The EPA iCSS Chemistry Dashboard to Support Compound Identification Using High Resolution Mass Spectrometry Data

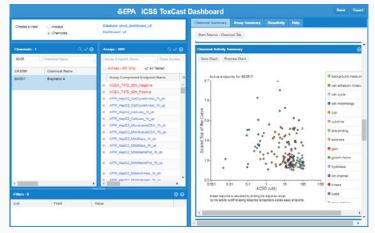
Antony J. Williams[†], Andrew McEachran, Jon Sobus, Chris Grulke, Jennifer Smith, Michelle Krzyzanowski, Jordan Foster and Jeff Edwards

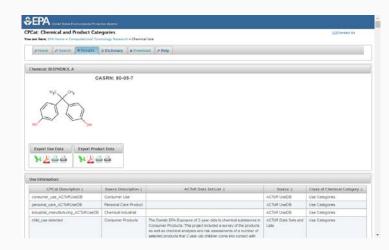
National Center for Computational Toxicology U.S. Environmental Protection Agency, RTP, NC

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

August 21-25, 2016 ACS Fall Meeting, Philadelphia, PA

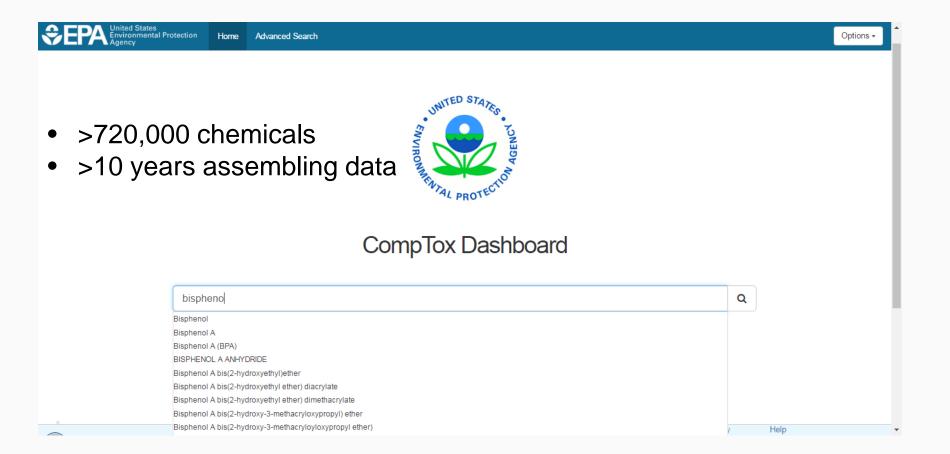
Who is NCCT?


- National Center for Computational Toxicology part of EPA's Office of Research and Development
- Research driven by EPA's Chemical Safety for Sustainability
 Research Program
 - Develop new approaches to evaluate the safety of chemicals
 - Integrate advances in biology, biotechnology, chemistry, exposure science and computer science
- Goal To identify **chemical exposures** that may disrupt biological processes and cause adverse outcomes.


Our Dashboard Applications

Some of our Web-based Applications

	Bisphenol A 00-06-7 IDTXSID7020102	
H ₃ C CH ₃	BigNet INCRN-1552159-15029-1-122,113.2113/08.8-11122-5-14(7)13.0-1283- 10.16179-171-1310 INCRN Key (1982)-234709712-1697920/95431 MML29:0269321-4256-42592-41123-4256-40592-41 MMecular Weight 228-291 gints	
onyms ant	l	
e Dale - Yele Dale		_
Constraints Tome In the Unit of Constraints Course of Resolution Name (Page 15(25)) Course of Section 2014 (Section 2014) Course of Section		



EDSP Dashboard Overvier	
EDSP Dashboard Ove	rview
Congress requires EPX's E Screening Program for the 2	Name Discale Sector Foreign to existe thereis is patential existing data for our 1999 are too and the exist of the results of the program. EPA researchers developed the Enterne Database This Century Deviced (EDSP2) Deviced (b) provide access to new chemical data on our 1,000 chemicals of interest.
The purpose of the EDSP2	1 Destroyed is to real the Endourne Decaptic Streaming Program evaluate attention for endourne-rested activity
The data for this version of	the Desificant comes from venous sources -
Chemical avoidure (High quality chemical	in which spectra group is demonstratements that generated by the EPA's Toricity Execution (TorCard) project and the Networl Toricity Teering in the 24to centry (TorC2)) collectration is encryperation means (GroupCard)() encryperate and protection() GSD2(10) Container (Phy/Orch20))
ToxCast Data Use Con	alderations
Careful review is rec	nical in a specific assay, does not investantly men that it will cause locatly or an advante health outcome. There are many factors that determine whether a chemical will cause a specific advante health outcom careful to determine the use of the date in a particular determine of the determine whether a chemical will cause a specific advante health outcom careful date a vecenter to image now them as with the source and analyzed methoda methoda.
EPA will continuously add f	uncionality and improve overall usability and performance
To get the best possible and	service using the EDDP Distributed application are recommend using Mazilla Firefax or Google Onome.
a c	

Introducing Our Latest Dashboard https://comptox.epa.gov

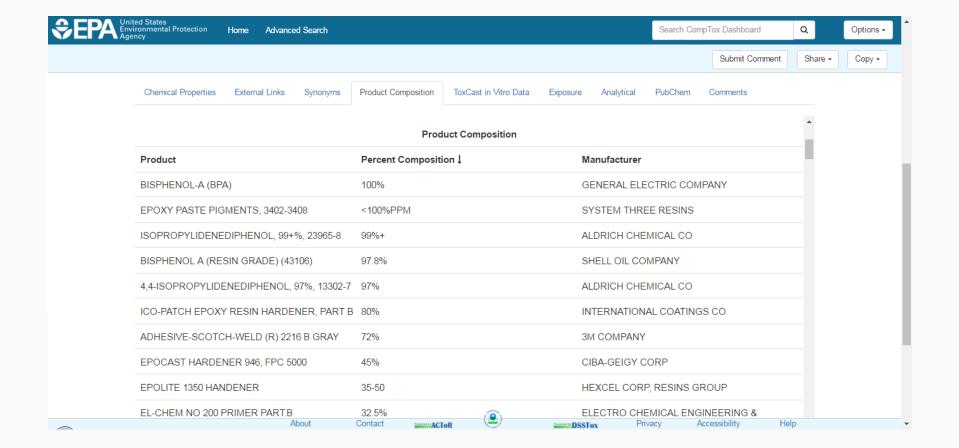
Bisphenol A

SEPA United States Environmental Protection Home Advanced Search Search	CompTox Dashboard	Q	Options -
	Submit Comment	Share -	Copy -
Bisphenol A 80-05-7 DTXSID7020182 Searched by Approved Name: Found 1 result for 'bisphenol A'.			
H ₃ C CH ₃ Molecular Formula: C15H16O2 Average Mass: 228.291 g/mol Monoisotopic Mass: 228.115030 g/mol	Q Find All Chemicals	5	
HO OH Structural Identifiers Record Information			
Chemical Properties External Links Synonyms Product Composition ToxCast in Vitro Data Exposure Analytical PubChem	Comments		
About Contact Contact Disston Privacy	Accessibility He	lp	

4

Physicochemical Properties

mental Protection	Home Advanced Search					Search	CompTox Dashboard	Q
							Submit Con	nment S
Chemical Properties	External Links Synonyms Product Cor	mposition To	oxCast in Vitro	Data Expo	sure Analytic	al PubChe	m Comments	
Summary	Download as: CSV Excel SI	DF						
Octanol-Water Partition Coefficient (LogP)	Property	Average (Exp.)	Median (Exp.)	Range (Exp.)	Average (Pred.)	Median (Pred.)	Range (Pred.)	Result Unit
Water Solubility Melting Point	Octanol-Water Partition Coefficient (LogP)	3.38 (2)	3.43	3.43	3.42 (2)	3.42	3.20 to 3.64	-
Boiling Point	Water Solubility	5.26e-04 (1)	5.26e-04	5.26e-04	2.22e-03 (2)	2.22e-03	7.56e-04 to 3.68e-03	mol/L
Vapor Pressure	Melting Point	155 (7)	156	153 to 158	138 (2)	138	132 to 144	°C
Soil Adsorption	Boiling Point	200 (1)	200	200	349 (2)	349	334 to 364	°C
Coefficient	Vapor Pressure	-	-	-	7.06e-08 (1)	7.06e-08	-	mmHg
Octanol-Air Partition Coefficent	Soil Adsorption Coefficient	-	-	-	2.92 (2)	2.92	2.74 to 3.10	-
	Octanol-Air Partition Coefficent	-	-	-	8.39 (1)	8.39	-	-
Atmospheric Hydroxylation Rate	Atmospheric Hydroxylation Rate	-	-	-	-10.4 (1)	-10.4	-	-
Biodegradation Half	Biodegradation Half Life	-	-	-	15.1 (1)	15.1	-	days
Life	Bioaccumulation Factor	-	-	-	173 (1)	173	-	-


Bioassay Screening Data

Functional Use and Composition

Advanced MS Searches

Protection Home Ad	vanced Search			Search CompTox	Dashboard Q	Options
	Com	рТох	Dashboa	Ird		
		Advanc	ed Search			
Mass Search]			amu		
Mass	amu	± otopes	Error	amu	Search Q	
Generate Mole	cular Form	ula(e)				
± Min/Max]					
Mass	amu	±	Error	amu	Court O	
ING 33					Search Q	

Monoisotopic Mass Search

Mass Se	earch					
±	Min/Max					
215.096		amu	±	0.005	amu	Search Q
Single	component	Ignore isoto	pes			

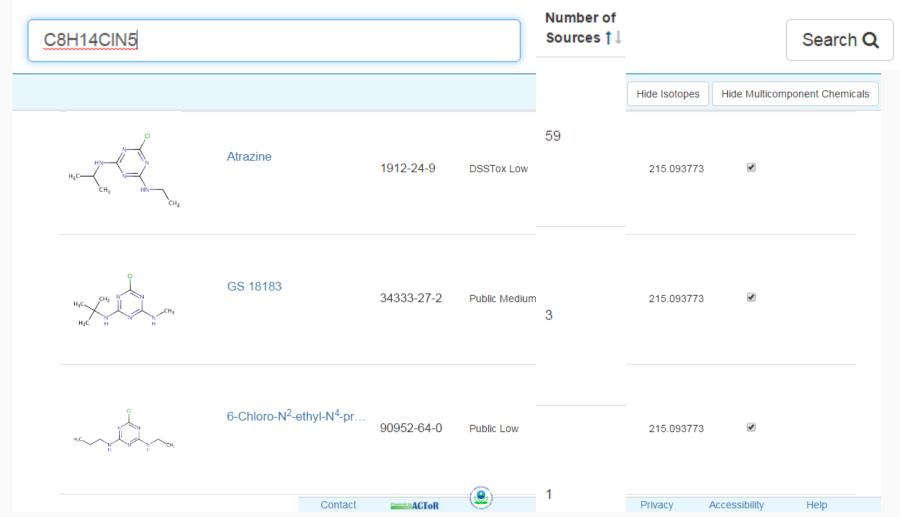
Monoisotopic Mass Search

Mass Search			-					
± Min/Ma	Found	344	results	for '215	.096 :	± 0.0)05 a	i mu'
215.096	amu	±	0.005	amu		Sea	rch Q	
Single compon	ent 🛛 Ignore isotope	s		Number of				
Download as: CSV - Excel - SDF		single componen	t chemicals: Found 344 res	Sources †↓	u'.			
Structure	Preferred Name †↓	CAS-RN †↓	QC Level $\uparrow \downarrow$		onoisotopic Mass †↓	Mass Differenc ↑↓	e	
	Atrazine	1912-24-9	DSSTox Low	59	5.093773	-0.0022		
H ₃ C H ₃ C H ₃ C H ₃ C H ₃ C	Furcarbanil [ISO]	28562-70-1	Public Medium		5.094629	-0.0014		
and the second s	5-Phenylpyrrole-2-propionic acid	79720-70-0	Public Medium	5	5.094629	-0.0014		0

Formula Search

Molecular Formula Search

C8H14CIN5

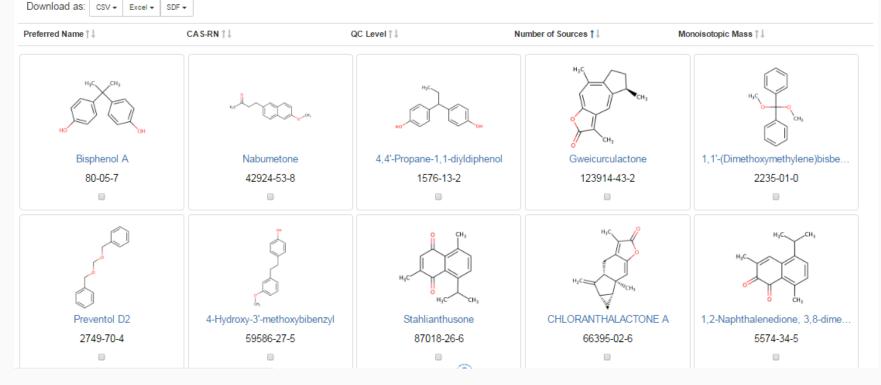

Search Q

Formula Search

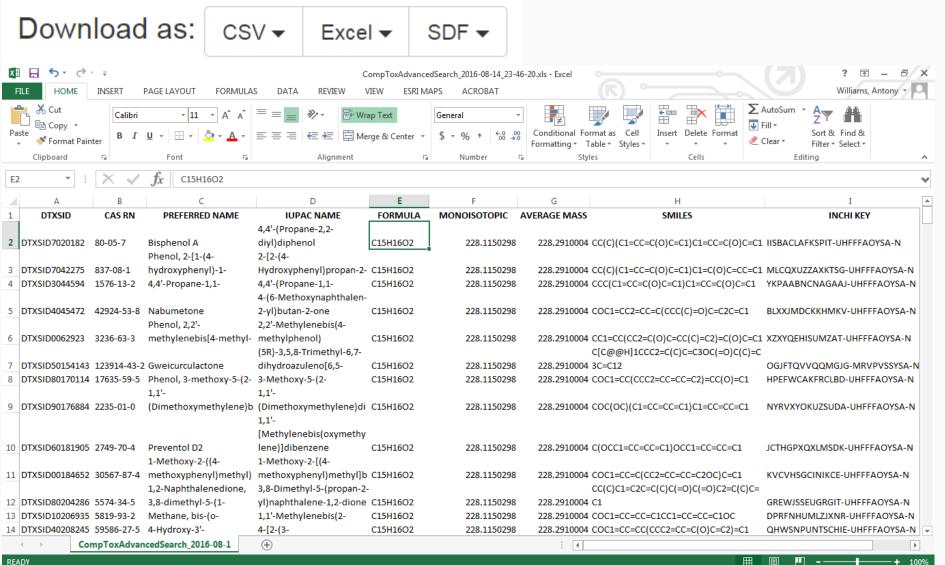
Molecular Formula Search

Found 8 results for 'C8H14CIN5'

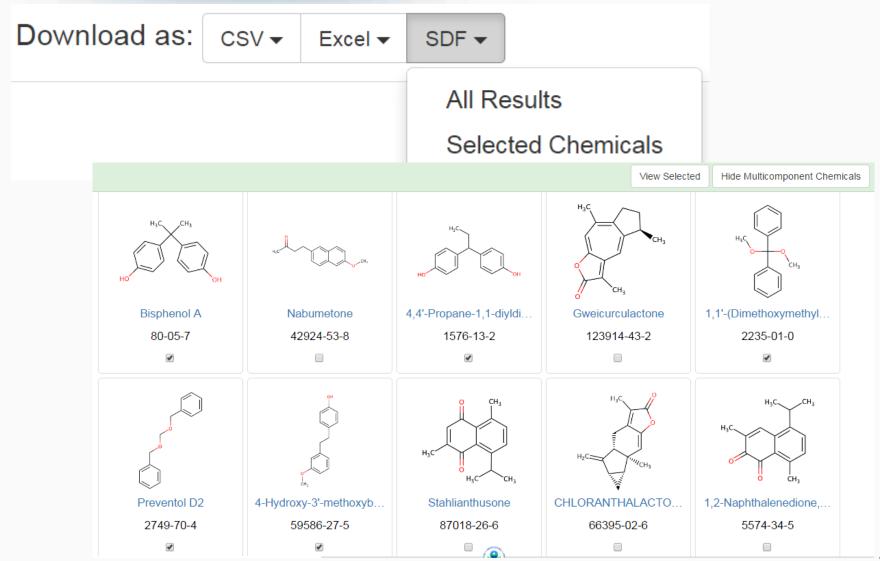
Formula Searching Formulae matching Bisphenol A

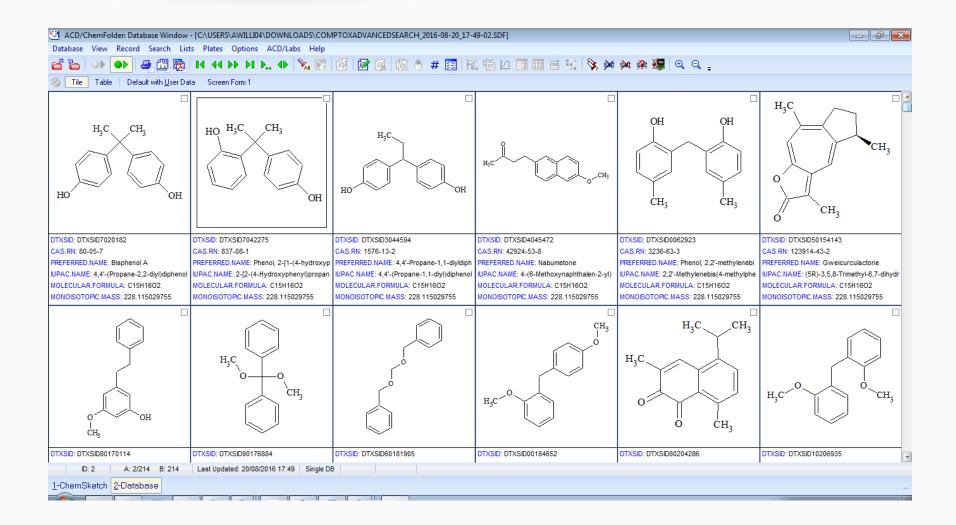

Intrinsic Properties		Search
Molecular Formula: C15H16O2 Average Mass: 228.291 g/mol Monoisotopic Mass: 228.115030 g/mol	Q Find All Chemicals	across all content contained within the iCSS CompTox Dashboard

Formula Search Results


Search Results

[®] Searched by Molecular Formul Found 215 results for 'C15H16O2'.


Download to Excel


Download as SDF file

SDF file downloaded to desktop

SEPA United States Environmental Protection

Rank-Ordering of "Known-Unknowns" using ChemSpider

RESEARCH ARTICLE

Identification of "Known Unknowns" Utilizing Accurate Mass Data and ChemSpider

Table 1. Searching ChemSpider by Elemental Composition then Sorting by Number of Associated References

Class of compounds	Number compounds in class	Position of compound sorted in de			
		#1	#2	#3	
Drugs	45	43	1	1	
Pesticides	8	7	1		
Toxins	2	2			
Polymer antioxidants	15	15			
Polymer UV stabilizers	10	8	1	1	
Polymer clarifying agent (Irgaclear DM)	1				
Polyurethane additives	4	2	1		
Natural products	3	2		1	
Herbicide (clofibric acid)	1	1			
Artificial sweetener (sucralose)	1	1			
Total compounds ChemSpider	90	81	4	3	
Total compounds CAS Registry [1]	90	84	4	1	

Comparing Performance

Does the Dashboard Add Value?

20

- Remember:
 - Focus on high quality data and curation
 - Data sources include EPA data sources and a focus on environmental chemistry
- No "dilution" by chemical vendors

Data Sources			
Data Source	<u>Count</u>	<u>Date</u> <u>Created</u>	<u>Last</u> Updated
Aurora Feinchemie	25288289	13/04/2009	12/06/2016
PubChem	<u>10881750</u>	15/04/2008	25/06/2015
AKos	<u>8226932</u>	15/04/2008	15/06/2016
Mcule	<u>5649548</u>	21/01/2014	30/10/2015
Molport	<u>5292029</u>	09/02/2010	02/09/2014

Dilution Example... Morphine Skeleton

Found 32 results 1.10.10 Search term: BQJCRHHNABKAKU (Found by InChIKey (skeleton match)) First Last (5alpha,6beta)-17-Methyl-7,8-D-(-)-Morphine 17-Methyl-7,8-didehydro-4,5-(5alpha,6alpha)-17-(5alpha)-17-Methyl-7,8epoxymorphinan-3,6-diol 3)Methyl-7.8-didehydrodidehydro-4,5-epoxymorphinandidehydro-4,5-epoxymorphinanepoxymorphinan-3.6-dio 6.6-diol .6-diol CH., (5alpha,6alpha)-17-Methyl-7,8-(6alpha)-17-Methyl-7,8-(5beta,6beta,9alpha,13alpha,14al) (5alpha,6alpha)-17-Methyl-7,8-(5alpha,6alpha,9alpha)-17-Methyl-7,8-didehydro-4,5-Methyl-7,8-didehydro-4,5lidehydro-4,5-epoxymorphinandidehydro-4,5-epoxymorphinanidehydro-4,5-epoxymorphinanepoxymorphinan-3,6-diol epoxymorphinan-3,6-diol 6-diol .6-diol 6-diol HC Searched by InchiKey Skeleton: Found 3 results for 'BQJCRHHNABKAKU'. Download as: CSV - Excel - SDF -CH, HC Preferred Name 1 CAS-RN↑↓ QC Level 1 Number of Sources 1 Monoisotopic Mass 1 (6alpha)-17-Methyl-7,8-(6beta)-17-Methyl-7,8-didehydro-(5beta, dehydro-4,5-epoxymorphinan-4,5-epoxymorphinan-3,6-diol didehydr .6-dio HO ĊН. Morphine Morphinan-3.6-d... Morphinan-3,6-a.. HO 57-27-2 16206-77-2 67293-88-3

Bisphenol A as an example ChemSpider: 1564 Structures

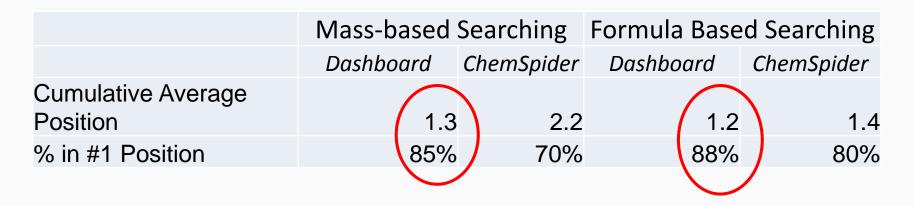
FILTER 🗸			Search Hits	s Limit: 100	CLEAR I	ORM SE	ARCH
Found 1564 result Search term: MF = 'C_							≣
		1 2	3 4	5			
ID	Structure	Molecular Formula	Molecular Weight	# of Data Sources ▼	# of References	# of PubMed	<u># of RSC</u>
6371 © W	но-С	C ₁₅ H ₁₆ O ₂	228.2863	117	1631	3029	423
4256 W	"E ^A COLYE",	C ₁₅ H ₁₆ O ₂	228.2863	110	420	368	23
<u>8760824</u>	HO CH,	C ₁₅ H ₁₆ O ₂	228.2863	58	67	0	1
2285031		C ₁₅ H ₁₆ O ₂	228.28634	48	57	0	0

Bisphenol A as an example Dashboard: 215 Structures

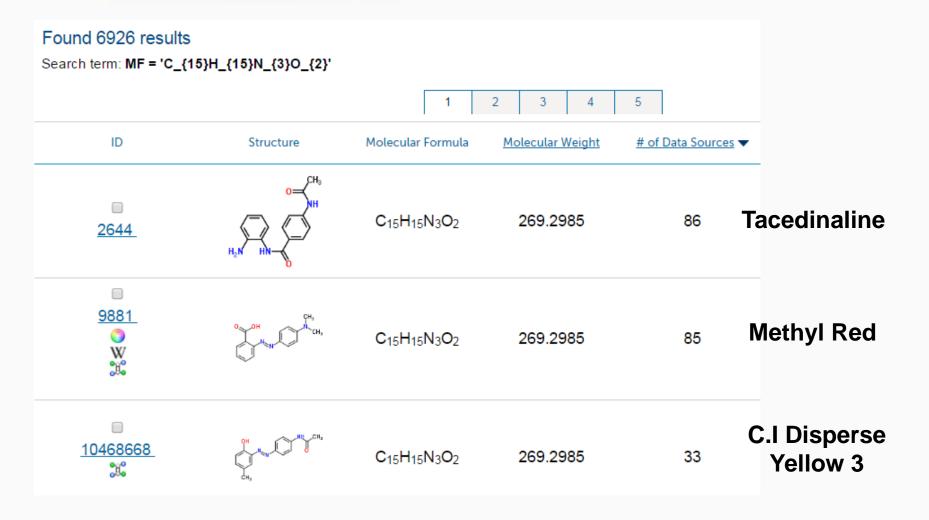
\$EP/	United States Environmental Protection Agency	Home Advanced Se	arch		Search Com	pTox Dashboard	Q	Options -	
					View Selecte	ed Hide Multic	omponent Chemicals		
		S	earch	Result	S				
	Ownload as:	Excel - SDF -	mula, ignoring i	isotopes: Foun	d 215 results	or 'C15H16O2'.			
т.	Structure	Preferred Name $\uparrow \downarrow$	CAS-RN †↓	QC Level †↓	Number of Sources †↓	Monoisotopic Mass†↓			
	HO CH3	Bisphenol A	80-05-7	DSSTox High	60	228.115030			
	sc ¹ (), cs	Nabumetone	42924-53-8	DSSTox Low	16	228.115030			
	HJC HO OH	4,4'-Propane-1,1-di	1576-13-2	DSSTox Low	5	228.115030			
		About Contact	former of the second by ACTOR	۲	Deserved to DSSTox	Privacy Acces	sibility Help		_

Chemical Identification Dashboard vs ChemSpider

Monoisotopic Mass (+/- 0.005 amu) Search


Sorted by number of references (ChemSpider) or data sources (Dashboard)

					Position of compound sorted				
Source of List	# of Compounds	Search Tool	Mean Position	Median Position	#1	#2	#3	#4	#5+
McEachran et al Wastewater	34	ChemSpider	1.8	1	28	5	0	0	1
		Dashboard	1.3	1	31	2	0	0	1
Misc. NTA Compounds	13	ChemSpider	2	1	7	5	0	0	1
		Dashboard	1.7	1	10	2	0	0	1
Bade et al (2016)	19	ChemSpider	2.1	1	11	2	5	0	1
		Dashboard	1.6	1	12	3	3	1	0
Rager et al (2016)	24	ChemSpider	2.25	1	15	2	1	2	4
		Dashboard	1.08	1	22	2	0	0	0


Dashboard vs ChemSpider Ranking Summary

- Selected peer-reviewed publications
- 162 total individual chemicals in search

ChemSpider 6926 Results!!!

Using Functional Use to Sort Candidates

personal_care cosmetics hair_dye

Arch Chemicals, Inc

Arch Chemicals, Inc.

Tacedinaline 112522-64-2 | DTXSID60150095 n Anti-cancer Drug Searched by Approved Name: Found 1 result for 'tacedinaline' Q 🔟 🖪 🕹- Q-Intrinsic Properties Molecular Formula: C15H15N3O2 Q Find All Chemicals Average Mass: 269.304 g/mol 15 Monoisotopic Mass: 269.116427 g/mol 15 Structural Identifiers Record Information Methyl red Microbiological 493-52-7 | DTXSID1042154 0 Chemical Properties ToxCast in Vitro Data PubChem Comments External Links Synonyms Product Composition Analytical Exposure Searched by Approved Name: Found 1 result for 'Methyl red'. **Indicator Dye** @ Frequent Uses and Functions Q 🔟 🗈 🕹- Qdrug_ACToRUseDB Intrinsic Properties Molecular Formula: C15H15N3O2 Q Find All Chemicals No product composition data found Average Mass: 269.304 g/mol 6 Monoisotopic Mass: 269.116427 g/mol 6 Structural Identifiers Record Information C.I. Disperse Yellow 3 2832-40-8 | DTXSID6021450 e Textile/Product Dye Searched by Approved Name: Found 1 result for 'C.I. Disperse Yellow 3'. Chemical Properties External Links Synonyms Product Composition ToxCast in Vitro Data PubChem Comments Exposure Analytical Q 🔟 🖍 🕹 - Q -O Frequent Uses and Functions Intrinsic Properties inert ACToRUseDB Molecular Formula: C15H15N3O2 Q Find All Chemicals industrial_manufacturing_ACToRUseDB Average Mass: 269.304 g/mol ii) toys lawn_garder Monoisotopic Mass: 269.116427 g/mol 15 chemical laborator pesticide inert_ingredie Structural Identifiers UNIVERSAL INDICATOR SOLUTION 0.05% CENTRAL SCIENTIFIC CO Record Information UNIVERSAL INDICATOR SOLUTION 0.05% % SCIENCE KIT UNIVERSAL INDICATOR SOLUTION.38826-16 0.05% CENTRAL SCIENTIFIC CO Chemical Properties External Links Synonyms Product Composition ToxCast in Vitro Data Exposure Analytical PubChem Comments 0098 TOTAL ALKALINITY TABLETS 0.04% INDUSTRIAL MUNICIPAL EQUIP INC @ Frequent Uses and Functions 84-8265 BOGEN UNIVERSAL INDICATOR 0.0185% CAROLINA BIOGOLICAL SUPPLY CO SOLUTION consumer_use_ACToRUseDB HTH 5-Way Test Kit - Hardness Indicator personal care cosmetics prohibited ASEAN

HTH 5-Way Test Kit - Cyanuric Acid Reagent HTH 5-Way Test Kit - Cyanuric Acid Reagent

Same top hits – different ranking 90 hits only versus 6926 hits

Search Results

				Searched by	Molecular Formula, ignori	ng isotopes: Found 90	results for 'C15H15N3O2	
Download as:	CSV -	Excel +	SDF 🕶					
Structure				Preferred Name †↓	CAS-RN †↓	QC Level ↑↓	Number of Sources $\uparrow\downarrow$	Monoisotopic Mass ↑↓
	, and the second		С	I Disperse Yellow 3	2832-40-8	DSSTox Low	18	269.116427
	сн ₃		Μ	ethyl Red	493-52-7	DSSTox Low	17	269.116427
	H.		Та	cedinaline	112522-64-2	Public Medium	4	269.116427

Dashboard: External Links to Analytical Methods

Chemical Properties

External Links Synonyms

ACTOR

CCRIS

CTD CTD

Toxicology

M DrugPortal

ChemView

eChemPortal

Gene-Tox

LactMed

HSDB

EDSP Dashboard

ToxCast Dashboard 2

🔛 International Toxicity Esti.

General

- EPA Substance Registry...
- NST NIST Chemistry Webbook
- # Household Products Dat
- 2 PubChem
- Die Chemspider
- CPCat
- DrugBank
- Amp HMDB
- W Wikipedia
- Q MSDS Lookup
- **Q** ToxPlanet
- Q ChemHat: Hazards and ...

Publications

Toxline

Produ

- B Environmental Health P...
- IN NIEHS
 - Mational Toxicology Prog...
 - G Google Books
 - G Google Scholar
 - G Google Patents
 - PubMed

Analytical

- Q National Environmental ...
- RSC Analytical Abstracts

National Environmental Methods Index

imental Protection

RSC Analytical Abstracts

Publishing Journals, books and databases	Network access to this resource provided by US Environmental Protection Agency	COYAL SOCIETY OF CHEMISTRY		
Journals \lor Books \lor Databases \lor Alerts \lor	Other 🗸 Help 🗸 Feedback	Log in Register		
Full Text	▼ 80-05-7	Jvanced Search		
Home > Search results	Fo	r Authors & Referees For Librarians For Members		
All (894) Journal Articles (17) Book Chapters (4) More abs (873) Image: Select All Download Citation: RIS Image: Select All Download Citation: RIS Image: Select All Download Citation: RIS	3) Soft By: Relevance Results Per	Modify Search Search History r Page: 25 Save This Search Filters Applied Content Type- all Author		
 Quantitative analysis of industrial products by capil 		Abstract Author A. M. Calafat (23) K. Sissell (17) H. Nakazawa (15) K. Hosoya (11)		
sample introduction. X. Wang (11) Analytical Abstracts X. Wang (11)				

Integrated Google Chemical Searches

Web Images Mo	ore
Google	"80-05-7" OR "Bisphenol A"
Scholar	About 17,100 results (0.09 sec)
Articles Case law My library	A review of the environmental fate, effects, and exposures of bisphenol A CA Staples, PB Dome, GM Klecka, ST Oblock Chemosphere, 1998 - Elsevier Bisphenol A (CAS 85-05-7) may be released into the environment through its use and handling, and permitted discharges. BPA is moderately soluble (I20 to 300 mg/L at pH 7), may adsorb to sediment (Koc 314 to 1524), has low volatility, and is not persistent based Cited by 1315 Related articles All 10 versions Web of Science: 821 Cite Save More
Any time Since 2016 Since 2015 Since 2012 Custom range	Environmental toxins: exposure to bisphenol A advances puberty KL Howdeshell, AK Hotchkiss, KA Thayer Nature, 1999 - nature.com Abstract Plastics and pesticides are examples of products that contain oestrogenic endocrine-disrupting chemicals, or EEDCs, which can interfere with mammalian development by mimicking the action of the sex hormone oestradiol 1. For instance, the Cited by 739 Related articles All 10 versions Web of Science: 482 Cite Save More
Sort by relevance Sort by date	Bisphenol-A : an estrogenic substance is released from polycarbonate flasks during autoclaving. AV Krishnan, P Stathis, SF Permuth, L Tokes, 1993 - press.endocrine.org In studies to determine whether Saccharomyces cerevisiae produced estrogens, the
 ✓ include patents ✓ include citations 	organism was grown in culture media prepared using distilled water autoclaved in polycarbonate flasks. The yeast-conditioned media showed the presence of a substance Cited by 1504 Related articles All 10 versions Web of Science: 1069 Cite Save More

Google Chemical Searches Enhanced with Query Terms

Q

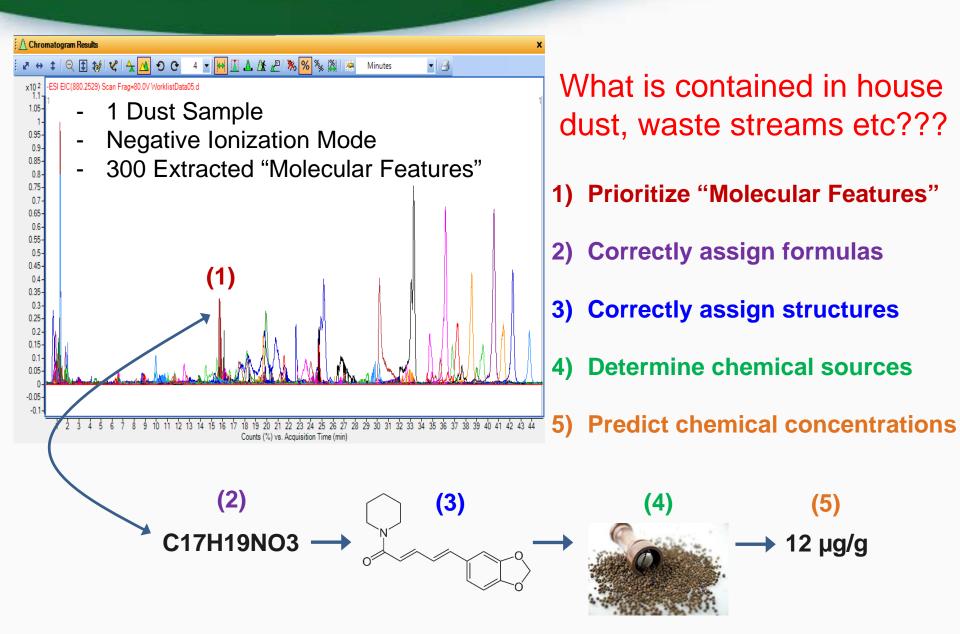
"Mass Spectrometry" AND '80-05-7" OR "Bisphenol A"

... of estrogens, pesticides and **bisphenol A** in natural waters and drinking water treatment plants by solid-phase extraction–liquid chromatography–**mass**

spectrometry

<u>S Rodriguez-Mozaz, MJL de Alda</u>, D Barceló - Journal of Chromatography ..., 2004 - Elsevier A multi-residue analytical method has been developed for the determination of various classes of selected endocrine disruptors. This method allows the simultaneous extraction and quantification of different estrogens (estradiol, estrone, estriol, estradiol-17- ... Cited by 344 Related articles All 8 versions Web of Science: 228 Cite Save More

... compounds nonylphenol, nonylphenol ethoxylates, triclosan and **bisphenol** A in wastewater and sewage sludge by gas chromatography–**mass** spectrometry


<u>G Gatidou, NS Thomaidis, AS Stasinakis</u>... - ... of Chromatography A, 2007 - Elsevier An integrated analytical method for the simultaneous determination of 4-n-nonylphenol (4-n-NP), nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO), **bisphenol A** (BPA) and triclosan (TCS) in wastewater (dissolved and particulate phase) and sewage ... Cited by 266 Related articles All 11 versions Web of Science: 177 Cite Save More

Quantitation of **bisphenol A** and **bisphenol A** glucuronide in biological samples by high performance liquid chromatography-tandem **mass spectrometry** W Völkel, N Bittner, W Dekant - Drug Metabolism and Disposition, 2005 - ASPET Abstract **Bisphenol A** (BPA) is a weak estrogen. Pharmacokinetic studies of BPA have demonstrated a rapid and extensive metabolism of BPA to the nonestrogenic BPAmonoglucuronide (BPA-gluc). Some investigators have reported that BPA was found at ...

Cited by 183 Related articles All 5 versions Web of Science: 122 Cite Save More

Non-Targeted Analysis Research

Previous Work with Suspect-Screening

SEPA United States Environmental Protection Agency

Environment International 88 (2016) 269-280

Linking high resolution mass spectrometry data with exposure and toxicity forecasts to advance high-throughput environmental monitoring

Julia E. Rager ^a, Mark J. Strynar ^b, Shuang Liang ^a, Rebecca L. McMahen ^a, Ann M. Richard ^c, Christopher M. Grulke ^d, John F. Wambaugh ^c, Kristin K. Isaacs ^b, Richard Judson ^c, Antony J. Williams ^c, Jon R. Sobus ^{b,*}

* Oak Ridge Institute for Science and Education (ORISE) Participant, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, United States

b U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, United States

^c U.S. Environmental Protection Agency, Office of Research and Development, National Center for Computational Toxicology, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, United States

^d Lockheed Martin, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, United States

I he dashboard is being enhanced to support Non-targeted Analysis

Future Work

- Presently researching rank-ordering based on other criteria – Pubmed
- Additional links to methods CDC NIOSH
- Links to Mass Spec databases Thermo's mzCloud, Massbank. Metlin etc.
- Consider predicting metabolites and degradants
- Searching based on "MS-ready" structures

"MS Ready" structures

- Many compounds are salts searches should be on the "neutral form"
- Need to search for adducts (+Na, +K, +NH4), decarboxylation, loss of water etc.

Conclusions


 Dashboard support for MS is focused on NTA research – related to chemical exposure

• Dashboard outperforms ChemSpider for ranking chemicals of environmental concern

 New searches developed with Non-targeted Analysis in mind - new rank-ordering approaches in development

Acknowledgements

EPA NCCT Chris Grulke Jeff Edwards Ann Richard Jordan Foster Jennifer Smith Andrew McEachran* Michelle Krzyzanowski

EPA NERL Jon Sobus

* = ORISE Participant