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Abstract:  Chemical features observed using high-resolution mass spectrometry can be 39 

tentatively identified using online chemical reference databases by searching molecular formulae 40 

and monoisotopic masses and then rank-ordering of the hits using appropriate relevance criteria.  41 

The most likely candidate “known unknowns,” which are those chemicals unknown to an 42 

investigator but contained within a reference database or literature source, rise to the top of a 43 

chemical list when rank-ordered by the number of associated data sources.  The U.S. EPA’s 44 

CompTox Chemistry Dashboard is a curated and freely available resource for chemistry and 45 

computational toxicology research, containing more than 720,000 chemicals of relevance to 46 

environmental health science.  In this research, the performance of the Dashboard for identifying 47 

known unknowns was evaluated against that of the online ChemSpider database, one of the 48 

primary resources used by mass spectrometrists, using multiple previously studied datasets 49 

reported in the peer-reviewed literature totaling 162 chemicals. These chemicals were examined 50 

using both applications via molecular formula and monoisotopic mass searches followed by 51 

rank-ordering of candidate compounds by associated references or data sources.  A greater 52 

percentage of chemicals ranked in the top position when using the Dashboard, indicating an 53 

advantage of this application over ChemSpider for identifying known unknowns using data 54 

source ranking. Additional approaches are being developed for inclusion into a non-targeted 55 

analysis workflow as part of the CompTox Chemistry Dashboard.  This work shows the potential 56 

for use of the Dashboard in exposure assessment and risk decision-making through significant 57 

improvements in non-targeted chemical identification.   58 

 59 

Keywords:  Non-targeted Analysis, Suspect Screening, DSSTox, High Resolution Mass 60 

Spectrometry  61 
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Introduction 62 

Data processing workflows in non-targeted analysis (NTA) and suspect screening 63 

analysis (SSA) routinely identify a small percentage (often <5%) of likely chemical compounds 64 

in environmental samples [1, 2].  Improvements in compound identification can enhance 65 

exposure assessment, especially when the use of confirmation standards is not practical or 66 

possible (at the ‘tentative’ or ‘probable’ degrees of certainty [3-5]).  Online reference databases 67 

can be useful for identifying “known unknowns” by searching intrinsic properties, specifically 68 

molecular formula and monoisotopic mass, and rank-ordering by the number of associated 69 

references or data sources [6, 7].  In this process, the most likely candidate “known unknowns,” 70 

which are those compounds unknown to a researcher but known in a reference dataset or 71 

resource, are elevated to the top of a search results list.  Researchers have previously reported 72 

that the freely available chemical database ChemSpider (http://www.chemspider.com/) [8, 9] 73 

proved more useful than the Chemical Abstract Service (CAS) RegistrySM when identifying 74 

known unknowns, with a key distinction of ChemSpider being the ability to search by 75 

monoisotopic mass [7].  Since this initial work, additional studies have reported using 76 

ChemSpider (amongst other databases) to support structure identification [10-13]. However, to 77 

enhance compound identification strategies, calls have also increased for improvements to open 78 

reference databases and analysis workflows (including “one-pass analysis”), and for public 79 

sharing of mass spectral data [2, 10, 11, 14]. 80 

The United States Environmental Protection Agency (US EPA) is developing a public 81 

resource for computational chemistry, toxicology, and exposure research efforts.  This freely-82 

available resource, known as the CompTox Chemistry Dashboard 83 

(https://comptox.epa.gov/dashboard; hereafter referred to as the Dashboard), is part of a suite of 84 

https://comptox.epa.gov/dashboard
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databases and applications developed by the National Center for Computational Toxicology 85 

(https://www.epa.gov/aboutepa/about-national-center-computational-toxicology-ncct), and 86 

integrates data from the Distributed Structure-Searchable Toxicity (DSSTox) database 87 

(DSSTox_v2) [15].  The underlying database has been expanded, with an emphasis on curation 88 

and characterizing data quality, to include hundreds of thousands of chemicals. Recent efforts have 89 

involved incorporating specific search tools into the Dashboard to benefit NTA.  The Dashboard’s 90 

current utilities include the ability to search a reference database of ~720,000 chemicals by 91 

monoisotopic mass and molecular formula.  In this research, we evaluated the effectiveness of the 92 

Dashboard in the identification of known unknowns,  comparing results against those from the de 93 

facto freely available online database for mass spectrometry based structure identification, 94 

ChemSpider, using the same method of rank-ordering of associated references or data sources 95 

reported by Little et al [7].  Determining the utility of the Dashboard relative to the current standard 96 

of freely available chemistry databases will benefit future research applications both within the US 97 

EPA and the scientific community as a whole by highlighting the effectiveness of tools designed 98 

for NTA users with a new, highly curated chemical reference database.  99 

 100 

Methods 101 

A total of 162 chemicals were selected for the assessment of the Dashboard using search 102 

and data source rank-ordering techniques (see Electronic Supplementary Material Table 1).  The 103 

selected chemicals (n=162) were compiled from the Little et al [7] article that initiated this 104 

approach for NTA and from recent environmental and NTA literature.  Selected chemicals 105 

include pharmaceuticals, dyes, surfactants, chemicals used in manufacturing, and personal care 106 

products that have been previously reported in environmental media (water [2, 13, 16], 107 

https://www.epa.gov/aboutepa/about-national-center-computational-toxicology-ncct
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wastewater [16], dust [1], etc.).  Monoisotopic masses, formulae, and structural identifiers for all 108 

chemicals are reported in the Electronic Supplementary Material (see Electronic Supplementary 109 

Material Table 1).   110 

The workflow of known unknown identification by data source ranking has been 111 

previously described [6, 7]. The same workflow was followed here with minor amendments.  112 

Using the Advanced Search option in the Dashboard, a user can enter either a defined mass range 113 

(i.e. 263.87 to 263.89 amu) or a single mass with an associated error range (i.e. 263.881 amu ± 114 

0.005 amu), see Electronic Supplementary Material Figures 1-6 for more details.  Currently the 115 

Dashboard allows for mass search ranges and error to be entered in atomic mass units (amu) 116 

only. Therefore, monoisotopic masses of selected chemicals were searched using the Advanced 117 

Search tools in both ChemSpider and the Dashboard with an error of 0.005 amu.  Most accurate 118 

mass measurement instruments can achieve a standard deviation of 5 ppm or better mass error; in 119 

order to be applicable for users with a range of accurate mass capabilities, the error window used 120 

in this work (0.005 amu) encompasses at least two standard deviations for all but the highest 121 

molecular weight chemicals.  Advanced Search results were sorted in descending order by the 122 

number of associated references (in ChemSpider per Little et al [7]) or data sources (in the 123 

Dashboard).  References in ChemSpider are the number of external IDs for a given chemical and 124 

data sources in the Dashboard represent the number of times that a dataset in the DSSTox 125 

database contains a particular chemical. Prevalence across many data sources and/or references 126 

is indicative, in this context, of a chemical’s relative likelihood of occurrence [7].  The rank of 127 

each chemical of interest within the search results after sorting was recorded (Figure 1).  The 128 

method was repeated in each application using molecular formulae for every chemical of interest 129 

to compare results of formula-based searching to those of mass-based searching.   130 
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For a complete comparison, ranking results in both applications of the 89 chemicals from 131 

Little et al [7] were also evaluated independently to explicitly assess the Dashboard relative to 132 

the dataset that initiated this approach.  Little et al [7] also evaluated their workflow on a set of 133 

large molecular weight unique commercial polymers not included in the set of 89.  For continuity 134 

of comparison, these 12 compounds were searched and rank-ordered following the above 135 

methods separately from the 162 chemicals.    136 

No modifications to the search parameters or software were made during this study. All 137 

methods are demonstrated in the Electronic Supplemental Material (see Electronic 138 

Supplementary Material Figures 1-6) and can be repeated in the publicly available Dashboard.  139 

Searches were executed in both applications in July 2016. Statistical analyses were conducted in 140 

the R Statistical Computing Environment [17]. 141 

 142 

Results and Discussion 143 

Overall Rank-Ordering 144 

The goal of rank-ordering unidentified chemicals using their monoisotopic mass or 145 

molecular formula is to bring the most likely candidate chemicals to the top of the list for either 146 

tentative identification or further investigation.  Entering monoisotopic masses with an error 147 

range of 0.005 amu and ranking by data sources, the average position rank of all 162 chemicals 148 

in the Dashboard was 1.31 with the number 1 rank occurring 85% of the time (Table 1).  Using 149 

ChemSpider the average position rank across all chemicals was 2.20 with the number 1 rank 150 

occurring in 70% of the 162 searches (this average includes the removal of an outlier where the 151 

rank of one particular chemical was 201); average position rank in the Dashboard was 152 

significantly lower than in ChemSpider (Mann-Whitney U test, p= 0.0005).  Formula-based 153 
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searching yielded improved ranking statistics, consistent with what has been previously reported 154 

in the literature [7].  Mean rank position and percentage of chemicals occurring in the number 155 

one position improved when searching molecular formulae in both applications and 156 

independently, the Dashboard significantly outperformed ChemSpider (p=0.0083, Table 1, 157 

Electronic Supplementary Material Tables 2-3).  Interestingly, mass-based searching in the 158 

Dashboard resulted in similar mean rank position and a higher percentage of chemicals in the 159 

number one rank position than formula-based searching using ChemSpider.  Chemical formula 160 

assignment can vary in certainty with varying mass accuracy.  As mass accuracy declines, more 161 

potential formulae can be generated from the same monoisotopic mass, introducing more error to 162 

formula assignment.  Therefore, skipping the step of formula generation and assignment before 163 

chemical identification would represent an ideal situation leading towards a one-pass analysis 164 

[11].  These data indicate that for the chemicals included in this study, it is just as reliable to 165 

directly search the Dashboard using a monoisotopic mass than it would be to attempt to first 166 

generate a formula and search ChemSpider using the formula. 167 

 168 

Table 1.  Summary statistics of rank-ordering all 162 chemicals using data sources or associated 169 
references in both the CompTox Chemistry Dashboard and in ChemSpider. 170 

 Mass-based Searching Formula-based Searching 
 Dashboard ChemSpider Dashboard ChemSpider 
Average Rank Position 1.3 2.2a 1.2 1.4 
Percent in #1 Position 85% 70% 88% 80% 

aAverage rank in ChemSpider shown here does not include an outlier where the rank was 201, when added the 171 
average rank position is 3.5. 172 

 173 

Rank-Ordering of Chemical Class 174 

  The two largest classes of compounds compiled for this study were pharmaceutical 175 

drugs and industrial chemicals.  When searching monoisotopic masses, 82% and 76% of 176 
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pharmaceutical drugs ranked number one using the Dashboard and ChemSpider, respectively 177 

(Tables 2, 3).  Pharmaceutical drugs are increasingly important in environmental NTA and risk 178 

assessment due to their ubiquitous presence in water and other environmental media [18, 19], 179 

and correctly identifying these compounds is important to document for researchers in 180 

environmental and human health risk assessment.  Greater than 80% of the chemicals in several 181 

other compound classes ranked number one using mass-based searches in the Dashboard, 182 

including industrial chemicals, steroid hormones, pesticides, and veterinary drugs (Table 2).  For 183 

those classes containing more than five chemicals, personal care products resulted in the worst 184 

average rank position of searched masses in both ChemSpider and the Dashboard.  Two 185 

chemicals in particular, paraxanthine, a caffeine metabolite, and hexyl dodecanoate, a skin 186 

conditioning emollient, fell outside of the top five rank-ordered results when searched by both 187 

mass and formula.  In the case of paraxanthine, two other more prevalent metabolites of caffeine 188 

precede it in the data source ranking.  Hexyl dodecanoate has several constitutional isomers, 189 

many of which are also emollients, which rank ahead of it in terms of number of sources.  This 190 

identifies a potential drawback of this rank-ordering workflow in that metabolites and isomers 191 

may not be distinguishable by data source ranking alone. 192 

 193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 
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 203 

Table 2. Results of searching by monoisotopic mass and rank-ordering by number of data 204 
sources in the CompTox Chemistry Dashboard, listed by compound class 205 

Compound class Number in 
class 

Average 
Rank 

Number of compounds in each position rank-ordered 

   #1 #2 #3 #4 #5+ 
Pharmaceutical Drug 72 1.3 59 8 3 2  
Industrial Chemicals 42 1.2 38 1 1 2  
Personal Care Products 8 2.6 6    2 
Steroid Hormones 7 1.0 7     
Perfluorochemicals 6 1.3 5 1    
Pesticides 12 1.3 10 1 1   
Veterinary Drugs 3 1.0 3     
Dyes 2 1.0 2     
Food product/natural 
compounds 

4 1.5 3  1   

Illicit Drugs 2 1.5 1 1    
Misc. Molecules 3a 1.0 3     

aOne organic molecule (tephrosin) not present in the Dashboard 206 

 207 

Table 3. Results of searching by monoisotopic mass and rank-ordering by number of associated 208 
references in ChemSpider, listed by compound class 209 

Compound class Number in 
class 

Average 
Rank 

Number of compounds in each position rank-ordered 

   #1 #2 #3 #4 #5+ 
Pharmaceutical Drug 72 1.4 55 9 6 2  
Industrial Chemicals 42 5.5 28 6 3  5 
Personal Care Products 8 6.1 3 1   4 
Steroid Hormones 7 1.0 7     
Perfluorochemicals 6 1.2 5 1    
Pesticides 12 2.3 6 2 3  1 
Veterinary Drugs 3 1.3 2 1    
Dyes 2 1.0 2     
Food product/natural 
compounds 

4 3.8 2   1 1 

Illicit Drugs 2 2.0 1  1   
Misc. Molecules 3 a 1.3 2 1    

aTephrosin was removed from average rank calculations as it was not present in a Dashboard search 210 

 211 

 212 

 213 
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Comparison to Little et al Datasets 214 

For continuity and comparison, the 89 chemicals used to document ChemSpider’s utility 215 

in known unknown identification were analyzed further (Table 4).  On this smaller subset, the 216 

Dashboard again significantly outperformed ChemSpider (p=0.009) when searching 217 

monoisotopic mass and the average rank of molecular formula searches were similar (Table 4).  218 

A greater number of chemicals ranked number one when rank ordering after a mass search in the 219 

Dashboard than after a formula search in ChemSpider, mirroring what was observed on the 220 

entire set of 162 chemicals.  However, one chemical within the Little et al [7] list was present in 221 

ChemSpider but not in the Dashboard. Tephrosin, a natural toxin, is not contained within the 222 

DSSTox database, and therefore not searchable in the Dashboard.  Additionally, ChemSpider’s 223 

performance based on this analysis did not match that which was previously reported [7].  224 

Specifically, the number of times each chemical ranked number one when searched by molecular 225 

formula declined.  226 

A set of 12 large molecular weight chemical compounds (all MW>600 Da) were 227 

evaluated separately from the list of 89 in the initial research by Little et al [7] to determine 228 

identification efficacy of unique commercial polymer additives.  For a complete assessment, 229 

these 12 compounds were separately evaluated following the same methods.  Two of the 12 230 

compounds were absent from the Dashboard while all 12 were contained within ChemSpider 231 

(see Electronic Supplementary Material Table 4). By rank-ordering, all of the compounds in this 232 

list that were contained in the Dashboard ranked number 1 by both mass and formula searching.  233 

However, this does highlight that chemicals outside the domain of the database are not captured 234 

in this method, indicating that for true unknowns other identification processes need to be 235 

incorporated.   236 
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The number of entries in ChemSpider has doubled since 2012, from 26 million to 57 237 

million today.  More entries can be beneficial (as reflected in the omissions in the Dashboard), 238 

but it can also interfere with the identification of likely candidate chemicals as reported in this 239 

research (Table 4).  This is also true for other resources such as PubChem (presently containing 240 

more than 90 million chemicals [20]) as well as the Chemical Abstracts Service (CAS) 241 

RegistrySM (containing more than 100 million chemicals). A comparison of the number of 242 

possible results returned from formula searches in each platform illustrates this complication (see 243 

Electronic Supplementary Material Table 5).  For the formula of piperine (C17H19NO3), 244 

PubChem returns 20,000 possible results, ChemSpider returns 9000, and the Dashboard returns 245 

100.  Based on data source ranking piperine was the top result in the Dashboard and the 4th 246 

highest in ChemSpider. The Dashboard is being developed with a focus on high-quality data of 247 

particular value to the environmental sciences and toxicology communities.  Large scale 248 

collections of chemicals extracted from patents and chemical vendor collections are not included 249 

in the database as support for these efforts is already provided by PubChem and ChemSpider.  250 

This approach leads to a cleaner database allowing for more precise known unknown 251 

identification.  252 

 253 

Table 4.  Summary statistics and rank-ordered position in the CompTox Chemistry Dashboard 254 
and ChemSpider of the 89 compound subset from the Little et al [7] study 255 

  Average Rank Number in each position rank-ordered 
  (± SD) #1 #2 #3 #4 #5+ 
Mass-based Dashboard 1.2 ± 0.7 77a 5 3 3  

ChemSpider  2.2 ± 6.1b 68 8 7 1 5 
Formula-based Dashboard 1.1 ± 0.4 78a 8 2   

ChemSpider 1.3 ± 1.0 77 8 2 1 2 
aOne chemical (tephrosin) not present in the Dashboard 256 
bAverage rank in ChemSpider shown here does not include an outlier where the rank was 201, when 257 
added the average rank position is 4.4. 258 
 259 
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Ongoing Work  260 

Rank-Ordering Methods 261 

Additional search and rank-order criteria are presently undergoing testing within the 262 

CompTox Chemistry Dashboard for further improvements in known unknown chemical 263 

identification.  Under the premise of this work and the work of others (e.g. [7, 6]), chemicals of 264 

interest in environmental media are likely those with the most sources, or are the most ‘popular’ 265 

chemicals.  Preliminary results indicate that searching the unique InChIKey identifier of 266 

chemicals of interest in Google, and rank-ordering the results by the number of result hits, 267 

provides an even more accurate identification than using the Dashboard and data sources.  These 268 

data could be used to enhance or replace data sources within the Dashboard for known unknown 269 

investigations.  Additionally, rank-order statistics improve when tightening the search window 270 

around a monoisotopic mass.  Further research developing a sliding mass search scale based on 271 

relative monoisotopic mass (i.e. a smaller search window around a smaller mass) could result in 272 

more accurate identification of known unknowns. 273 

To further identify chemicals in environmental media, functional use and product 274 

occurrence data, as contained in the US EPA’s CPCat database [21], can be incorporated into 275 

searching and rank-ordering.  Chemical use and function category data, organized with 276 

descriptors such as detergent, food_additive, etc., are currently available in the Dashboard.  277 

These data may further inform tentative chemical identification through filtering by use category 278 

relative to sample medium or through compiled use ranking metrics; testing in the Dashboard is 279 

ongoing.  Further research to create a weighting-based or tiered ranking approach for 280 

identification using all aforementioned criteria as inputs is underway. 281 

 MS-Ready Structures 282 
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Charged and salted forms of chemicals contained within chemical reference databases 283 

complicate the search and identification process as these forms are not consistent with the form 284 

an analyst would detect via high resolution mass spectrometry in NTA.  As an example, the 285 

colorant FD&C Blue No. 1 (or Brilliant Blue FCF) is present in both ChemSpider and the 286 

Dashboard as a charged molecule with two sodium ions.  Therefore, when searching a neutral 287 

unidentified monoisotopic mass on both applications, neither resource would return the chemical 288 

identified via NTA.  Chemical structure curation and standardization can remove duplicates and 289 

inconsistencies in structures to allow for cleaner tentative identification.  Mansouri et al (2016) 290 

developed chemical structure standardization approaches to create QSAR (Quantitative Structure 291 

Activity Relationship)-ready structures for use in estrogenic receptor activity screening [22]. 292 

This workflow has since been applied to all chemical structures contained in the DSSTox 293 

databased and exposed in the Dashboard.  QSAR-ready structures are neutral, de-salted, and 294 

contain no stereochemistry information, and are consistent with the chemical forms detected in 295 

mass spectrometry (when corrected for charge-state). In other words, structures standardized into 296 

QSAR-ready form happen to offer us MS-ready structures as a benefit.  These will be 297 

incorporated into the Dashboard, allowing users to be able to easily identify the associated 298 

substances, whether they be salts, associated with solvents of hydration, etc. The ability to search 299 

MS-ready structures has already been delivered via an iOS mobile app by making our data freely 300 

available from the NCCT website 301 

(ftp://newftp.epa.gov/COMPTOX/Sustainable_Chemistry_Data/Chemistry_Dashboard). The m/z 302 

EPA CompTox app (https://itunes.apple.com/app/m-z-comptox/id1148436331) is already freely 303 

available, thereby providing accessibility for NTA users. 304 

API Development 305 

ftp://newftp.epa.gov/COMPTOX/Sustainable_Chemistry_Data/Chemistry_Dashboard
https://itunes.apple.com/app/m-z-comptox/id1148436331
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 Planned developments for the Dashboard include an application programming interface 306 

(API) and access to a suite of web services.  Programmatic access will allow third parties to 307 

investigate and interrogate the data within the database for their own known unknowns analyses.  308 

Within an investigation of observed chemical features, a user could include ChemSpider for 309 

expansive coverage, the Dashboard for focused high-quality data, and even more focused 310 

resources like FOR-IDENT (http://for-ident.hswt.de/) [23] for water-specific analyses, among 311 

others.  Additional capabilities within the API will enable the user to access and incorporate 312 

algorithmically generated mass spectral fragmentation resources and metabolite databases for 313 

known unknown chemical identification (including spectral library resources like MassBank [24] 314 

and mzcloud [25], in silico fragmentation resources like MetFrag [26, 12], and metabolite 315 

databases such as Metlin [27]).  Chemical metabolites and degradants in environmental media 316 

present a difficult problem from an identification perspective.  Using the Dashboard to identify 317 

known unknowns in the workflow presented here does not include an avenue for metabolites or 318 

fragments. However, linking the Dashboard via web services to the open resources available for 319 

algorithmically generated metabolites and mass spectra can advance chemical identification in 320 

NTA through structure elucidation and metabolite identification.  321 

 322 

Conclusions 323 

The Dashboard is a highly curated freely available online reference database that is an 324 

effective investigative tool for the identification of known unknowns. Comparisons with the 325 

ChemSpider database, a primary database for mass spectrometrists to utilize for structure 326 

identification purposes, show better performance overall for the test sets reported here.  327 

Expanding the data, functionality and access to support projects within the EPA, and in the 328 

http://for-ident.hswt.de/
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scientific community as a whole, will further demonstrate its utility for risk analysis and general 329 

chemical identification both as part of larger, more developed workflows and as a stand-alone 330 

investigative tool.  Future research on expanded utility employing further chemical identification 331 

mechanisms will advance the field of NTA and chemical identification in a public arena for 332 

widespread use. 333 

 334 

 335 

Figures 336 

 337 

Figure 1.  Advanced search results table in the CompTox Chemistry Dashboard 338 
(https://comptox.epa.gov/dashboard) after an advanced search of monoisotopic mass 228.115 ± 339 
0.005 amu.  Results are ranked in descending order by the number of data sources. 340 

 341 

 342 

 343 

 344 
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