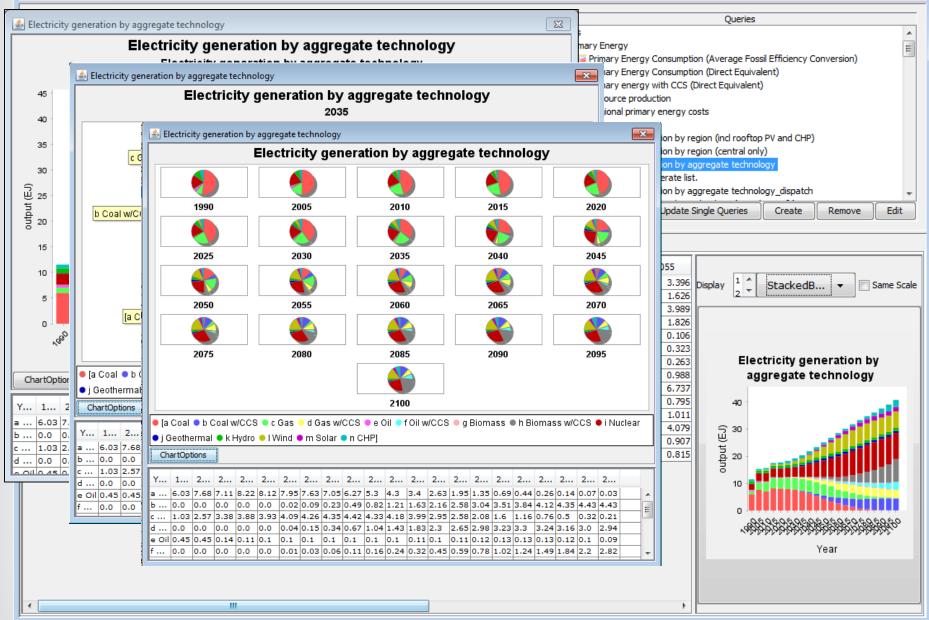


- C X


#### Plots support additional functions

File Edit Table Help




Plots support additional functions, such as year-specific pie charts

File Edit Table Help



Plots support additional functions, such as year-specific pie charts

File Edit Table Help



- C X

Plots support additional functions, such as year-specific pie charts and multiple pie charts

#### 

File Edit Table Help

Scenario	Regions	Queries
Ref4p2 2016-8-2T14:04:25-05:00	USA 🔺	📔 queries 🔹
30pctCO2RdxUSA 2016-8-2T15:01:32-05:00	Africa_Eastern	📄 📲 Primary Energy
40pctCO2RdxUSA 2016-8-2T15:46:21-05:00	Africa_Northern	Primary Energy Consumption (Average Fossil Efficiency Conversion)
50pctCO2RdxUSA 2016-8-2T16:16:28-05:00	Africa_Southern	Primary Energy Consumption (Direct Equivalent)
60pctCO2RdxUSA 2016-8-2T16:51:10-05:00	Africa_Western	Primary energy with CCS (Direct Equivalent)
70pctCO2RdxUSA 2016-8-2T17:12:26-05:00	Australia_NZ	
80pctCO2RdxUSA 2016-8-2T17:39:01-05:00	Brazil	Regional primary energy costs
Test 2016-4-10T07:44:25-04:00	Canada	🚊 📲 Electricity
	Central America and Caribbean	Electricity generation by region (ind rooftop PV and CHP)
	Central Asia	Electricity generation by region (central only)
	China	Electricity generation by aggregate technology
	EU-12	Could not generate list.
	EU-15	Electricity generation by aggregate technology_dispatch
	Europe_Eastern	Run Query Update Single Queries Create Remove Edit
J	Europe Non El	Cleate Remove Eur

#### 

File Edit Table Help

	Scenario	Regions	Queries
	Ref4p2 2016-8-2T14:04:25-05:00	USA	Jueries A
	3/tCO2RdxUSA 2016-8-2T15:01:32-05:00	Africa_Eastern	🗐 🖳 Primary Energy
Н	ctCO2RdxUSA 2016-8-2T15:46:21-05:00	Africa_Northern	Primary Energy Consumption (Average Fossil Efficiency Conversion)
))	O2RdxUSA 2016-8-2T16:16:28-05:00	Africa_Southern	Primary Energy Consumption (Direct Equivalent)
[	O2RdxUSA 2016-8-2T16:51:10-05:00	Africa_Western	Primary energy with CCS (Direct Equivalent)
	CO2RdxUSA 2016-8-2T17:12:26-05:00	Australia_NZ	Resource production
	opctCO2RdxUSA 2016-8-2T17:39:01-05:00	Brazil	
	Test 2016-4-10T07:44:25-04:00	Canada	Electricity
		Central America and Caribbean	Electricity generation by region (incl rooftop PV and CHP)
		Central Asia	Electricity generation by region (central only)
		China	Electricity generation by aggregate technology
		EU-12	Could not generate list.
		EU-15	Electricity generation by aggregate technology_dispatch
		Europe_Eastern	Run Query Update Single Queries Create Remove Edit
	J	Europe Non El	Create Reinove Luit

## We can also view and compare multiple scenarios

#### 

#### File Edit Table Help

The Earce I	able Help													
	Scenario						legions				-			Queries
Ref4p2 201						SA .	legions					eries		Quenes
		6-8-2T15:01:32-05	5:00			rica_Easter				-		Primary En	erav	=
		6-8-2T15:46:21-05				rica_Laste								Imption (Average Fossil Efficiency Conversion)
		6-8-2T16:16:28-05				rica_North								Imption (Direct Equivalent)
		6-8-2T16:51:10-05				rica_30001				E				CCS (Direct Equivalent)
		6-8-2T17:12:26-05				istralia NZ							urce production	Co (Direct Equivalent)
		6-8-2T17:12:26-05				azil							and primary energy	av ceste
			5:00			azii anada						Electricity	nai prinai y ener	gy costs
Test 2016-	4-10T07:44	:25-04:00				entral Amer							isity concration	by region (incl rooftop PV and CHP)
						entral Amer	ica anu ca	nobean						by region (central only)
						ina Asia								by aggregate technology
						ina 1-12					11 7		ould not generation	
						-12  -15							-	by aggregate technology_dispatch
						rope_East				-	R	Query	Update	e Single Queries Create Remove Edit
											N	2		
Electricity	v generation	by aggregate tec	hnology								$\mathcal{V}'$	5		
	y generation	rby aggregate tee									(* ·	1/		
scenario	region	technology	1990	2005	2010	2015	2020	2025	2030	2035	2040	2045	2050 205	
30pctCO2R	. USA	a Coal	6.029	7.68	7.105		8.788				6.#32		6.049	Display 1 🔶 LineChart 👻 🗌 Same Sca
30pctCO2R		b Coal w/CCS	0	0	0	- v	0	0.001	0.129		0.441		0.775	
30pctCO2R		c Gas	1.026	2.569	3.385	3.88	4.276	4.045			4.451		4.609	Electricity generation by
30pctCO2R		d Gas w/CCS	0	0	0	-	0	0.002	0.175		0.599		1.034	aggregate technology
30pctCO2R		e Oil	0.451	0.455	0.145		0.107	0.106	0.107	0.101	0.099		0.102	aggregate technology
30pctCO2R		f Oil w/CCS	0	0	0	-	0				0.087		0.128 (	
30pctCO2R		g Biomass	0.079	0.111	0.115		0.071	0.114	0.153		0.218		0.295 (	8
30pctCO2R		h Biomass w/	0	0	0	-	0	-	0.061	0.129	0.203		0.355	1 S
30pctCO2R		i Nuclear	2.201	2.919	3.02		3.303		3.534		4.433		5.288	2°
30pctCO2R		j Geothermal	0.058	0.06	0.063		0.161	0.164	0.32		0.577		0.77	E a a a a a a a a a a a a a a a a a a a
30pctCO2R		k Hydro	0.983	0.982	0.945		0.964				0.998		1.007	B ATTACK AND AND A
30pctCO2R		l Wind	0.011	0.064	0.343		0.542		0.909		1.604		2.708	2
30pctCO2R		m Solar	0.002	0.004	0.014		0.039	0.046	0.115		0.318		0.586 (	
30pctCO2R		n CHP	0.689	0.522	0.538	0.485	0.512		0.983	0.99	0.959		0.948 (	060606060606060606060
Test,date=		a Coal	6.029	7.68	7.105		8,118	7.949	7.634		6.274		4.302	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Test,date=		b Coal w/CCS	0	0	0	-	0		0.088	0.23	0.493		1.212	Year
Test,date=		c Gas	1.026	2.569	3.385		3.934		4.257	4.346	4.416		4.178	
Test,date=		d Gas w/CCS	0	0	0	-	0	0.041	0.149		0.669		1.434	Electricity generation by
Test,date=		e Oil	0.451	0.455	0.145		0.103		0.102		0.098		0.104	aggregate technology
Test,date=		f Oil w/CCS	0	0	0		0	0.013	0.033		0.11		0.243	
Test,date=		g Biomass	0.079	0.111	0.115		0.084	0.118	0.158	0.195	0.233		0.27	10 -
Test,date=		h Biomass w/	0	0	0	-	0		0.035		0.234		0.686	
Test,date=		i Nuclear	2.201	2.919	3.02		3.199	3.282			4.665		6.04	
Test,date=	. USA	j Geothermal	0.058	0.06	0.063	0.117	0.141	0.208	0.327	0.477	0.613	0.74	0.795	
													P	

## When multiple scenarios and/or regions are selected, graphics for each are created

File Edit Table Help

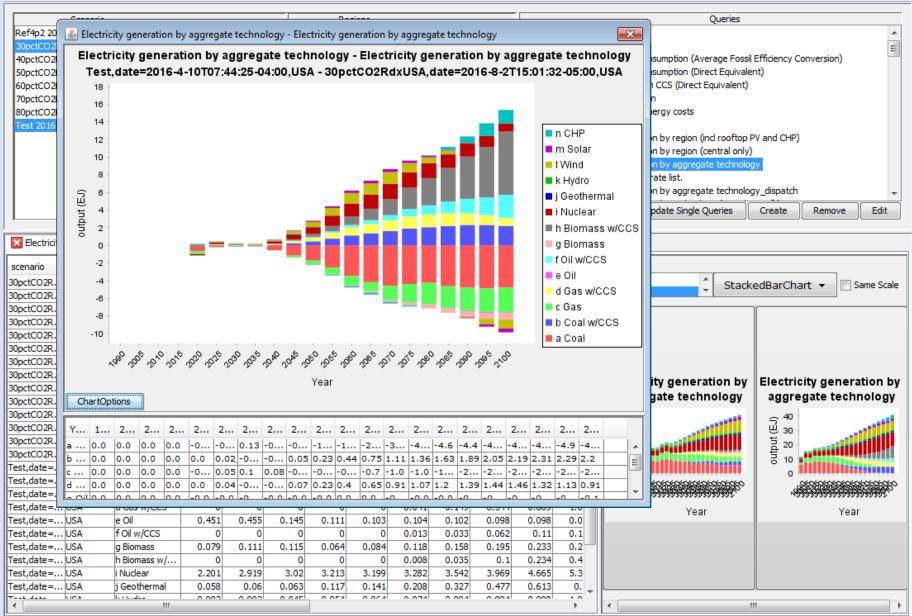
Scenario	Regions		Queries
Ref4p2 2016-8-2T14:04:25-05:00	USA	*	🔰 queries 🔹
30pctCO2RdxUSA 2016-8-2T15:01:32-05:00	Africa_Eastern		🚊 📲 Primary Energy
40pctCO2RdxUSA 2016-8-2T15:46:21-05:00	Africa_Northern		Primary Energy Consumption (Average Fossil Efficiency Conversion)
50pctCO2RdxUSA 2016-8-2T16:16:28-05:00	Africa_Southern	=	
60pctCO2RdxUSA 2016-8-2T16:51:10-05:00	Africa_Western		Primary energy with CCS (Direct Equivalent)
70pctCO2RdxUSA 2016-8-2T17:12:26-05:00	Australia_NZ		
80pctCO2RdxUSA 2016-8-2T17:39:01-05:00	Brazil		Regional primary energy costs
Test 2016-4-10T07:44:25-04:00	Canada		🚊 📲 Electricity
	Central America and Caribbean		Electricity generation by region (incl rooftop PV and CHP)
	Central Asia		Electricity generation by region (central only)
	China		Electricity generation by aggregate technology
	EU-12		Could not generate list.
	EU-15		Electricity generation by aggregate technology_dispatch
	Europe_Eastern	_	Run Query Update Single Queries Create Remove Edit
J	Europe Non El	•	

#### 🔀 Electricity generation by aggregate technology

scenario	region	technology	1990	2005	2010	2015	2020	2025	2030	2035	2040	2045	
30pctCO2R	USA	a Coal	6.029	7.68	7.105	8.216	8.788	8.114	7.506	7.121	6.832	6.4 🔺	Display 1 StackedBarChart - Same Scale
30pctCO2R	USA	b Coal w/CCS	0	0	0	0	0	0.001	0.129	0.273	0.441	0.5	
30pctCO2R	USA	c Gas	1.026	2.569	3.385	3.88	4.276	4.045	4.162	4.267	4.451	4.5	
30pctCO2R	USA	d Gas w/CCS	0	0	0	0	0	0.002	0.175	0.368	0.599	0.8	
30pctCO2R	USA	e Oil	0.451	0.455	0.145	0.111	0.107	0.106	0.107	0.101	0.099	0.0	
30pctCO2R	USA	f Oil w/CCS	0	0	0	0	0	0	0.04	0.062	0.087	0.1	
30pctCO2R	USA	g Biomass	0.079	0.111	0.115	0.064	0.071	0.114	0.153	0.181	0.218	0.2	
30pctCO2R	USA	h Biomass w/	0	0	0	0	0	0	0.061	0.129	0.203	0.	Electricity generation by Electricity generation by
30pctCO2R	USA	i Nuclear	2.201	2.919	3.02	3.213	3.303	3.121	3.534	3.932	4.433	4.8	
30pctCO2R	USA	j Geothermal	0.058	0.06	0.063	0.117	0.161	0.164	0.32	0.468	0.577	0.6	aggregate technology aggregate technology
30pctCO2R	USA	k Hydro	0.983	0.982	0.945	0.954	0.964	0.974	0.984	0.994	0.998	1.0 _E	S
30pctCO2R	USA	l Wind	0.011	0.064	0.343	0.458	0.542	0.547	0.909	1.34	1.604	2.1	
30pctCO2R	USA	m Solar	0.002	0.004	0.014	0.027	0.039	0.046	0.115	0.203	0.318	0.4	5 ²⁰ 5 ₂₀
30pctCO2R	USA	n CHP	0.689	0.522	0.538	0.485	0.512	0.884	0.983	0.99	0.959	0.9	
Test,date=	USA	a Coal	6.029	7.68	7.105	8.216	8.118	7.949	7.634	7.051	6.274	5.3	
Test,date=	USA	b Coal w/CCS	0	0	0	0	0	0.021	0.088	0.23	0.493	0.	
Test,date=	USA	c Gas	1.026	2.569	3.385	3.88	3.934	4.09	4.257	4.346	4.416	4.3	
Test,date=	USA	d Gas w/CCS	0	0	0	0	0	0.041	0.149	0.344	0.669	1.0	Year Year
Test,date=	USA	e Oil	0.451	0.455	0.145	0.111	0.103	0.104	0.102	0.098	0.098	0.0	
Test,date=	USA	f Oil w/CCS	0	0	0	0	0	0.013	0.033	0.062	0.11	0.1	
Test,date=	USA	g Biomass	0.079	0.111	0.115	0.064	0.084	0.118	0.158	0.195	0.233	0.2	
Test,date=	USA	h Biomass w/	0	0	0	0	0	0.008	0.035	0.1	0.234	0.4	
Test,date=	USA	i Nuclear	2.201	2.919	3.02	3.213	3.199	3.282	3.542	3.969	4.665	5.3	
Test,date=	USA	j Geothermal	0.058	0.06	0.063	0.117	0.141	0.208	0.327	0.477	0.613	0. 🖵	
T	LICA.	In the same	0.000	0.000	0.045	0.054	0.004	0.074	0.004	0.004	0.000	10	

## We can change the display type to facilitate comparison

File Edit Table Help


Scenario	Regions		Queries
Ref4p2 2016-8-2T14:04:25-05:00	USA	*	🔒 queries 🔹
30pctCO2RdxUSA 2016-8-2T15:01:32-05:00	Africa_Eastern		🚊 📲 Primary Energy
40pctCO2RdxUSA 2016-8-2T15:46:21-05:00	Africa_Northern		Primary Energy Consumption (Average Fossil Efficiency Conversion)
50pctCO2RdxUSA 2016-8-2T16:16:28-05:00	Africa_Southern	=	
60pctCO2RdxUSA 2016-8-2T16:51:10-05:00	Africa_Western		
70pctCO2RdxUSA 2016-8-2T17:12:26-05:00	Australia_NZ		
80pctCO2RdxUSA 2016-8-2T17:39:01-05:00	Brazil	-	Regional primary energy costs
Test 2016-4-10T07:44:25-04:00	Canada		Electricity
	Central America and Caribbean		Electricity generation by region (incl rooftop PV and CHP)
	Central Asia		Electricity generation by region (central only)
	China		Electricity generation by aggregate technology
	EU-12		Could not generate list.
	EU-15		Electricity generation by aggregate technology_dispatch
	Europe_Eastern		Run Query Update Single Queries Create Remove Edit
J	Europe Non Ell	Ŧ	

#### Electricity generation by aggregate technology

scenario	region	technology	1990	2005	2010	2015	2020	2025	2030	2035	2040	2045		
30pctCO2R	USA	a Coal	6.029	7.68	7.105	8.216	8.788	8.114	7.506	7.121	6.832	6.4		Display 1 StackedBarChart 🗸 🗖 Same Sca
30pctCO2R	USA	b Coal w/CCS	0	0	0	0	0	0.001	0.129	0.273	0.441	0.5	٦Ľ	
30pctCO2R	USA	c Gas	1.026	2.569	3.385	3.88	4.276	4.045	4.162	4.267	4.451	4.5	Uh	) (
30pctCO2R	USA	d Gas w/CCS	0	0	0	0	0	0.002	0.175	0.368	0.599	0.8		
30pctCO2R	USA	e Oil	0.451	0.455	0.145	0.111	0.107	0.106	0.107	0.101	0.099	0.0		Region Sum
30pctCO2R	USA	f Oil w/CCS	0	0	0	0	0	0	0.04	0.062	0.087	0.1		
30pctCO2R	USA	g Biomass	0.079	0.111	0.115	0.064	0.071	0.114	0.153	0.181	0.218	0.2		Difference
30pctCO2R	USA	h Biomass w/	0	0	0	0	0	0	0.061	0.129	0.203	0.		Ele Statistic by Electricity generation b
30pctCO2R	USA	i Nuclear	2.201	2.919	3.02	3.213	3.303	3.121	3.534	3.932	4.433	4.8		
30pctCO2R	USA	j Geothermal	0.058	0.06	0.063	0.117	0.161	0.164	0.32	0.468	0.577	0.6		aggregation in aggregate technology
30pctCO2R	USA	k Hydro	0.983	0.982	0.945	0.954	0.964	0.974	0.984	0.994	0.998	1.0		
30pctCO2R	USA	l Wind	0.011	0.064	0.343	0.458	0.542	0.547	0.909	1.34	1.604	2.1		
30pctCO2R	USA	m Solar	0.002	0.004	0.014	0.027	0.039	0.046	0.115	0.203	0.318	0.4		5 20 5 20 5 20 5 20 5 20 5 20 5 20 5 20
30pctCO2R	USA	n CHP	0.689	0.522	0.538	0.485	0.512	0.884	0.983	0.99	0.959	0.9		
Test,date=	USA	a Coal	6.029	7.68	7.105	8.216	8.118	7.949	7.634	7.051	6.274	5.3		
Test,date=	USA	b Coal w/CCS	0	0	0	0	0	0.021	0.088	0.23	0.493	0.		0403004030303030303030
Test,date=	USA	c Gas	1.026	2.569	3.385	3.88	3.934	4.09	4.257	4.346	4.416	4.3		
Test,date=	USA	d Gas w/CCS	0	0	0	0	0	0.041	0.149	0.344	0.669	1.0		Year Year
Test,date=	USA	e Oil	0.451	0.455	0.145	0.111	0.103	0.104	0.102	0.098	0.098	0.0		
Test,date=	USA	f Oil w/CCS	0	0	0	0	0	0.013	0.033	0.062	0.11	0.1		
Test,date=	USA	g Biomass	0.079	0.111	0.115	0.064	0.084	0.118	0.158	0.195	0.233	0.2	1	
Test,date=	USA	h Biomass w/	0	0	0	0	0	0.008	0.035	0.1	0.234	0.4		
Test,date=	USA	i Nuclear	2.201	2.919	3.02	3.213	3.199	3.282	3.542	3.969	4.665	5.3		
Test,date=	USA	j Geothermal	0.058	0.06	0.063	0.117	0.141	0.208	0.327	0.477	0.613	0.	- 1	
<b>⊤</b> ⊾	LICA.	liter e catalana III	0.002	0.000	0.045	0.054	0.004	0.074	0.004	0.004	0.000	1		•

## And automatically show differences

File Edit Table Help



Here is the resulting difference plot for electricity production between two scenarios

#### 

File Edit Table Help

Scenario	Regions	Queries
Ref4p2 2016-8-2T14:04:25-05:00	USA	🔺 🎍 queries 🔹
30pctCO2RdxUSA 2016-8-2T15:01:32-05:00	Africa_Eastern	👘 🌐 Primary Energy 📰
40pctCO2RdxUSA 2016-8-2T15:46:21-05:00	Africa_Northern	Primary Energy Consumption (Average Fossil Efficiency Conversion)
50pctCO2RdxUSA 2016-8-2T16:16:28-05:00	Africa_Southern	Primary Energy Consumption (Direct Equivalent)
60pctCO2RdxUSA 2016-8-2T16:51:10-05:00	Africa_Western	Primary energy with CCS (Direct Equivalent)
70pctCO2RdxUSA 2016-8-2T17:12:26-05:00	Australia_NZ	Resource production
80pctCO2RdxUSA 2016-8-2T17:39:01-05:00	Brazil	Regional primary energy costs
Test 2016-4-10T07:44:25-04:00	Canada	🚊 📲 Electricity
	Central America and Caribbean	Electricity generation by region (ind rooftop PV and CHP)
	Central Asia	Electricity generation by region (central only)
	China	Electricity generation by aggregate technology
	EU-12	Could not generate list.
	EU-15	Electricity generation by aggregate technology_dispatch
	Europe_Eas	Run Query     Update Single Queries     Create     Remove     Edit
J	Europe Non	Run Query     Update Single Queries     Create     Remove     Edit

### Another options is to view multiple regions simultaneously

#### 

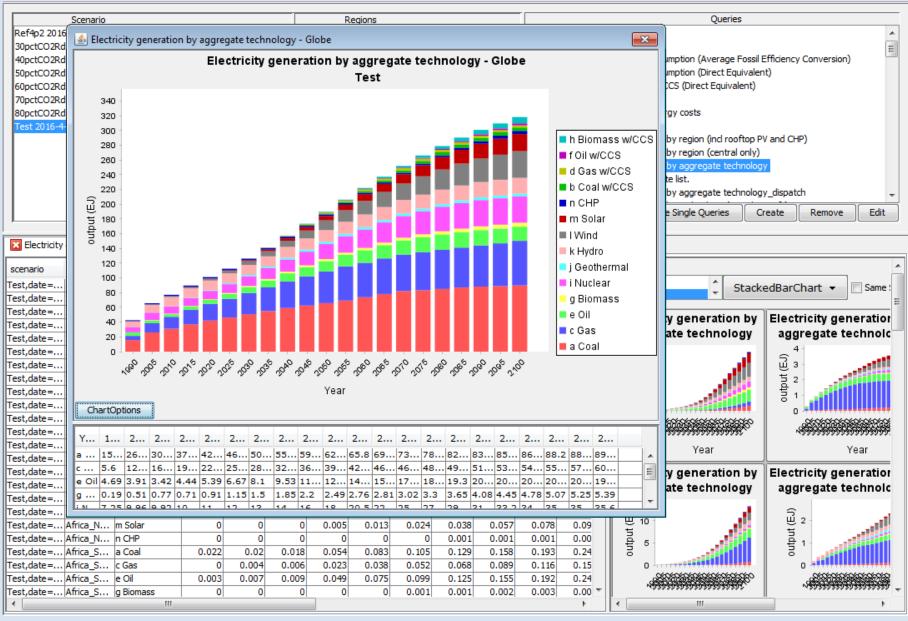
File Edit Table Help

	Scenario					R	legions						Queries
Ref4p2 201	16-8-2T14:04	1:25-05:00			US	SA					- 🔝 o	queries	A
30pctCO2R	dxUSA 2016	-8-2T15:01:32-0	5:00		Af	rica_Easter					<b>İ</b> .	📗 Primary Ene	ergy
40pctCO2R	dxUSA 2016	-8-2T15:46:21-0	5:00		Af	rica_North	ern					Primar	ry Energy Consumption (Average Fossil Efficiency Conversion)
50pctCO2R	dxUSA 2016	-8-2T16:16:28-0	5:00		Af	rica South	ern			=			ry Energy Consumption (Direct Equivalent)
60pctCO2R	dxUSA 2016	-8-2T16:51:10-0	5:00		Af	rica Weste	ern			-			ry energy with CCS (Direct Equivalent)
70pctCO2R	dxUSA 2016	-8-2T17:12:26-0	5:00		Au	ustralia NZ							urce production
80pctCO2R	dxUSA 2016	-8-2T17:39:01-0	5:00			azil						Regio	nal primary energy costs
Test 2016-4	4-10T07:44:	25-04:00			Ca	anada					<u> </u>	Electricity	
						entral Amer	ica and Ca	aribbean				Electri	icity generation by region (incl rooftop PV and CHP)
						entral Asia							icity generation by region (central only)
						nina							icity generation by aggregate technology
						J-12							ould not generate list.
						J-15							icity generation by aggregate technology_dispatch
						rope East	ern					<u> </u>	
						rope_Last	FU			-	R	un Cery	Update Single Queries Create Remove Edit
												$\Delta \setminus $	
Electricity	y generation	by aggregate te	chnology									$\gamma_{1}$	
						_						$( \cdot \cdot )$	
scenario	region	technology	1990	2005	2010	2015	2020	2025	2030	2035	2040		
Test,date=	. Africa_E	a Coal	0.001	0.002	0.003	0.011	0.016	0.02	0.025	0.031	0.0	38 0.04 -	Display 2 StackedBarChart - Same
Test,date=	. Africa_E	c Gas	0	0	0	0.005	0.008	0.011	0.015	0.021	0.0	28 0.0 =	3
Test,date=	. Africa_E	e Oil	0.008	0.027	0.037	0.091	0.113	0.14	0.17	0.209	0.2	.54 0.32	Electricity generation by Electricity generation
Test,date=			0.001	0.001	0.001	0.004	0.007	0.01	0.015	0.022	0.	03 0.04	
Test,date=	. Africa_E	i Nuclear	0	0	0	0.002	0.002	0.007	0.018	0.035	0.0	56 0.08	aggregate technology aggregate technolo
Test,date=	. Africa_E	j Geothermal	0.001	0.004	0.005	0.02	0.029	0.039	0.05	0.062	0.	07 0.07	
Test,date=	. Africa_E	k Hydro	0.022	0.035	0.054	0.071	0.089	0.106	0.123	0.141	0.1	.75 0.20	
Test,date=	. Africa_E	l Wind	0	0	0	0.01	0.02	0.035	0.057	0.09	0.1	.33 0.1	54 52
Test,date=	. Africa_E	m Solar	0	0	0	0.008	0.016	0.024	0.036	0.053	0.0	78 0.10	(rg) 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Test,date=	. Africa_E	n CHP	0	0	0	0	0.001	0.002	0.004	0.006	0.0	09 0.01	
Test,date=	. Africa_N	a Coal	0.008	0.047	0.04	0.055	0.068	0.077	0.087	0.095	0.1	.02 0.10	30303030303030300, 000303030303030303030
Test,date=	. Africa_N	c Gas	0.136	0.482	0.636	0.805	0.958	1.092	1.222	1.342	1.4	36 1.51	······································
Test,date=	. Africa_N	e Oil	0.118	0.127	0.2	0.252	0.277	0.31	0.332	0.347	0.3	55 0.36	Year Year
Test,date=	. Africa_N	g Biomass	0	0	0	0.001	0.003	0.005	0.008	0.011	0.0	14 0.01	lean lean
Test,date=			0	0	0	0.001	0.002	0.006	0.014	0.025	0.0	36 0.04	Electricity generation by Electricity generation
Test,date=	. Africa_N	j Geothermal	0	0	0	0.007	0.016	0.026	0.036	0.046	0.0	54 0.05	aggregate technology aggregate technolc
Test,date=			0.041	0.052	0.06	0.063	0.066	0.069	0.072	0.075	0.0	81 0.08	
Test,date=	. Africa_N	l Wind	0	0.003	0.008	0.018	0.03	0.047	0.068	0.094	0.1	.14 0.13	
Test,date=	. Africa_N	m Solar	0	0	0	0.005	0.013	0.024	0.038	0.057	0.0	78 0.09	
Test,date=	. Africa_N	n CHP	0	0	0	0	0	0	0.001	0.001	0.0	01 0.00	output 5
Test,date=	. Africa_S	a Coal	0.022	0.02	0.018	0.054	0.083	0.105	0.129	0.158	0.1	93 0.24	
Test,date=	. Africa_S	c Gas	0	0.004	0.006	0.023	0.038	0.052	0.068	0.089	0.1	16 0.15	0
Test,date=	. Africa_S	e Oil	0.003	0.007	0.009	0.049	0.075	0.099	0.125	0.155	0.1	.92 0.24	
Test,date=	. Africa_S	g Biomass	0	0	0	0	0	0.001	0.001	0.002	0.0	03 0.00 -	. 20202020202020202020202020202020202020
•	_											+	۰ III - ۲

When you select multiple regions, each gets its own figure.

#### 

File Edit Table Help


Scenario	Regions	Queries	
Ref4p2 2016-8-2T14:04:25-05:00	USA	🔺 🌗 queries	
30pctCO2RdxUSA 2016-8-2T15:01:32-05:00	Africa_Eastern	🔲 🚊 Primary Energy	=
40pctCO2RdxUSA 2016-8-2T15:46:21-05:00	Africa_Northern		
50pctCO2RdxUSA 2016-8-2T16:16:28-05:00	Africa_Southern	Primary Energy Consumption (Direct Equivalent)	
60pctCO2RdxUSA 2016-8-2T16:51:10-05:00	Africa_Western	Primary energy with CCS (Direct Equivalent)	
70pctCO2RdxUSA 2016-8-2T17:12:26-05:00	Australia_NZ	Resource production	
80pctCO2RdxUSA 2016-8-2T17:39:01-05:00	Brazil	Regional primary energy costs	
Test 2016-4-10T07:44:25-04:00	Canada	🚊 🖓 📙 Electricity	
	Central America and Caribbean	Electricity generation by region (ind rooftop PV and CHP)	
	Central Asia	Electricity generation by region (central only)	
	China	Electricity generation by aggregate technology	
	EU-12	Could not generate list.	
	EU-15	Electricity generation by aggregate technology_dispatch	-
	Europe_Eastern	Run Query     Update Single Queries     Create     Remove     Ed	i+
J	Europe Non El l	✓ Run Query Update Single Queries Create Remove Ed	n.

#### Electricity generation by aggregate technology

scenario	region	technology	1990	2005	2010	2015	2020	2025	2030	2035	2040	2045	
Test,date=	Africa_E	a Coal	0.001	0.002	0.003	0.011	0.016	0.02	0.025	0.031	0.038	0.04 🔺	Display 2 StackedBarChart - Same
Test,date=	Africa_E	c Gas	0	0	0	0.005	0.008	0.011	0.015	0.021	0.028	0.0 =	
Test,date=	Africa_E	e Oil	0.008	0.027	0.037	0.091	0.113	0.14	0.17	0.209	0.254	0.32	Electricity generation by Electricity generation
Test,date=	Africa_E	g Biomass	0.001	0.001	0.001	0.004	0.007	0.01	0.015	0.022	0.03	0.04	
Test,date=	Africa_E	i Nuclear	0	0	0	0.002	0.002	0.007	0.018	0.035	0.056	0.08	3,
Test,date=	Africa_E	j Geothermal	0.001	0.004	0.005	0.02	0.029	0.039	0.05	0.062	0.07	0.07	Region Sym
Test,date=	Africa_E	k Hydro	0.022	0.035	0.054	0.071	0.089	0.106	0.123	0.141	0.175	0.20	Difference Difference
Test,date=	Africa_E	l Wind	0	0	0	0.01	0.02	0.035	0.057	0.09	0.133	0.1	
Test,date=	Africa_E	m Solar	0	0	0	0.008	0.016	0.024	0.036	0.053	0.078	0.10	Statistic Statistic
Test,date=	Africa_E	n CHP	0	0	0	0	0.001	0.002	0.004	0.006	0.009	0.01	
Test,date=	Africa_N	a Coal	0.008	0.047	0.04	0.055	0.068	0.077	0.087	0.095	0.102	0.10	
Test,date=	Africa_N	c Gas	0.136	0.482	0.636	0.805	0.958	1.092	1.222	1.342	1.436	1.51	· · · · · · · · · · · · · · · · · · ·
Test,date=	Africa_N	e Oil	0.118	0.127	0.2	0.252	0.277	0.31	0.332	0.347	0.355	0.36	Year Year
Test,date=	Africa_N	g Biomass	0	0	0	0.001	0.003	0.005	0.008	0.011	0.014	0.01	
Test,date=	Africa_N	i Nuclear	0	0	0	0.001	0.002	0.006	0.014	0.025	0.036	0.04	Electricity generation by Electricity generatio
Test,date=	Africa_N	j Geothermal	0	0	0	0.007	0.016	0.026	0.036	0.046	0.054	0.05	aggregate technology aggregate technol
Test,date=	Africa_N	k Hydro	0.041	0.052	0.06	0.063	0.066	0.069	0.072	0.075	0.081	0.08	
Test,date=	Africa_N	l Wind	0	0.003	0.008	0.018	0.03	0.047	0.068	0.094	0.114	0.13	<u><u><u></u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u></u>
Test,date=	Africa_N	m Solar	0	0	0	0.005	0.013	0.024	0.038	0.057	0.078	0.09	
Test,date=	Africa_N	n CHP	0	0	0	0	0	0	0.001	0.001	0.001	0.00	output 5-
Test,date=	Africa_S	a Coal	0.022	0.02	0.018	0.054	0.083	0.105	0.129	0.158	0.193	0.24	5
Test,date=	Africa_S	c Gas	0	0.004	0.006	0.023	0.038	0.052	0.068	0.089	0.116	0.15	
Test,date=	Africa_S	e Oil	0.003	0.007	0.009	0.049	0.075	0.099	0.125	0.155	0.192	0.24	
Test,date=	Africa_S	g Biomass	0	0	0	0	0	0.001	0.001	0.002	0.003	• 0.00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
•		111										P.	۰ III + I

You can create aggregate regions by summing over the model regions...

File Edit Table Help



This shows global totals, but you can sum across any aggregate

# SEPA Lessons learned and next steps

# Lessons:

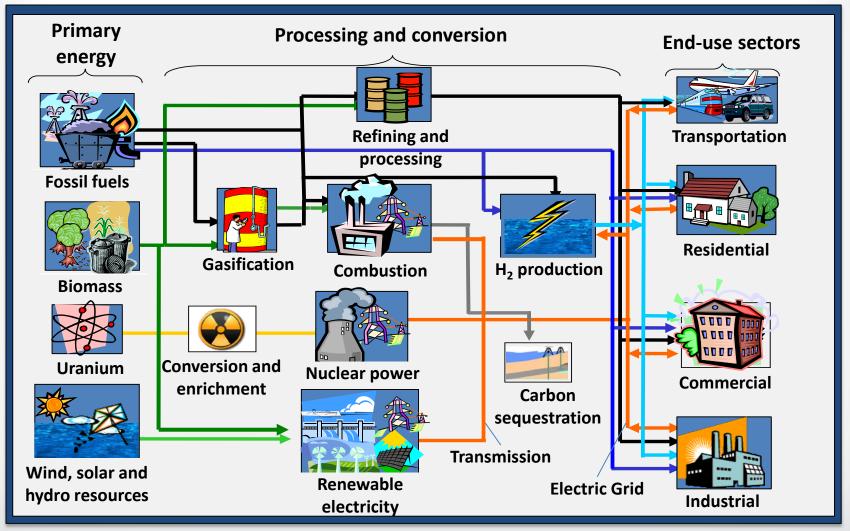
- GCAM-USA is a complex modeling system and its use has required building expertise in R, C++, xml, MS Visual Studio
- However, it appears the paradigm of integrating GCAM-USA into the GLIMPSE framework is very workable and has value to our partners

# Next steps:

- Continue harmonizing emission factors
  - rail and marine shipping, industrial, other pollutants
- Improving policy levers
  - Renewable electricity standards applicable to both new and old generation
  - End-use efficiency standards
- Internal Beta test of Scenario Builder and Enhanced Model Interface in late 2016
- External Beta test of Scenario Builder and Enhanced Model Interface in 2017?



# **Questions?**


Contact information:

Dan Loughlin, U.S. EPA, ORD – <u>loughlin.dan@epa.gov</u> Chris Nolte, U.S. EPA, ORD – <u>nolte.chris@epa.gov</u>

# Background The energy system

# **Components of the energy system**

**SEPA**





## **Background**

# **Energy and the environment**

# Energy system contributions to environmental concerns:

# Air quality¹

- Photochemical smog: 92% of nitrogen oxide (NOx) emissions*
- Acid rain: 90% of sulfur dioxide (SO₂) emissions*

# Climate change²

- Greenhouse gas emissions: 95% of carbon dioxide  $(CO_2)$  emissions*
- Major source of short-lived climate pollutants (e.g., black carbon, methane)

# Water

- Demands: electricity production accounts for 45% of U.S. water withdrawals³
- Pollution:
  - wastewater from fuel extraction and processing, seepage from waste
  - eutrophication from N deposition, acidification from S and N deposition
  - heat pollution from cooling water discharge

# Waste production

– Mine tailings, combustion residues, agricultural wastes

*Percentage of U.S. anthropogenic emissions from the energy system in 2014
^I EPA trends report
² EPA 2016 GHG Inventory
³ Maupin et al., 2014 (USGS)