

Delivering The Benefits of Chemical-Biological Integration in Computational Toxicology at the EPA

Antony Williams[†], Kamel Mansouri, Chris Grulke, Keith Houck, Ann Richard, Jeff Edwards, Matt Martin, John Wambaugh, Grace Patlewicz, Imran Shah, Richard Judson, Kevin Crofton and Russell Thomas

National Center for Computational Toxicology U.S. Environmental Protection Agency, RTP, NC

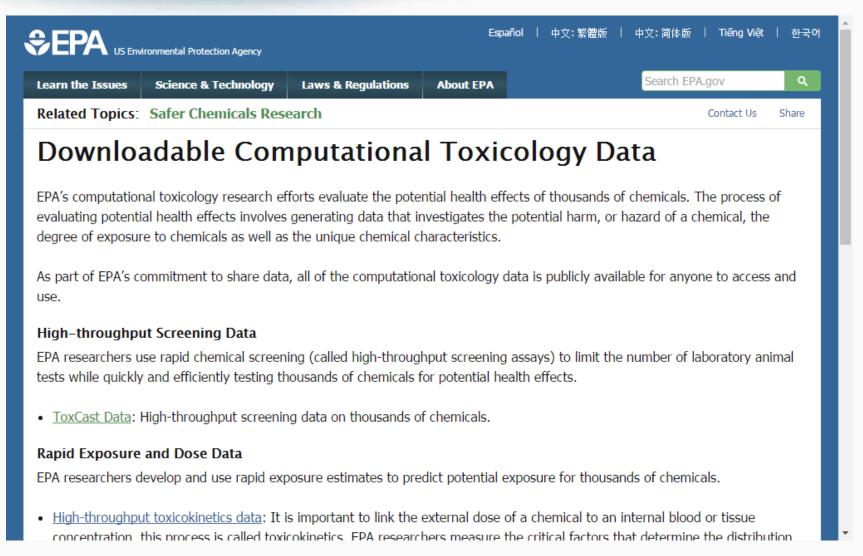
This work was reviewed by the U.S. EPA and approved for presentation but does not necessarily reflect official Agency policy.

Who is NCCT?

- National Center for Computational Toxicology part of EPA's Office of Research and Development
- Research driven by EPA's Chemical Safety for Sustainability Research Program
 - Develop new approaches to evaluate the safety of chemicals
 - Integrate advances in biology, biotechnology, chemistry, exposure science and computer science
- Goal To identify chemical exposures that may disrupt biological processes and cause adverse outcomes.

Scientific leadership

ToxCast has data on over 1,800 chemicals from a broad range of sources including industrial
and consumer products, food additives, and potentially "green" chemicals that could be safer
alternatives to existing chemicals.


Screening Program (EDSP) is working to use ToxCast to rank and prioritize chemicals.

· ToxCast screens chemicals in over 700 high-throughput assays that cover a range of high-

Our Bioassay Data

Our Exposure Predictions

Rapid Chemical Exposure and Dose Research

EPA is responsible for ensuring the safety of thousands of chemicals. Quantitative exposure data are available for only a small fraction of registered chemicals. This type of exposure data is needed to thoroughly evaluate chemicals for potential risks to humans, wildlife and ecosystems. EPA is developing innovative methods to develop exposure estimates for thousands of chemicals to better protect human health and the environment. These innovative methods are called rapid exposure and dose assessments.

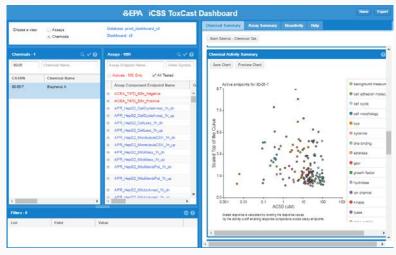
Rapid Exposure Predictions

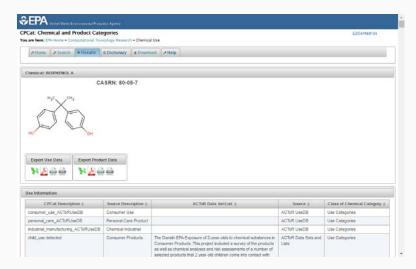
Rapid, also called high-throughput, exposure predictions or ExpoCast provide rapid exposure estimates for thousands of chemicals. ExpoCast quickly and efficiently looks at multiple routes of exposure to provide exposure estimates. ExpoCast uses and enhances two well-known exposure models to estimate chemical exposure.

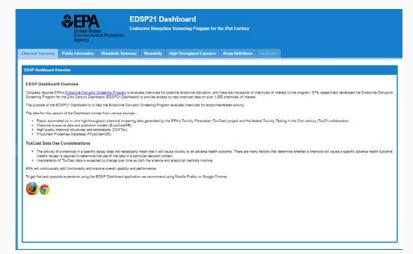
- > Farfield Exposure Models
- > Nearfield Exposure Models

Evaluating High-throughput Exposure Predictions

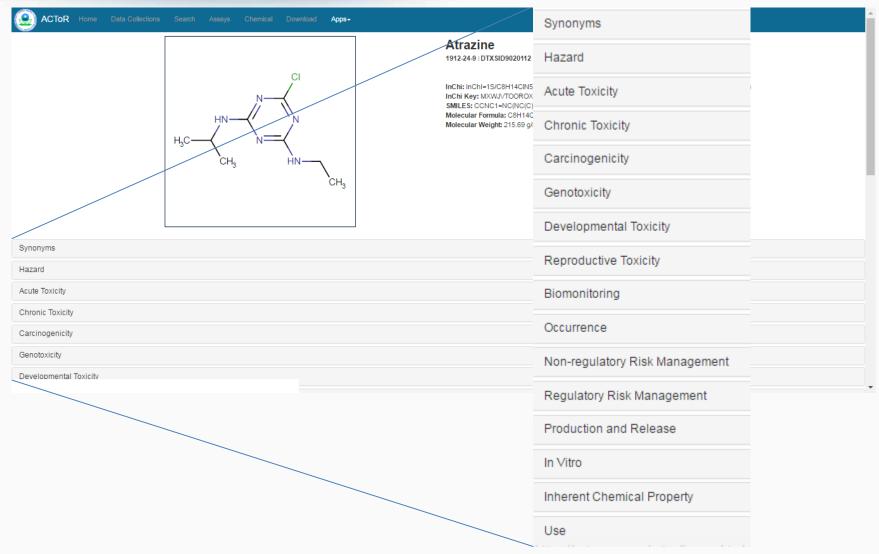
EDA is currently avaluating the affectiveness of high throughout expecure models


Pictured Above: Farfield Exposure Examples




Our Dashboard Applications

ACTOR


https://actor.epa.gov/actor/

- Aggregated Computational Toxicology Resource
- A warehouse of publicly available chemical toxicity data
- Aggregates data from >1000 public sources on >500,000 chemicals

ACToR https://actor.epa.gov/actor/

ACToR https://actor.epa.gov/actor/

Genotoxicity

Show Data Hide Data

- ▶ 📴 CheLIST combination of files from Method Validation Group
- DSSTox NTP BSI GeneTox Index
- DSSTox NTP BSI URL
- Genotoxicity Data In Vitro from EPA HPVIS
- NLM TOXNET CCRIS Data MSTU MUTAGENICITY STUDIES

Component Name Value

Conclusion Negative

Conclusion (GeneTox)

This study was judged to have given a negative result since the observed increase in the first experiment was not reproducible.

Dose Remarks 30 - 50 g/mL with activation20 - 40 g/mL without activation

Genotoxic Effect Negative
GLP No Data

Metabolic Activation With and Without

Method/Guideline Followed No Data Program Flag HPVIS

Reliability 2

With metabolic activation: 50 g/mLWithout metabolic activation: None reported In the first test with metabolic activation an increase in the percentage of metaphases with chromosome aberrations from bisphenol A treated cultures was observed only at the top dose in the presence of cytotoxicity; 14% at 50 g/mL compared to 3% in controls. In these high-dose cultures it was stated that cell confluence was reduced by approximately 70%. In the second test no significant increases were observed in with metabolic activation with bisphenol A evidently 3% of cells at the highest dose had aberrations. No significant increases in aberrations were observed without metabolic activation with bisphenol A evidently

being tested up to "toxic levels." The positive controls produced clear increases in chromosome aberrations.

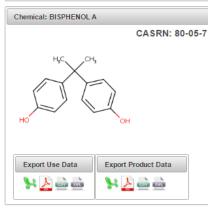
Species Mammalian Cell Line

Sponsor Name General Electric Company - Plastics

Sponsored Chemical Result

Results Remarks

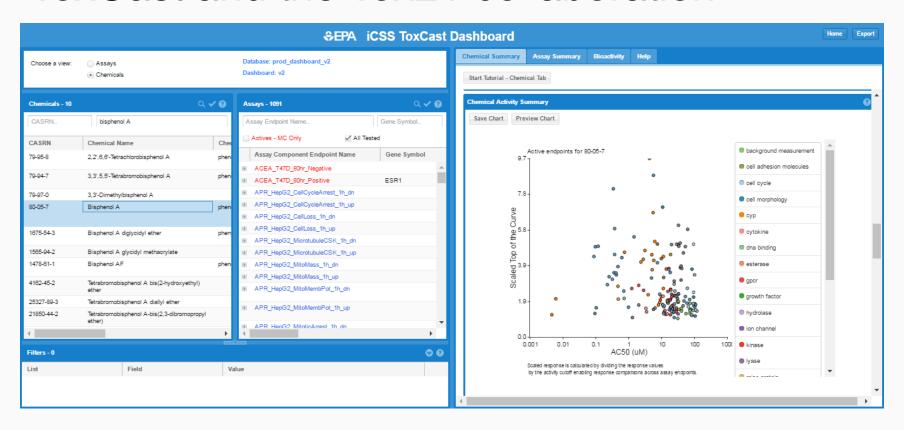
72162-28-8


Туре

Strain Chinese Hamster Ovary (CHO)

From P.M. Pedgers C. Anderson B.E. Ressnick M.A. and Zeiger E. 1989. Chromosomal aberrations and sister chromatid exchange tests in Chinese hamster ovary . Environ. Mol. Mutagen. 14:165-187. As cited in the EU Risk Assessment. Data entered into the HPVIS extracted from the robust

CPCat https://actor.epa.gov/actor/

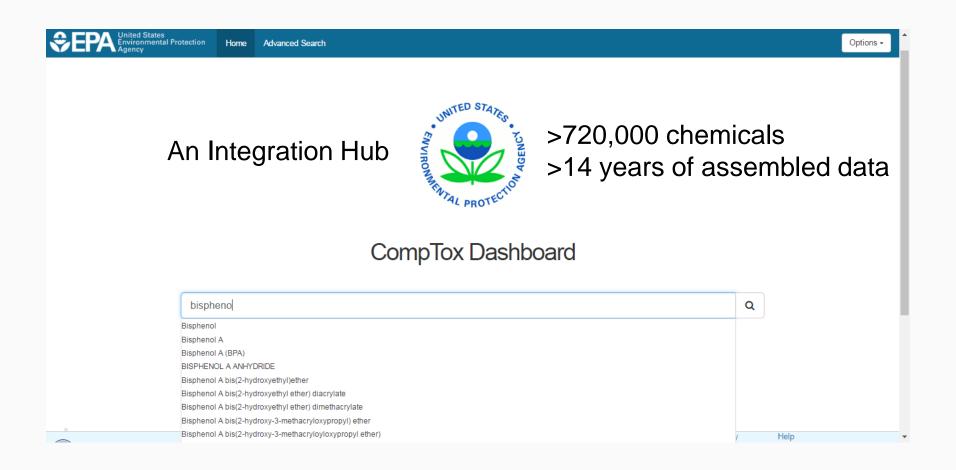

Chemical and Product Categories is a database containing information mapping >43,000 chemicals to a set of terms categorizing their usage or function.

Use Information:								
CPCat Description \$	Source Description \$	ACToR Data Set/List \$	Source ¢	Class of Chemical Category \$				
consumer_use_ACToRUseDB	Consumer Use		ACToR UseDB	Use Categories				
personal_care_ACToRUseDB	Personal Care Product		ACToR UseDB	Use Categories				
industrial_manufacturing_ACToRUseDB	Chemical Industrial		ACToR UseDB	Use Categories				
child_use detected	Consumer Products	The Danish EPA:Exposure of 2-year-olds to chemical substances in Consumer Products.:This project included a survey of the products as well as chemical analyses and risk assessments of a number of selected products that 2 year-old children come into contact with throughout the course of a day. A total of 12 product groups were included in the survey phase. Selected products from 10 of these product groups were subsequently included in a screening phase and several problematic substances were subjected to quantitative analysis. A risk assessment was also performed for a number of problematic substances.	ACTOR Data Sets and Lists	Use Categories				
consumer_use detected	Consumer Products	TNO Nederlands Organisation for Applied Scientific Research:Hazardous Chemicals in Consumer Products:In this study 33 consumer products, including body care products, toys, textiles, deodorizers and cleaners, have been tested for the presence of bisphenol-A, alkylphenols and ethoxylates, phthalates, musks and organotin compounds.	ACToR Data Sets and Lists	Use Categories				
child_use	Consumer Products:	(state of) Washington: Washington Childrens Safe Product Act (CSPA) Reporting Rule. List of chemical of high concern to children (CHCC)	ACToR Data Sets and	Use Categories				

Toxcast Dashboard https://actor.epa.gov/dashboard/

 To interrogate chemical screening data from ToxCast and the Tox21 collaboration

Our Developing Architecture


Our **Latest** Dashboard https://comptox.epa.gov

- Providing access to our "curated chemistry"
- Database of chemicals, mapped to identifiers, and tens of thousands of experimental physchem properties
- Predictive models and calculation details
- An integration hub for NCCT applications
- A link farm across 10s of EPA and Public websites

Our **Latest** Dashboard https://comptox.epa.gov

15 years of Curated Data

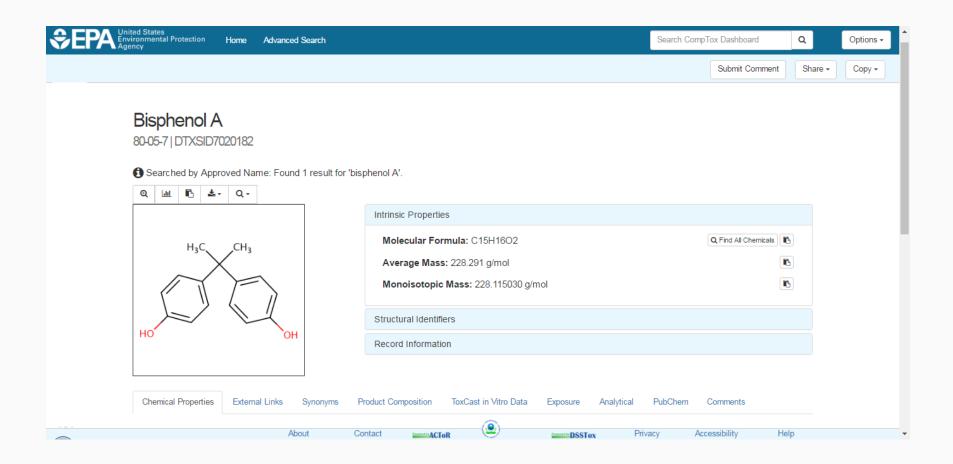
Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis

Volume 499, Issue 1, 29 January 2002, Pages 27–52

Mutation Research Frontiers

Distributed structure-searchable toxicity (DSSTox) public database network: a proposal

Ann M. Richard^{a, ...} M, ClarLynda R. Williams^{a, b}


Show more

http://dx.doi.org/10.1016/S0027-5107(01)00289-5

Get rights and content

Bisphenol A (Accessing DSSTox Data)

Physicochemical Properties

	n		

Octanol-Water Partition Coefficient (LogP)

Water Solubility

Melting Point

Boiling Point

Vapor Pressure

Soil Adsorption Coefficient

Octanol-Air Partition Coefficent

Atmospheric Hydroxylation Rate

Biodegradation Half Life

Bioaccumulation

Download as: CSV	Excel	SDF
------------------	-------	-----

Property	Average (Exp.)	Median (Exp.)	Range (Exp.)	Average (Pred.)	Median (Pred.)	Range (Pred.)	Result Unit
Octanol-Water Partition Coefficient (LogP)	3.38 (2)	3.43	3.43	3.42 (2)	3.42	3.20 to 3.64	-
Water Solubility	5.26e-04 (1)	5.26e-04	5.26e-04	2.22e-03 (2)	2.22e-03	7.56e-04 to 3.68e-03	mol/L
Melting Point	155 (7)	156	153 to 158	138 (2)	138	132 to 144	°C
Boiling Point	200 (1)	200	200	349 (2)	349	334 to 364	°C
Vapor Pressure	-	-	-	7.06e-08 (1)	7.06e-08	-	mmHg
Soil Adsorption Coefficient	-	-	-	2.92 (2)	2.92	2.74 to 3.10	-
Octanol-Air Partition Coefficent	-	-	-	8.39 (1)	8.39	-	-
Atmospheric Hydroxylation Rate	-	-	-	-10.4 (1)	-10.4	-	-
Biodegradation Half Life	-	-	-	15.1 (1)	15.1	-	days
Bioaccumulation Factor	-	-	-	173 (1)	173	-	-
Bioconcentration Factor	1.64 (1)	1.64	1.64	82.0 (3)	82.0	1.38 to 173	-

Data Downloads

Summary	Download as: CSV	Excel SDF	(1
Octanol-Water Partition Coefficient (LogP)		Octano-yvator Familion	edian _[
Water Solubility	Property	Coefficient (LogP) (E	xp.)
Melting Point	Octanol-Water Partition (LogP)	 ✓ Water Solubility ✓ Melting Point ✓ Boiling Point 	43
Boiling Point	Water Solubility	<u>-</u>	26e-04
Vapor Pressure	Melting Point	 ✓ Octanol-Air Partition Coefficent ✓ Atmospheric Hydroxylation Rate 	6
Soil Adsorption Coefficient	Boiling Point	☑ Biodegradation Half Life 20	00
Octanol-Air Partition	Vapor Pressure	 ✓ Bioaccumulation Factor ✓ Bioconcentration Factor 	į
Coefficent	Soil Adsorption Coeffic	Download -	[
Atmospheric Hydroxylation	Octanol-Air Partition Co	pefficent	1
Rate	Atmospheric Hydroxylat	tion Rate	ئىہ

Chemical Properties External Links Synonyms Product Composition ToxCast in Vitro Data Exposure PubChem Comments

Data Download: Excel

A1 $\overline{}$: \times \checkmark f_x Property								
4	Α	В	С	D	E	F	G	Н
1	Property	Average (Exp.)	Median (Exp.)	Range (Exp.)	Average (Pred.)	Median (Pred.)	Range (Pred.)	Result Unit
2	Octanol-Water Partition Coefficient (LogP)	3.38 (2)	3.43	3.43	3.42 (2)	3.42	3.20 to 3.64	-
3	Water Solubility	5.26e-04 (1)	5.26E-04	5.26E-04	2.22e-03 (2)	2.22E-03	7.56e-04 to 3.68e-03	mol/L
4	Melting Point	155 (7)	156	153 to 158	138 (2)	138	132 to 144	°C
5	Boiling Point	200 (1)	200	200	349 (2)	349	334 to 364	°C
6	Vapor Pressure	-	-	-	7.06e-08 (1)	7.06E-08	-	mmHg
7	Soil Adsorption Coefficient	-	-	-	2.92 (2)	2.92	2.74 to 3.10	-
8	Octanol-Air Partition Coefficent	-	-	-	8.39 (1)	8.39	-	-
9	Atmospheric Hydroxylation Rate	-	-	-	-10.4 (1)	-10.4	-	-
10	Biodegradation Half Life	-	-	-	15.1 (1)	15.1	-	days
11	Bioaccumulation Factor	-	-	-	173 (1)	173	-	-
12	Bioconcentration Factor	1.64 (1)	1.64	1.64	82.0 (3)	82	1.38 to 173	-
13								
14								

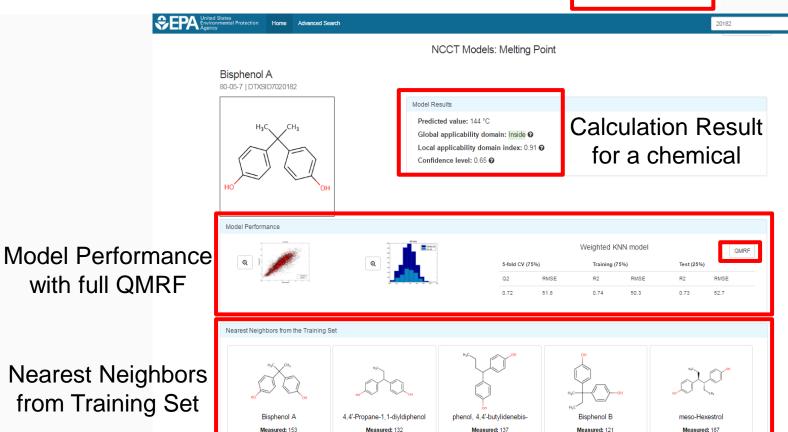
Chemical Properties External Links Synonyms Product Composition ToxCast in Vitro Data Exposure PubChem Comments

Predictions for >720,000 Chemicals

NCCT_Model predictions built on curated data

 All chemicals in CompTox Dashboard pushed through all predictive models

 Predicted data made available, with detailed MODEL REPORTS

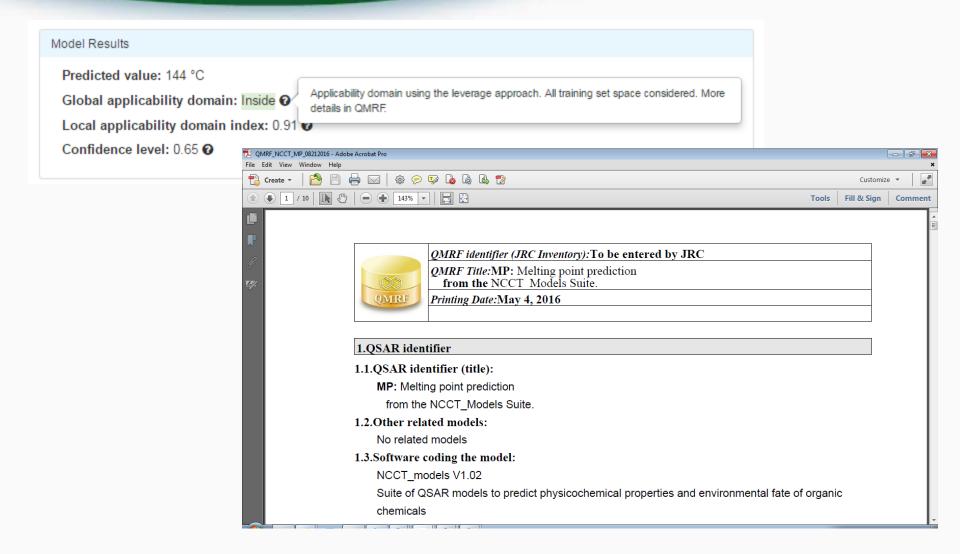

Predicted Data

	Predicted		
Source		Result	Calculation Details
EPISUITE		132 °C	Not Available
NCCT		144 °C	NCCT Model Report

Predicted: 144

Predicted: 133

Predicted: 142


Predicted: 140

Predicted: 157

Nearest Neighbors from Training Set

Prediction Details and QMRF Report

External Links

Chemical Properties	External Links	Synonyms	Product Composition	ToxCast in Vitro Data	Exposure	PubChem	Comments
General	Toxicolo	gy	Publications	Analytical		Prediction	
EPA Substance R	ACToR		Toxline	Q National Env	iron	oo Chemicaliz	e
NIST Chemistry	on DrugPo	tal	Environmental He	. RSC Analytic	al A	Proton NM	R Predi
Household Produ	CCRIS		NIEHS			Carbon-13	NMR
2 PubChem	ChemVi	ew	National Toxicolo				SQC/H
Chemspider	© CTD		G Google Books			♂ ChemRTP	Predictor
CPCat	eChemi	Portal	G Google Scholar				
DrugBank	● EDSP □	ashboard	G Google Patents				
hmp HMDB	Gene-To	ox	PubMed				
w Wikipedia	MHSDB						
Q MSDS Lookup	ToxCas	Dashboa					
Q ToxPlanet	LactMed	d					
Q ChemHat: Hazard	Internat	ional Toxi					

Chemical Properties

External Links

Synonyms

Product Composition

ToxCast in Vitro Data

Exposure

PubChem

Synonyms

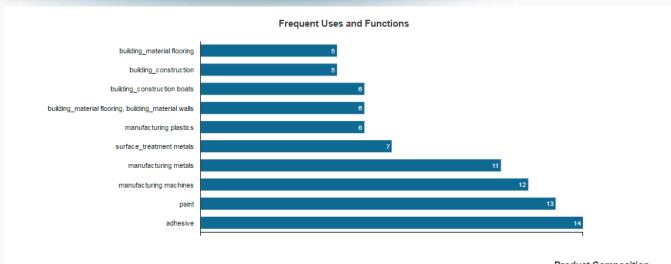
			Found 83 s	synonyms	
	Legend:	Valid Synonyms	Good Synonyms	Other Synonyms	Copy all Synonyms
Bisphenol A					
4,4'-(Propane-2,2-diyl)diphenol					
phenol, 4,4'-(1-methylethylidene)bis-	•				
ВРА		Ov	er a m	illion sy	ynonyms, different
4,4'-Propane-2,2-diyldiphenol				•	
Phenol, 4,4'-(1-methylethylidene)bis	•	le	veis oi	curati	on and validation
80-05-7 Active CAS-RN					
4-06-00-06717 Beilstein Registry Number					
UNII-MLT3645I99 FDA Registry Number					
(4,4'-Dihydroxydiphenyl)dimethylmetha	ane				

Chemical Properties

External Links

Synonyms

Product Composition


ToxCast in Vitro Data

Exposure

PubChem

Functional Use and Composition (Integrating CPCat Data)

Product	Composition
---------	-------------

Product	Percent Composition ↓	Manufacturer
BISPHENOL-A (BPA)	100%	GENERAL ELECTRIC COMPANY
EPOXY PASTE PIGMENTS, 3402-3408	<100%PPM	SYSTEM THREE RESINS
ISOPROPYLIDENEDIPHENOL, 99+%, 23965-8	99%+	ALDRICH CHEMICAL CO
BISPHENOL A (RESIN GRADE) (43106)	97.8%	SHELL OIL COMPANY
4,4-ISOPROPYLIDENEDIPHENOL, 97%, 13302-7	97%	ALDRICH CHEMICAL CO
ICO-PATCH EPOXY RESIN HARDENER, PART B	80%	INTERNATIONAL COATINGS CO
ADHESIVE-SCOTCH-WELD (R) 2216 B GRAY	72%	3M COMPANY
EPOCAST HARDENER 946, FPC 5000	45%	CIBA-GEIGY CORP
EPOLITE 1350 HANDENER	35-50	HEXCEL CORP, RESINS GROUP
EL CUEM NO 200 DDIMED DADTD	27 E0/.	ELECTRO CHEMICAL ENGINEERING 9

Chemical Properties

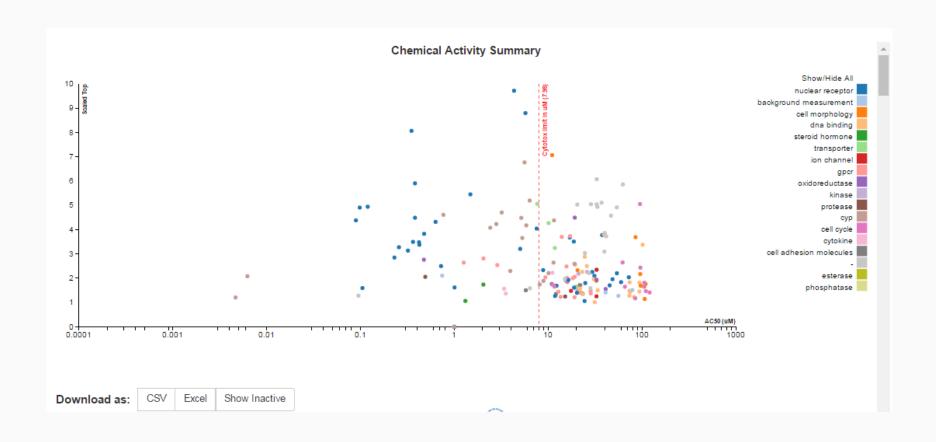
Download as: CSV

Excel

External Links

Synonyms

Product Composition


ToxCast in Vitro Data

Exposure

PubChem

Bioassay Screening Data (Integrating ToxCast Data)

Bioassay Screening Data (Integrating ToxCast Data)

Assay Name	Hit Call	Тор	Scaled Top	AC50 ↓	log AC50	Intended Target Family
APR_Hepat_CellLoss_48hr_dn	APR_HepG2_Oxida	ativeStress_72	h_up			
APR_HepG2_OxidativeStress_24h_up	Assay Name: AF Gene Symbol: no		OxidativeStress_	72h_up		
APR_HepG2_MitoMass_24h_dn	Organism: huma	n				
APR_Hepat_DNADamage_48hr_up	Tissue: liver					
APR_HepG2_CellLoss_24h_dn	Assay Format Ty Biological Proces	•	ed idative phosphory	lation		
APR_HepG2_OxidativeStress_72h_up	Detection Techno	ology: Fluore	scence			
ATG_HSE_CIS_up	Analysis Directio	n: positive				
APR_Hepat_DNADamage_24hr_up	Intended Target F Description: Data			NPR HepG2	OxidativeStress	_72hr was analyzed into 2 assay endpoints. This assa
APR_Hepat_CellLoss_24hr_dn	endpoint, APR_H	lepG2_Oxid	ativeStress_72h_	up, was analy	zed in the positiv	re fitting direction relative to DMSO as the negative co
APR_Hepat_Steatosis_24hr_up	the pathway-leve	as they rela	ate to the gene . F	urthermore, th	nis assay endpoi	nt can be referred to as a primary readout, because the cition. To generalize the intended target to other relatable to the cition.
APR_HepG2_CellLoss_72h_dn			•			nily, where the subfamily is "stress response".

Chemical Properties

External Links

Synonyms

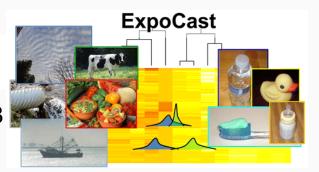
Product Composition

ToxCast in Vitro Data

Exposure

PubChem

Exposure Data – NHANES and ExpoCast Predictions

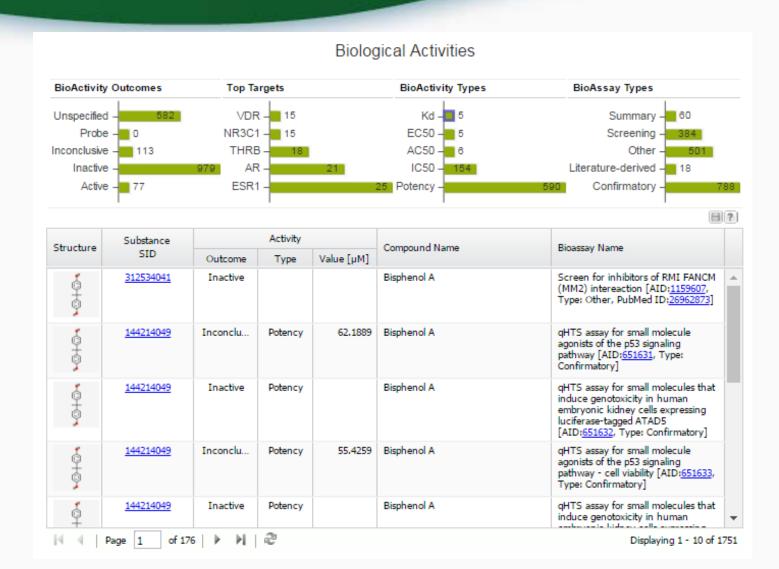

		Nation	nal Health and I	Nutrition Exa	mination Su	ırvev (NHA	NES) Inferences (mg/kg-b	w/dav)		
	Ages 6-11	Ages 12-19	Ages 20-65	Ages 65+	BMI > 30	BMI < 30	Repro. Age Females	Females	Males	Total
Minimum	3.80e-05	2.55e-05	2.79e-05	1.91e-05	2.38e-05	3.02e-05	2.83e-05	2.58e-05	2.94e-05	2.86e-05
Maximum	4.92e-05	3.38e-05	3.27e-05	2.31e-05	2.74e-05	3.30e-05	3.31e-05	3.03e-05	3.37e-05	3.08e-05
Mean	4.33e-05	2.93e-05	3.02e-05	2.10e-05	2.55e-05	3.16e-05	3.06e-05	2.80e-05	3.15e-05	2.97e-05
				⊕ Exposu	re Predictio	ns (mg/kg-bw/	day)			
	Ages 6-11	Ages 12-19	Ages 20-65	Ages 65+	BMI > 30	BMI < 30	Repro. Age Females	Females	Males	Total
Median	6.30e-05	2.68e-05	2.05e-05	1.61e-05	1.69e-05	2.67e-05	1.11e-05	1.11e-05	3.89e-05	2.11e-05
95th Percentile	5.82e-03	2.00e-03	1.61e-03	2.18e-03	1.45e-03	2.26e-03	1.57e-03	9.09e-04	3.34e-03	2.00e-03

National Health and Nutrition Examination Survey

High-Throughput Models for Exposure-Based Chemical Prioritization in the ExpoCast Project

Environ. Sci. Technol., 2013, 47 (15), pp 8479–8488

PubChem


Comments

Exposure

Chemical Properties External Links Synonyms Product Composition ToxCast in Vitro Data

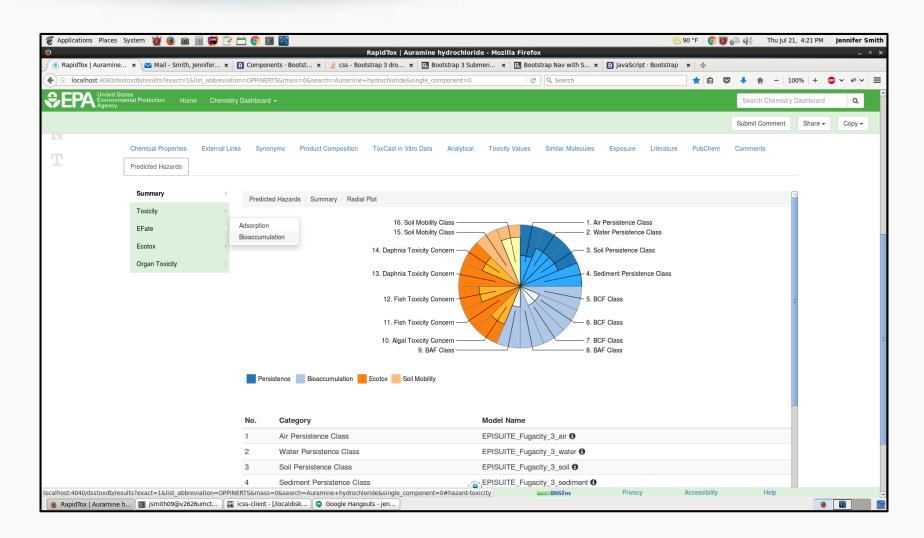
PubChem integration

Chemical Properties

External Links

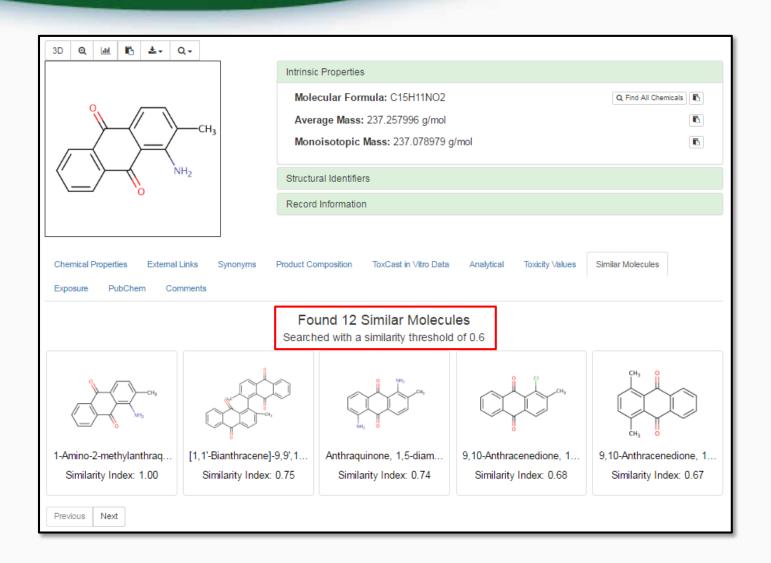
Synonyms

Product Composition


ToxCast in Vitro Data

Exposure

PubChem (


Work in Progress: Environmental Fate, Transport and Toxicity

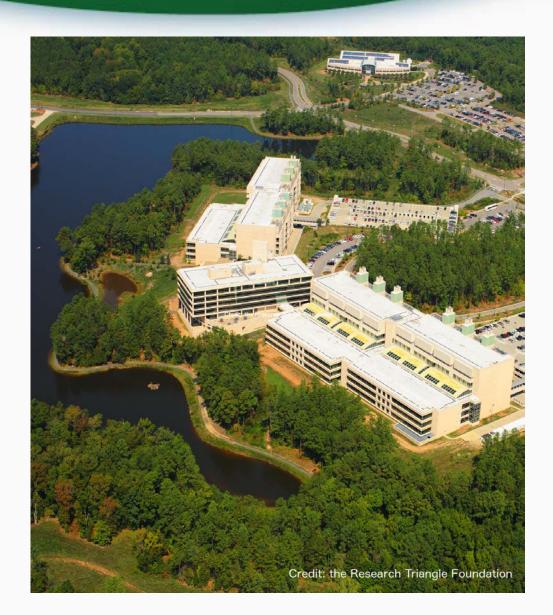
Work in Progress: Analog Identification and Similarity Search

Conclusions

- NCCT has been delivering data, algorithms, models and software tools for a decade
- A new flexible architecture to support multiple both internal and external apps
- First iteration of CompTox dashboard supports chemistry based searches
- Future concept...

Future Search Possibilities

CompTox Dashboard


Chemicals Products Targets Assays Literature
--

Search a chemical by systematic name, synonym, CAS number, or InChIKey

Q

Acknowledgements

Kamel Mansouri Chris Grulke Keith Houck Ann Richard Jeff Edwards Matt Martin John Wambaugh Grace Patlewicz Imran Shah Richard Judson Kevin Crofton Russell Thomas