

EU-ToxRisk Project and NCCT Capabilities

EU-ToxRisk – Tox21 Joint Meeting

19-21 September 2016, Mainz, Germany

Office of Research and Development

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

EU-ToxRisk Project and NCCT Capabilities

Highlighting today (very briefly) NCCT capabilities and projects that could be useful in collaborations with EU-ToxRisk

- Software and Database Development
- Two New Dashboards Cheminformatics & RapidTox
- Ongoing and New Modeling Efforts
 - Read Across with Uncertainties
 - Biological dynamics and Tipping Points
 - HTTK
 - Transcriptomics
 - In vitro metabolism retrofits

Database and Software Development

Users outside of NCCT (EPA + External) We have developed Dashboards RapidTox (Rapid Risk Assessment Prototype) a wide number of Chemistry (DSSTox + PhysChemDB + ...) databases that are ACToR (data on 500K chemicals in 1000s of sources) ToxCast (All ToxCast in vitro data) EDSP21 (data on endocrine assays for EDSP chemicals) **Dashboard Tools** Web services and APIs Databases DSSTox (chemistry – IDs and structure, 700 K chemicals) ACToR (risk-related data from 1000s of sources) PhyschemDB (physchem data, measured and predicted) ToxRefDB (detailed in vivo data) code-assisted InVitroDB (ToxCast in vitro data) and manual ToxValDB suite (summary in vivo data from multiple sources) curation LitDB (literature information on chemicals) PKDB (Pharmacokinetics data and model parameters) RapidToxDB (project-level data for RapidTox dashboard) ScrubChem (machine-annotated version of PubChem)

Pis + Postdocs – Science projects

use to drive

Cheminformatics – The New Comptox Dashboard

- ~720,000 chemicals
 - With quality metric scores
- >10 years assembling data
- Physchem properties
- Use and composition information
- Mass spec data
- Structural, formula, mass spec searching
- Downloading search outputs

	ed States ironmental Protection ncy	Home Advanced	I Search				Search (CompTox Dashboard	Q	Optio
								Submit Comment	Share -	Сор
	Bisphenol A 80-05-7 DTXSID70	120182								
9	Searched by Appro	oved Name: Found	d 1 result for 'b	isphenol A'.						
	Q 🔟 🖪 🚣-	Q.	_							
				Intrinsic Properti	es					
	H ₃ C.	CH ₃		Molecular Fo	rmula: C15H16O2			Q Find All Chemicals	6	
				Average Mas	s: 228.291 g/mol				6	
		\sum		Monoisotopio	: Mass: 228.115030 g/i	mol		[0	
		L		Structural Identif	iers					
	HO	OH		Record Informati	on					
	2					Contraction 11 2				
	Chemical Properties	External Links	Synonyms	Product Composition	ToxCast in Vitro Data	Exposure A	nalytical PubChem	Comments		

https://comptox.epa.gov

RapidTox Dashboard

- Goal: Enable <u>screening-level assessments</u> to be performed for hundreds to thousands of chemicals as part of a tiered approach
- Integrates data on chemical properties, fate and transport, hazard, and exposure through an interactive on-line dashboard

Tiered approach

- High Tier Access to high-quality data as inputs to risk assessments, when available (e.g., IRIS, RfDs)
- Lower-Tier access lower-tier data when higher-tier is not available (e.g., PPRTVs, in vivo and in vitro data)
- Develop and provide modeled inputs when lower-tier data in not available

RapidTox Dashboard

Environme Agency	intal Protection Home Cor	mpTox Dashboard	•											Search	CompTox	Dashboard
														Submit C	Comment	Share -
DanidTa	av Accessment			Mode-of-	Action/Adverse Outcom	ne Pathway				Pharmacokinetic	5					
каріатс	DX Assessment			Biologica	I Selectivity	Concentral	tion Respor	ise Data		Level 1: In Vivo S	tudies	- 1	Level 2: High-	-Throughput	t Pharmacoki	inetics
CI	CI CI CI	erties	Environmental Fate/Tra	sport ¥			1	-n (1	Fub	Renal C	learance	Met. Stability
0		Persistence activities Trans (Salitie)	8 - mt-	minita mediatala 8 - mediatala					None Available			0.692	4.64		9.612	
		10	because her mental	000	x Pedian 27	F		1-1 1 <u></u>	-				Css/OE (Median)	Css/OE	(Upper)	Css/OE (Lower)
ci 🦯	Point of Departure E	stimate		Forrest Plo	est Plot					Point of Departure Estimate			Forrest Plot			
hemical X	Mathead		1050	Г					=	Method		LD50	1000			
	Method		(0.50	1000						In Vivo (Acute)		(mg/kg) 50				
	In Vivo (Acute)		(mg/xg)						lance	Method		POD (mg/kg/d)	200			
ezero ivel 1: In Vi	in vivo (Acute)		~		1				3	In Vivo (Chronic)		4.0	No.			
	Method		POD	300					11.,	In Vitro Assay		0.2	0000	-		1 L
tule			(mg/kg/d)	N	ſ				et al.,	In Vitro Assay (AOP-de	erived)	0.5	1			
nhalation Drai	In Vivo (Chronic)		4.0	51						QSAR		2.0	-		. 1	
Feed Other ubacule				<u><u></u><u></u><u></u><u></u></u>						Provide America		2.0	0.1 In Vhe	o In Vivo In 1	Vitro AOP	QSAR RA
nhalation Drail	In Vitro Assay		0.2	8 <u>8</u>	t		L	-		Acids Acidss		5.0	(Acute) (Chronic)		
oed her abchronic	In Vitro Access (AOD-decise	d)	0.5	1						Assessment Sum	mary	1.0.0			115	1.000
nhalation Deal	In vitro Assay (AOP-berive	u)								Chamical Salastivity		Value		Confidence	Urs	RTD
Other Strenic Non-	OSAR		20							Likely Hazards:		Liver toxicit	v	High		
ancer inhalation				0.1						Likely AOP/MOA:		PPARA rece	, ptor activation	High		
Feed Other	Devel Arrest		2.0	In	Vivo In Vivo I	in Vitro AOP	QSAR	RA		Point-of-Departure Es	timate	causing heps 4.0 mg/kg/c	atocyte prolif		X-X-X-X	0.04 mg/kg/d
hronic Cancer nhalation	Read Across		3.0	(A	icute) (Chronic)					RapidTox Screen	ing Levels					
Feed Other									-111	Resident Soil (mg/kg)	7.5	Resident Air	r (ug/m ³) 0.1	15	Tap Water (ug/	L) 1.1
	Assessment Summar	ry								Industrial Soil (mg/kg)	33	Industrial Ai	ir (ug/m ³) 0.6	6		
	Value				Confidence UFs RfD					Comments						
									-							
	Chemical Selectivity: Moderate		Moderate		Moderate											
	Likely Hazards:		Liver toxicity		High	+	+									
	12-1-00/0404		DDADA	00404		+	+									
	Likely AOP/MOA: PP		PPARA receptor activation		nign											
	Paint of Departure Estimat	Point-of-Departure Estimate 4.0 ms/ks/d		tocyte prolif		X-X-X-X	0.04	me/ke/d	-11							
Point-or-Departure Estimate		le la	4.0 mg/kg/d			A-A-A-A	0.04 mg/kg/d									
	RapidTox Screening Levels															
	Resident Soil (mg/kg)	7.5	Resident Air	(ug/m ^a)	0.15	Tap Water (u	g/L)	1.1								
		1	1			1		1								
	Industrial Soft (see 0)	22	Industrial Al-	(0.6				-11							

Not yet publically released

6

Uncertainty and Read-Across

- A major uncertainty in Read-Across models is that *development and* acceptance is very context dependent and based on subjective expert judgement.
- There is no harmonized approach to ensure er reproducible decisions

Critical need is an objective measure of uncertainty in a read-across prediction

Predicted to be harmful

- Reliable data
- Missing data

Office

Development

of

Quantitatively Evaluating Read-Across Uncertainty

Read-across approach will allow users to define similarity and analog cut-offs while trading off uncertainty

Patlewicz et al., In Review

Evolution of High-Throughput Toxicokinetics

<u>Present</u>

- Steady-state IVIVE models for hundreds of chemicals based on limited high-throughput *in vitro* assays
- Monte carlo methods incorporate inter-individual variability
- Structure-based methods to estimate tissue partitioning
- HT-Physiologically-Based Pharmacokinetic (HT-PBPK) models for hundreds of chemicals

<u>Planned</u>

- Computational framework to compare IVIVE with *in vivo* data and allow explicit estimates of uncertainty
- Distinguish chemical classes where we do good and poor job of predicting pharmacokinetics

Ongoing Transcriptomics @ USEPA

 Technical & contractual evaluation of 3 technologies providing whole genome transcriptomics (Omega Low Coverage and Targeted & BioSpyder Temp-O-Seq)

Technical Performance Equal

Functional Performance Not Equal for Positive Controls

- BioSpyder awarded contract based on functional performance and cost
- Currently engaged in pilot study to validate workflow and refine experimental design

- High-throughput transcriptomics will fundamentally change the way we evaluate chemicals for safety
 - Greater coverage of biological space
 - Reduced cost
 - Ability to leverage large existing databases of gene expression data
 - Fits logically in a tiered testing approach
 - Allows dose- and time-response characterization
- Optimization & operationalization underway pilot study to validate workflow and refine experimental design
- Challenges remain:
 - Cell type/line selection
 - Data handling and processing
 - Optimal data analysis procedures

Retrofitting Assays for Metabolic Competence – Extracellular Approach

Alginate Immobilization of Metabolic Enzymes (AIME)

XME Activity in Microspheres

Small Molecule Inhibition of XME Activity

In Vitro Data – What is Adverse?

- What data from in vitro assays do we use as the point of departure for hazard assessments?
- How to discriminate between compensatory changes from changes that will (might) lead to adverse outcomes?
- □ **Tipping Point**: Threshold between adaptation and adversity

□ Can we use **Tipping Point** to define a point of departure (PoD) for risk assessment ?

Use ToxCast High Content Imaging (HCI) data to identify Tipping Points

- 967 chemicals (ToxCast)
- HepG2 cells culture
- 10 concentrations
- 3 Time points
- 10 HCI Assays
- 400 plates
- 100,000 wells
- 2,400,000 images

Tipping Point Analysis

Shah et al Environ Health Perspect 124:910–919; http://dx.doi.org/10.1289/ehp.1409029

Grace

EU-ToxRisk - Tox21 NCCT Team

Kevin

Matt

We look forward to productive discussions and generating some great ideas for collaborative case studies

Richard