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Abstract 

The Office of Pesticide Programs (OPP) models daily aquatic pesticide exposure 
values for 30 years in its risk assessments. However, only a fraction of that 
information is typically used in these assessments. The population model employed 
herein is a deterministic, density-dependent periodic matrix model for integrating 
time-varying pesticide exposure effects on the marine invertebrate Americamysis 
bahia. The external exposure concentrations are converted to time-varying scaled 
internal concentrations by coupling a one-compartment toxicokinetics
toxicodynamics model with the matrix model. Several exposure scenarios (each with 
the same risk as determined by OPP’s traditional approach) were created within 
which population modeling documented different risk conclusions than assessments 
based on the traditional approach. Population modeling incorporates all available 
toxicological and exposure data, making a more complete assessment of the 
potential risk of time-varying aquatic concentrations. 

Keywords: Americamysis bahia, matrix modeling, population level risk assessment, 
time-varying exposures 
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Preface 

Evaluation of different aquatic exposure scenarios is an integral part of EPA’s risk 
assessment process for the registration or re-registration of pesticides. While the 
Office of Pesticide Programs (OPP) has research needs associated with exposure 
models (e.g, incorporation of spatial variability in exposure parameters or 
development of urban and residential aquatic exposure models), there is also a need 
to better link time-varying exposure to population-level effects. The successful 
application of population modeling would significantly reduce the uncertainty 
associated with OPP’s risk assessments. Such modeling can account for cumulative 
impacts of multiple “low” exposures to the same chemical (minimizing potential for 
under protection), and can account for recovery after a short “high” exposure 
(minimizing potential for over protection). 

One of the criticisms of population modeling is the limitation placed on this approach 
by its data requirements. Current toxicity data requirements for pesticide registration 
do not provide enough information for complex models. The specific model herein 
was created with this concern in mind. All toxicity parameters are derived from 
standard test data for the marine invertebrate Americamysis bahia. The model 
successfully integrates acute and chronic toxicity data, and uses all of OPP’s time-
varying modeled exposure data. 

This report is a product for CSS 18.04.6, Integrated Modeling for Ecological Risk 
Assessment, Task 6: Case Study 3 - Pesticides Impacts to Aquatic Endangered Species. 
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INTRODUCTION 
For assessing pesticide risks to aquatic organisms, the Office of Pesticide Programs 
(OPP) models pesticide spray drift, runoff, and erosion into an agricultural pond with 
specified water body and watershed characteristics. Numerous agricultural crop 
scenarios represent different crop, regional, climate, watershed, and agronomic 
specifications across the country. These crop scenarios are intended to capture 
agronomic and regional factors that greatly influence the delivery of pesticides to 
surface waters (e.g., precipitation patterns, soil characteristics, pesticide application 
timing). With each of these crop scenarios, an exposure model called the Pesticide in 
Water Calculator (PWC)1 simulates daily concentrations for 30-year exposure 
distributions for surface water, sediment, and interstitial (pore) water. Because the 
PWC output depends in part on soil properties, soil and crop management practices 
and weather data, different regions of the country and different crop types will have 
different aquatic exposure time series for equivalent applications of the same 
pesticide. Typically, OPP derives a single acute and chronic estimated environmental 
concentration (EEC) from each 30-year time series that represents a conservative 
(high end) exposure concentration with an infrequent occurrence (e.g., once in 10 
years). The acute and chronic EECs are then compared to available acute and chronic 
toxicity data to estimate risk to aquatic organisms. OPP’s use of EECs reflects a tiered 
process whereby high end estimates of exposure are first used to identify potential 
risks, which identifies any need for additional refinements to risk estimates. It is clear 
that the EEC distills a large amount of information into a single value and thus greatly 
limits the ability to consider temporal aspects of organism exposure and life history 
which are known to influence risk. Population modeling, while not currently part of 
OPP’s standard risk assessment, offers an additional higher tiered refinement—one 
that can use all of the exposure data, as well as combine acute and chronic 
assessment into a single estimate of risk. The use of population modeling assessment 
procedures will reduce the likelihood of over or under protection decisions that may 
occur due to an inability to incorporate time-varying exposures in the risk assessment 
process. 

The Issue 

OPP models daily aquatic pesticide exposure values for 30 years (10,350 values), yet 
only a fraction of that information is typically used in pesticide risk assessments. 
Time-varying exposure information is essentially not used. Depending on the type of 
analysis, the daily time series data may be used as is or converted to a 4-d running 
average (for comparison against acute toxicity data), or, if chronic toxicity data are 
used, converted to either a 21-d (invertebrates) or 60-d (fish) running average. Once 

1 http://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/models-pesticide-risk
assessment#aquatic 
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a time series is selected, the maximum value for each year is noted. The EEC is 
determined as the 90th percentile of 30 ranked values of annual maxima and is 
subsequently used to calculate a risk quotient (RQ), which is an EEC divided by a 
toxicity value of interest. In theory, this EEC reflects the annual maximum with an 
expected 1 in 10 year return frequency and roughly corresponds to the fourth highest 
annual maximum. In the case described in this report, the toxicity value is a mysid 
chronic value. Because such a small fraction of the available exposure data is used, 
one can easily imagine a situation whereby several time series have very similar 
EECs—thus very similar RQ values—yet the underlying pattern of daily exposures 
could be drastically different. In this situation, the currently estimated risk to the 
taxonomic group of interest would be similar, but the actual potential risk might be 
quite different among the different exposure series. Figure 1 shows a hypothetical set 
of exposure scenarios. The three scenarios were constructed so that each has the 
same third highest annual maximum. Visual inspection of these scenarios suggests 
they should have different effects on a population; however, the current risk 
assessment method would indicate the same risk. The challenge is to provide a 
procedure that can distinguish among these scenarios, yet be easy to understand and 
simple to implement. Ideally the procedure also would require no new data—that is, 
take full advantage of all of the currently required toxicity data for a given species. 

The Potential Solution 

One technique for incorporating effects of time-varying concentrations of pesticides 
is toxicokinetics-toxicodynamics modeling—TK-TD (Brock et al. 2010, Ashauer and 
Brown 2013). Toxicokinetics relates the time course of the concentration of a toxicant 
within an organism to the time course of that toxicant in the external medium. TK 
modeling is similar among many researchers. Most publications on the subject make 
the simplifying assumption that the organism is a one-compartment model2 (i.e., the 
whole body concentration represents the target concentration), and assume uptake 
and elimination kinetics are first order (linearly related to external and internal 
concentrations, respectively). The biggest objection for using toxicokinetics has been 
the need for internal concentration data—not typically available from standardized 
tests. This can be overcome by using a scaled internal concentration (Ashauer and 
Brown 2013), which does not require estimation of the uptake kinetic parameter, and 
may even be the preferred method for determining uptake kinetic parameters over 
whole body measurements (Jager et al. 2011). Scaled internal concentration is 
described below in more detail in the MODEL STRUCTURE section. 

2 This may be because much of the TK-TD modeling to date has been with relatively small 
invertebrates. 
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Figure 1. Three different time series, each with the same 30 annual maximum values. Time series differ only in the 
concentrations represented by the non-maximum values. For the “Low” time series, each of the “Medium” values 
were divided by 2, and for the “High” series, each of the “Medium” values were multiplied by 1.5. The plots are 
21-d running averages and the original raw daily values are plotted in Appendix A. 
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While toxicokinetics is similar among many different TK-TD modeling efforts, 
toxicodynamics modeling can take several forms. Most of the TD approaches are 
different applications of hazard modeling3—as the internal concentration increases, 
the probability of an effect increases. The approaches for toxicodynamics differ 
primarily in the component to which the toxic effect (usually survival) is related—that 
is, whether it relates directly to the internal concentration or to some level of internal 
damage (Brock et al. 2010). In its simplest form the hazard rate is proportional to the 
internal concentration, and all concentrations, no matter how small, cause some 
degree of effect. This simple model also assumes any effect (or any recovery) is 
instantaneous and complete. The model described in this report uses this simplified 
form for toxicodynamics. Because of this simplification, the model can be 
parameterized using the toxicological data typically available to OPP during pesticide 
registration or re-registration. 

Even though TK-TD models usually are applied to individuals, they can be directly 
coupled with population models (Brock et al. 2010), which is what is done herein. For 
this population approach, the report builds upon a matrix population model 
previously developed for the marine invertebrate Americamysis bahia (Thursby 
2009). That model has a one week time step4. This new approach takes that into 
consideration and uses a periodic matrix technique (Caswell 2001), which creates 52 
sub-matrices5 to represent annual population activity. This method allows 
incorporating potential effects due to degree of seasonal exposures overlapping with 
seasonal biological events, such as reproduction. The purpose of this report, 
however, is not to promote a definitive population model, but rather to use this 
model to demonstrate the ability of such models to distinguish among various 
exposure time series, as well as among different toxicological features—such as 
seemingly minor differences in sensitivity. 

Risk Analyses 

A comparison of three different types of risk analyses demonstrated how population 
modeling provided a more quantitative distinction among different exposure time 
series. These analyses were deterministic, probabilistic, and population-level 
methods. The deterministic approach is currently the first tier of an assessment 
within an OPP regulatory risk determination. As mentioned above, this method uses a 
very small portion of a 30-year modeled exposure data series. The probabilistic 
approach is occasionally included in a risk assessment and includes all of the 
exposure data within a cumulative distribution. The same toxicological endpoints are 

3 Survival is considered a stochastic process. This is in contrast to an individual tolerance approach 
whereby there is the assumption of a distribution of thresholds for survival. In the latter approach, the 
individuals that die are the more sensitive ones; in the stochastic approach, the individuals that die are 
just the unlucky ones (Jager et al. 2011).
4 The earlier model also is stochastic and density independent. The periodic version is not stochastic 
and is density dependent. Details of the model are in Appendix B. 
5 Note, this results in a 364-day year. 
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used as in the deterministic approach, except this approach calculates the probability 
that the exposure data exceeds that endpoint (based on a count of how many 
concentration values are greater than the endpoint value). The probabilistic approach 
makes no distinction about when a concentration occurs, it only determines how 
many times within 30 years that concentration occurs. For example, it does not 
distinguish between a high concentration occurring thirty times within a single year 
and the same concentration only occurring once a year. 

As with the probabilistic approach, the population approach uses all of the exposure 
data—integrating potential time-varying effects on survival and reproduction into a 
single population response tracked through time. Population modeling also 
incorporates recovery when exposure concentrations decline. The approach 
eliminates the need to make separate acute and chronic risk determinations. In 
addition, it eliminates the need to rely on running averages because daily 
concentrations in the external medium are used to estimate daily scaled internal 
concentrations, which in turn track daily effects6. As such, and unlike the probabilistic 
method, the population modeling method can distinguish among exposure scenarios 
that may differ only by when a given concentration occurs. Finally, population 
modeling can evaluate other exposure-based issues, including such things as 
frequency of stressful exposures and the temporal distribution of stressful exposures 
(e.g., clumping vs. uniform spacing of exposure within a time series). 

Population models can also distinguish among effects that differ from a toxicological 
perspective. For example, the relative ratio of 24 vs. 96 hr LC50 values. With the 
current pesticide risk assessment procedures, two species with similar 96 hr LC50 
values (a standard acute assessment endpoint) for a given toxicant would be deemed 
to have similar acute risks. However, for some species the LC50 may stabilize after 24 
hr, and for others, it may continue to change with increased duration of exposure. 
These are two different toxicokinetic parameters, and very likely result in two 
different population responses to the same exposure time series. Another 
toxicological factor is the relative response of survival vs. reproduction. Two species 
could have similar final chronic values based on reproduction, but the effect of the 
toxicant on survival could be very different. Again, two similar risks by current 
procedures, but likely very different population responses. 

This report shows toxicokinetics-toxicodynamics modeling and periodic matrix 
population modeling are useful tools to account for a variety of exposure and 
toxicological factors. This assessment is based, in part, on the mysid’s response to 
endosulfan, a compound already being removed from all uses within the United 
States. 

6 Each weekly survival probability is the minimum survival rate of that seven-day period—a mysid can 
only die once so the minimum within each week is selected. 
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MODEL STRUCTURE 

Matrix Population Model 

As stated above, the model builds upon an earlier matrix population model 
developed for Americamysis bahia (Thursby 2009). A matrix model allows 
independent tracking of effects on different subpopulation groups. This adaptation of 
the model retains the basic structure of the original matrix model—subpopulation 
groups are age classes and a one week time step. All age classes (ranging from 1 to 13 
weeks) are assigned the same sensitivity, differing only in the length of time exposed. 
The earlier model is density independent, stochastic, and assumes constant exposure 
concentrations. The current model is density dependent7 and deterministic8. For 
specifics on the derivation of control survival and reproduction demographics, refer 
to the earlier report. 

The original mysid matrix model construct is insufficient to deal with time-varying 
toxicant concentrations.  Because OPP uses modeled 30-year daily time series for 
estimating exposure to aquatic organisms, a different matrix configuration is needed. 
To accomplish this the original weekly time step was retained, but a separate matrix 
was created for each week of the year. This approach was patterned after periodic 
matrix models (Caswell 2001)9. In addition to providing a mechanism to track changes 
in effects due to variability in exposure through time, this approach also provided a 
means for incorporating variability in demographic parameters with time (e.g., 
spawning and non-spawning seasons). Figure 2 demonstrates pictorially how the 
model was constructed. Time-series exposure data occur one year at a time, and the 
beginning of subsequent years starts where the previous year left off until all 30 years 
are processed. Each matrix represents the population’s status for its given week; 
however, each matrix retains a “memory” of its previous 12 weeks of the exposure 
series (see Appendix B for a more complete explanation). The endpoint was the 
proportion of weeks within the 30-year time series that the population declined to or 
below a given threshold based on weekly counts of total population size. 

7 Populations in the natural environment do not grow indefinitely. There must be some sort of 
compensatory factor governing overall population growth. The current model uses density 
dependence as this factor. The mechanisms for density dependent growth are varied, and generally 
not specifically known for most species. Many population modelers default to one of several simplistic 
ways to incorporate density dependence. For this report, I have chosen to use the density dependent 
mechanism described by Leslie (1948).
8 The demographic parameters (survival and reproduction) are fixed, changing only when exposed to a 
toxicant. Therefore, if you run the same exposure time-series more than once, the distribution of 
population size over time will be the same each time.
9 Often, periodic matrix models are presented as a product of a sequence of sub-matrices which 
themselves represent different periods of time within an annual cycle—for example, spring, summer, 
fall and winter. The model presented in this report uses sub-matrices, but does not multiply them 
together for a single annual matrix. 
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Figure 2. Diagram of how the population model interacts with the toxicant time series. 
The solid black line represents a hypothetical time series of toxicant concentration in 
the water column. The gridded squares across the top represent the positioning of the 
periodic sub-matrices in time. Note that there are only 11 matrices pictured for 
simplicity. In the model there are 52 such matrices covering each week of the year. The 
red line represents the spawning season—user defined. 

The original mysid matrix model relies on Population Viability Analysis (PVA) to 
provide the effects endpoint (Ginzberg et al. 1982, Morris and Doak 2002). 
Population Viability Analysis estimates the probability that a population will fall 
below a given threshold within a given period of time (e.g., the probability of a 20% 
decline from the current population size within the next 10 years). Initially, the intent 
was to use a similar stochastic process to model the annual growth rate based on the 
periodic matrix—then apply PVA procedures. However, PVA was not practical after 
the analyses were expanded from one matrix to fifty-two10. Even very small changes 
in demographic parameters within the control matrices resulted in large variations in 
the annual growth rate of the population. For example, a weekly survival as high as 
0.99 translated into an annual survival rate of 0.59 (0.99 raised to the 52nd power). 
Because of this, the periodic version of the matrix model was simplified to 
deterministic rather than stochastic—this also eliminated the need for hundreds, or 
even thousands, of runs for each annual series11 . 

10 In addition, PVA analysis assumes that the mean population growth rate is density-independent.
 
Incorporating density dependence in the model complicates estimates of extinction risk (Morris and
 
Doak 2002).

11 PVA analysis requires not only an estimate of an average growth rate for a time period of interest,
 
but also an estimate of the variability of that rate due to stochasticity of demographic parameters—
 
thus the need for hundreds or even thousands of model runs.
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The 2009 version of the model does not track population numbers, only changes in 
growth rate—so that model uses a simplifying assumption of no density dependence, 
that is, it allows exponential growth. The periodic model tracked population size on a 
weekly basis for 30 years. Exponential growth made tracking population size 
impractical since extremely large population sizes occurred. Density dependence 
within the model eliminated the possibility of these excessive population sizes. In 
addition, because the periodic model tracked exposures which vary over time, a 
mechanism for incorporating recovery was needed when exposure concentrations 
declined. Density dependence was one way to accomplish this12. The model applied 
the density dependent factor equally across each age class. Appendix B describes 
how this factor was calculated. 

Effects Modeling Constraints 

The Office of Pesticides Programs has specific test guidelines for acute and chronic 
tests for the mysid shrimp Americamysis bahia (OPPTS 850.1035 and OPPTS 
850.1050). At least for the foreseeable future, ecological risk assessments will likely 
rely on the current suite of traditional tests. The approach in this report, therefore, 
restricted the parameter estimations for TK-TD modeling to data typically expected 
from these standard toxicity tests. This limited some of the types of TK-TD modeling 
to couple with the periodic matrix ensemble. Most notably damage and 
recovery/repair models were not considered. Damage and recovery models can 
account for delays in effects and different rates of recovery. By definition, damage is 
a reduction in the fitness of the organism (Brock et al. 2010), and the effect (usually 
survival) is proportional to the amount of damage. The rate of repair or recovery (also 
proportional to the amount of damage) has to be taken into account in “damage” TD 
models. However, the calculation of recovery rate constants requires measured 
internal concentrations (Jager et al. 2011). Recovery, by definition, also has to be 
related to sub-lethal endpoints—an individual cannot recover from mortality. 
Endpoints such as growth and reproduction often do not have enough time 
dependent observations to efficiently estimate organism recovery. For these reasons, 
the model herein did not consider a damage and recovery form of TK-TD modeling. 

Estimating Time-Varying Survival Probability 

To translate the effects of time-varying exposure concentrations into time-varying 
survival probabilities, there needs to be a way to estimate how the internal 
concentration changes with time. Often this is accomplished assuming a one-
compartment model (Kooijman and Bedaux 1996a)—which treats any internal 
concentration as being uniformly distributed within the organism. The concentration 
in an organism at any given time depends on an increase based on the concentration 
in the water times the uptake rate and a decrease based on the internal 

12 The actual mechanism of density dependence is not modeled. For example, the approach does not 
distinguish between whether the dependence is a result of intra-specific competition for food or 
increase rate of predation as the population increases. 
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concentration times an elimination rate13. The elimination rate can be estimated 
from data that is frequently available from traditional toxicity tests. If the LC50 is 
calculated for different time intervals (e.g., 24, 48, 72 and 96 hr), the LC50 often 
shows an exponential decay in time with a decay constant that can serve as an 
estimate of the elimination rate constant14 (Bass et al. 2010). See Appendix C for a 
full explanation. The other rate constant (uptake rate) is not so easily estimated, 
since concentrations within the animal’s body are generally not available. 

Kooijman (1983) and Mancini (1983) independently solved the issue by using what is 
now referred to as a scaled internal concentration (Jager et al.  2011). Kooijman 
(1983) scaled the unknown internal concentration by the bioconcentration factor 
(uptake rate divided by elimination rate) and related mortality to this value. Mancini 
(1983) scaled the internal concentration by dividing it only by the uptake rate 
constant, since it is possible to independently estimate the elimination rate constant 
based on LC50 vs. time. Mancini’s explanation of the mathematics is easier to follow, 
and his explanation is apparently the first to apply the model to exposure scenarios 
where the concentrations both decrease and increase over time. A relationship 
between the scaled internal concentration and % mortality forms the basis for 
tracking survival probability. The slope of this relationship is what Kooijman and his 
colleagues more recently refer to as the “killing rate” (Kooijman and Bedaux 1996a, 
b; Jager and Zimmer 2012). Mancini’s procedure forms the basis for the use of scaled 
internal concentration in this report—a full explanation is provided in Appendix D. 
The calibration procedure for fine tuning this rate is described in Appendix E, using 
chronic toxicity test results for endosulfan. 

Estimating Time-Varying Reproduction Probability 

Mancini (1983) and others provided ways to evaluate survival probability using data 
from standard toxicity tests—much of it relying on acute data. Simple TK-TD models 
for sublethal endpoints are not easily calibrated and generally require more data than 
provided by traditional test protocols (Ashauer and Brown 2013). Standard toxicity 
tests often do not have sufficient time series data for reproductive output in order to 
estimate directly the kinetic coefficient for reproduction (i.e., a reproductive “killing 
rate”). The most readily available reproduction data will be chronic end-of-test 
effects information. For the purpose of the model described herein, the ratio of 
chronic survival effect (e.g., 28-d LC50) to chronic reproduction effect (e.g., EC50) was 
used. A Survival to Reproduction Ratio (SRR) was calculated and the assumption 

13 The elimination rate accounts for many different processes, including actual excretion, internal 
binding, internal transformation to another chemical form, etc. Mancini (1983) uses the term 
detoxification rather than elimination. 
14 The elimination rate constant may not just represent whole body elimination. It is possible that a 
portion of the compensating process may represent repair or recovery’s rate constant. Some 
researchers, therefore, refer to this as the “dominant rate constant” (e.g., Jager et al. 2011). For the 
purpose of the current model I will assume elimination constant refers to the combined actions that 
eliminate toxicity. 

9
 



    
    

 
    

  
       

 

  
    

  
    

  
     

 
 

   
      

  
  

 
  

    
  

  

     
 

    
    

      
    

        
  

       
  

    
    

 
 

     
 

 
 

made that this ratio remains constant for any probability of survival. The 
reproduction rate factor (RRF) is related to survival probability as: RRF = 
EXP[LN(SP)*SRR]. Where SP is the survival probability for a given week. The model 
multiplies the control maternity rates by the RRF to estimate the maternity rate for a 
given exposure week. The RRF is assumed to be constant for all age classes. The 
calibration procedure for fine tuning the SRR, if needed, is described in Appendix E. 

Minimum Data Requirements 

The period matrix model toxicity data requirements are the same as the minimum 
data requirements for the earlier, non-periodic version of the model (Thursby 2009). 
Thursby (2009) provides a procedure for estimating default values even if these 
minimum data are not available. Briefly, the minimum data requirements are: 

1. Acute LC50 values for different time periods—typically these will be 24, 48, 72
and 96 hr. These data are used to calculate the elimination rate constant. This
constant is the only variable needed to convert time-varying external
concentrations to time-varying scaled internal concentrations.

2. Survival probability over time for one or more “constant” concentrations.
These data are often available from daily observations of mortality and are
used to estimate the killing rate—which is assumed to be a constant for any
concentration. The killing rate converts daily scaled internal concentrations to
a daily survival probability. Calibration of the model output using chronic data
can refine the killing rate constant.

3. Chronic LC50/EC50 ratio (SRR). This ratio is used to estimate the weekly
reproduction adjustment factor.

Model Operation 

After the killing rate constant, the uptake rate constant, and the SRR are derived, the 
model operation is straightforward. An exposure time-series is selected and the 
spawning season defined. For this report each week was assigned a spawning factor 
of either 1 or 0. A factor of 1 meant that the original fecundity rates were used. A 
factor of 0 meant that all fecundity rates were set to zero. The default spawning 
season was 39 continuous weeks and began at week 10 (week 1 was the first week of 
January). For scenarios evaluating spawning season effect, six different scenarios 
were run—a 39-week season starting either week 10, 20 or 30, and a 26-week 
season, also starting either week 10, 20 or 30. Figure 3 demonstrates the first three 
years of a control population with spawning beginning on week 10 and lasting for 39 
weeks. At the beginning of each modeling run, the model runs for several “years” 
with no exposure. This allows the population to reach stability with respect to annual 
cycling of weekly total population size, as well as stability with respect to the 
distribution of individuals among the different age classes. For each series with a 
different spawning scenario a separate 30-yr control was created. The modeling 
result is a time series showing the weekly change in population size as a percentage 
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of the control response. Figure 4 presents a partial time series as an example of 
how data are evaluated. Results are shown from the first ten years. The 
response is quantified by counting the number of times the weekly population 
size falls below a given threshold—expressed as a fraction of the total number of 
weeks in 30 years (1560). 

Figure 3. Example of a control population time series with 
spawning beginning in week 10 and lasting for 39 consecutive 
weeks. Only the first three years are shown—all 30 years are 
identical. 

The risk of a population falling below a threshold obviously is a function of a specific 
threshold (the smaller the change from the control, the greater the potential for 
observing that change). A problem with this approach has been the selection of a 
population threshold (Thursby 2009). This can be overcome by the use of risk curves 
in which a range of population thresholds is used and the area under such curves 
calculated (Burgman et al. 1993)15 . An alternate approach could use already 
established thresholds for different degrees of severity in population decline. For 
example, the World Conservation Union (IUCN 2012), defines a population as 
vulnerable if a 30% decline is observed over a specified amount of time or number of 
generations. A population is endangered if there is a 50% decline, and critically 
endangered if an 80% decline is observed or estimated16 . 

15 Risk definition in Burgman et al (1993) uses quasi-extinction, which is not the same as what is 
presented herein; however, the concept of total risk being related to area under the curve is similar.
16 The World Conservation Union thresholds are for threatened and endangered species. They are 
presented here only as examples of how one might summarize the severity of risk to a population. 
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Figure 4. Sample model output showing population size as % of control for the 
first ten years of a model run. The horizontal dashed lines for the population 
thresholds for vulnerable (70%), endangered (50%) and critically endangered 
(20%). The number of weeks a population falls below a given threshold 
compared to the total number of weeks in 30 years (1560) is a direct estimate 
of the susceptibility of the population. 
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TOXICOLOGICAL FACTORS 
Besides the above biological scenarios, several toxicological model scenarios also 
demonstrated the utility of population modeling. Figure 5 shows two sets of LC50 
dynamics with time. These could represent two different species or two different 
toxicants with the same species. The point addressed is the effect of the rate at which 
mortality occurs as an organism responds to constant exposure. Both scenarios have 
the same 96-hr LC50—thus the traditional risk assessment would assign the same 
acute risk. However, one scenario clearly responds quicker to exposure (dashed line) 
than the other (solid line). 

LC50 dynamics 
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Figure 5. Acute toxicity scenarios. One in 
which the 24 hr and 96 hr LC50 values are very 
similar (dashed line) and the other where the 
LC50 changes more slowly with time (solid 
line). The elimination rate constant of the 
former is 1.25 d-1 and the latter, 0.025 d-1. See 
Appendix C for a detailed explanation of the 
rate constant calculation. 

A population model can distinguish between these acute scenarios. Figure 6 
demonstrates why. The bottom panel displays a hypothetical 30-year time series of 
daily exposure concentrations. The top panel displays the daily probability of survival. 
The species whose LC50 value is similar at 24 and 96 hr (“fast kinetics”) tracks more 
closely the peaks of daily exposure. The “slow kinetics” species buffers the exposure, 
such that sudden daily increases in exposure pass by before the effect of that 
exposure reaches its full potential. See Appendix D for a more detailed explanation. 
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Figure 6. Daily survival probabilities (top) for two hypothetical species 
exposed to a daily exposure time series (bottom). See Figure 5 for description 
of fast and slow kinetics. 

A second set of toxicological scenarios is shown in Figure 7. These hypothetical data 
represent dose response data from chronic tests. The chronic runs both used the 
same effect on reproduction, therefore both had the same NOAEC (no observable 
adverse effect concentration)—based on reproduction. The only difference was the 
relative sensitivity of survival compared to reproduction. In one scenario (Figure 7, 
top) survival was assumed to be insensitive relative to reproduction. In the other 
scenario, survival had a similar dose response to that for reproduction (Figure 7, 
bottom). Because both scenarios have the same NOAEC, both would result in the 
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same evaluation of chronic risk. Yet, logic would clearly dictate these two scenarios 
should not have the same level of risk. Again, population modeling will distinguish 
between these two chronic scenarios. 
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Figure 7. Chronic toxicity dose response 
scenarios. The scenario in the upper plot 
shows an NOAEC based on reproduction, 
and survival is significantly less sensitive 
than reproduction. The lower plots shows 
the same NOAEC; however, this time 
survival has a similar sensitivity to the 
pesticide as reproduction. 
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RESULTS AND DISCUSSION 
Risk assessments using deterministic, probabilistic and population modeling 
techniques show the value of population modeling for exposure time series. The goal 
of this work was not to promote a particular model, but to promote the value of 
population modeling when specifically applied to risk assessments for pesticide time-
varying exposures. The information presented below demonstrates the value of 
population modeling to distinguish among exposure and effects where the traditional 
assessment resulted in the same estimate of risk for each scenario. The analyses are 
based on the 21-d running averages presented in Figure 1 (daily values for each are in 
Appendix A). 

Deterministic 

All three time-series have the same annual maximum concentrations, and thus the 
same 90th percentile value. The summary of these values for the 21-d running 
averages (Figure 1) is presented in Table 1. The 90th percentile (0.772 ug/L) is used to 
calculate the risk quotient (RQ). For this example, the effect concentration is 0.49 
ug/L17, making the RQ 1.58, which is above the LOC of 1 for aquatic invertebrates. 
Based on this, we know there is the potential for acute effects on marine 
invertebrates—and that potential is the same for all three time series (by design). 

Table 1. Annual maximum values from Figure 1. 

Maximum Maximum 
Year (ug/L) Year (ug/L) 

1 0.147 16 0.462 
2 0.185 17 0.572 
3 0.754 18 0.691 
4 0.759 19 0.631 
5 1.135 20 0.377 
6 0.468 21 0.478 
7 0.585 22 0.971 
8 0.724 23 0.598 
9 0.532 24 0.890 

10 0.402 25 0.419 
11 0.531 26 0.468 
12 0.623 27 0.561 
13 0.453 28 0.625 
14 0.663 29 0.324 
15 0.522 30 0.575 

17 This is the mysid chronic value for endosulfan. A different chronic value would be used for 
freshwater invertebrates. A 60-day running average would be used for evaluating chronic effects to 
freshwater and saltwater fish. 
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Probabilistic 

If we look at a cumulative distribution of the data from Figure 1, then differences 
among the data are more easily quantified (Figure 8). Although the deterministic 
approach shows the same risk analysis for each of the three exposure scenarios, the 
probabilistic approach clearly shows differences among the three. The probability of 
exceeding the chronic value for mysids (0.49 ug/L) is 3, 5 and 17%, for the low, 
medium and high series, respectively. However, we have no easy way to determine if 
any of these exposure scenarios are “bad” enough for concern. 

Figure 8. Cumulative distributions of the exposure data presented in Figure 6. 
The vertical dashed red line is the chronic value for mysids exposed to 
endosulfan (0.49 ug/L). 

Population Modeling 

Population modeling results are presented two ways, as the chance of decline below 
one of several thresholds, and as the total area under a risk curve. Figure 9 shows 
population results for endosulfan exposure which can be directly compared to the 
deterministic (Table 1) and probabilistic results (Figure 8). Whereas the deterministic 
and probabilistic methods only used the single chronic value for effect of endosulfan 
on mysids (0.49 ug/L), the population approach incorporates all of the dose response 
information for both acute and chronic exposures. Using all of the toxicological 
information available offers a more complete distinction among the three exposure 
scenarios. These distinctions are summarized in Table 2. 
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Figure 9. Summary of the chance of a given % decline in mysid population 
size relative to the control response for each of the three exposure scenarios 
when the exposures are assumed to be from endosulfan. Spawning season 
began on week 10 and lasted for 39 weeks. See Appendices C and E for 
summary of the endosulfan toxicity data. Vertical dashed lines represent % 
declines corresponding to IUCN categories of vulnerable (30%), endangered 
(50%) and critically endangered (80%). 

Table 2. Summary statistics for Figure 9. AUC refers to the area under the curve. 

Threshold 
Exposure 
Scenario 30% Decline* 50% Decline 80% Decline AUC 

Low 0.30 0.07 0.00 20.4 
Medium 0.59 0.25 0.02 35.8 

High 0.80 0.44 0.13 48.9 
*Decline data are fraction of time below the threshold.

Acute “Kinetics” 
Figure 10 displays the population modeling results from the comparison with 
different acute toxicity dynamics—the acute dose responses for all model runs had 
the same 96 hr LC50. Model parameters assumed no direct effect on reproduction, 
and spawning season began on week 10 and lasted 39 consecutive weeks. The only 
difference among the runs were the values for elimination kinetics constant (see 
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Figure 5 for example, and Appendix C for explanation of kinetics constant). These 
ranged from 0.01 to 1.25 d-1 (“slow” to “fast” kinetics). Only the data from the 
“medium” exposure time series are displayed. The vertical dashed lines correspond 
to the declines associated with a population being labeled as vulnerable, endangered 
and critically endangered (IUCN 2012). The data for each kinetic scenario are 
summarized in Table 3. The area under each risk curve corresponds to the total 
expected relative decline in the population size. It is worth reminding that for all of 
these kinetic scenarios the risks determination by the deterministic and probabilistic 
methods are the same—the differences observed in Figure 10 are cause by 
alterations in the kinetics of acute toxicity only. The more similar a 24hr LC50 is to a 
96 hr LC50 the quicker a species mortality rate responds to a change in the 
environmental concentration. The greater the ratio of 24 to 96 hr LC50s, the slower 
the mortality rate responds to changes in external toxicant concentrations and the 
more a species response is buffered against sudden, short-term changes in daily 
exposures. 

Figure 10. Summary of the chance of % decline in population size relative to the 
control response for ten different LC50 kinetic senarios. All population model 
runs used the medium exposure time series (see Appendix A). Elimination 
kinetic constants ranged from 0.01 d-1 (lowest curve) to 1.25 d-1 (upper most 
curve).  Table 3 lists all of the kinetic contants, along with the summary data for 
each curve. Spawning season began on week 10 and lasted for 39 consecutive 
weeks. Vertical dash lines represent % declines corresponding to IUCN 
categories of vulnerable (30%), endangered (50%) and critically endangered 
(80%). 
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Table 3. Summary statistics for Figure 10. Kinetic constant refers to the value for the 
elimination constant. Only data for the medium exposure series are shown. Percentage 
declines correspond to IUCN categories of vulnerable (30%), endangered (50%) and critically 
endangered (80%). AUC is the area under the risk curve. 

Threshold 
Kinetic 

Constant 30% Decline* 50% Decline 80% Decline AUC 
0.010 0.00 0.00 0.00 3.67 
0.025 0.11 0.00 0.00 12.19 
0.050 0.26 0.06 0.00 20.66 
0.075 0.35 0.12 0.00 25.74 
0.100 0.43 0.16 0.00 28.95 
0.250 0.59 0.25 0.02 35.83 
0.500 0.64 0.29 0.04 38.42 
0.750 0.65 0.30 0.05 39.48 
1.000 0.66 0.31 0.05 40.11 
1.250 0.66 0.32 0.06 40.49 

*Decline data are fractions of time below the threshold.

Survival vs Reproduction Effects 

Figure 11 is similar to Figure 10, except instead of displaying the results from 
different acute toxicity scenarios, it displays the results from two different chronic 
toxicity scenarios. All six model runs had a spawning season beginning on week 10 
and lasting 39 consecutive weeks. In the first scenario (the upper plot in each of the 
three graphs), reproduction and survival have similar dose-responses to constant 
exposure concentrations (see Figure 7, bottom panel). In the second scenario for 
each time series, reproduction is significantly more sensitive to those exposures than 
survival (see Figure 7, top panel). The vertical dashed lines correspond to the declines 
associated with a population being labeled as vulnerable, endangered and critically 
endangered (IUCN 2012). The data are summarized in Table 4. As expected, the 
probability of decline for both kinetic scenarios increases as the exposure increases 
from low to high. Predictably, the model runs where both survival and reproduction 
are effected have a higher probability of decline than those where essentially only 
reproduction is influenced. Similar to the model runs for Figure 10, each pair of data 
is associated with the same probabilistic exposure summary. 
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Figure 11. Summary of the chance of % decline in population size relative to the control response for 
each of the three exposure time series (see Appendix A). For each time series, two different 
toxicological scenarios were run. For the first (red line), the dose-response of reproduction and 
survival were set to be equal. For the second (blue line), reproduction was kept the same as the first 
run; however, survival sensitivity was significantly less than that of reproduction. The elimination 
constant was 0.25 d-1 (slow kinetics from Figure 5). Vertical dash lines represent % declines 

21
 



 
   

 
  

  
 

      

  
  

      

 
    

     

 
    

     

 
    

  
 

     
      

 
 

 
   

  
   

  
 

  

   
      

    
    

 
  
     

 
    

     

  
 

 
 

                                                      

corresponding to IUCN categories of vulnerable (30%),  endangered (50%) and critically endangered  
(80%).  

Table 4. Summary statistics for Figure 11. Low, Medium and High columns are data from three 
different exposure scenarios (see Figure 4). Repro = Survival corresponds to the model run where 
reproduction and survival dose-response were the same. Repro > Survival is the model run where 
reproduction was significantly more sensitive than survival (see Figure 3). 

Exposure Scenario 
Threshold Dose-Responses Low Medium High 

Fraction of Weeks Below Threshold 
30% Decline Repro = Survival 0.53 0.84 0.91 

Repro > Survival 0.19 0.42 0.63 
50% Decline Repro = Survival 0.26 0.59 0.82 

Repro > Survival 0.02 0.18 0.32 
80% Decline Repro = Survival 0.03 0.21 0.52 

Repro > Survival 0.00 0.01 0.06 
Area Under Curve 

Total Risk Repro = Survival 34.5 56.6 75.5 
Repro > Survival 15.2 28.3 39.5 

Spawning Season 

The effect of spawning season start date or length was not as dramatic as the effect 
of acute or chronic toxicity scenarios (Figure 12). Only the results for the “medium” 
time series are presented. There is little difference among the spawning start weeks 
(10, 20 or 30). It is worth noting, however, that the order of decline associated with 
the three different start weeks is different within the two different spawning season 
lengths. Also, the spawning season lasting 26 weeks generally had lower probability 
of decline values than the 39 week season. 

Figure 13 displays the results from model runs using two different weekly population 
growth rates (lambda). Both runs used the medium exposure time series. The dashed 
lines corresponds to a run in which the weekly maximum growth rate was 1.6118— 
the growth rate for a control population during spawning season used in all previous 
model runs. The solid line represents a model run in which the growth rate of the 
control population was reduced to 1.41. This was accomplished by multiplying the 
spawning rates for each spawning season matrix by 0.6. The potential of a population 
decline increases substantially during an exposure time series when the underlying 
growth rate is smaller. This is likely for longer-lived species whose weekly growth 
rates should be substantially lower than those calculated for the short-lived mysid. 

18 This is the control’s weekly growth rate using the mean demographic parameters from Thursby 
(2009). 
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Figure 12. Summary of the effect of length and timing of spawning season 
on the % decline in population size relative to the control. Only the 
“medium” exposure scenario (see Figure 5) results are shown. The upper 
set of plots are for a spawning season lasting 26 consecutive weeks, 
beginning week 10, 20 or 30. The lower set are for a spawning season 
lasting 39 consecutive weeks. 

 
 

Figure 13. Summary of the effect of weekly population growth rate on the 
% decline in population size relative to the control. Only the “medium” 
exposure scenario results are shown. The length of spawning season was 
39 weeks, with spawning begin on week 10. 
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CONCLUSIONS 
Population models hold great promise for integrating exposure, toxicity and life 
history information into meaningful measures of risk. Several circumstances were 
presented within which population modeling would result in different risk 
conclusions than assessments based on the traditional approach. The traditional first 
tier procedure to risk evaluation (deterministic) relies only on the annual maxima. 
Three exposure scenarios were presented where the total effect of 30-year time-
varying exposure series would have very different risks to a population, yet the 
deterministic assessment indicated the same risk for all series. The probabilistic 
approach was a little better. That approach at least uses all of the exposure data, and 
showed each exposure time series was distinct. This approach, however, can only 
indicate the proportion of time the expected environmental concentration exceeds 
the toxicological endpoint in question. The probabilistic method provided no 
information on the expected total consequence of those exceedences. Population 
modeling, on the other hand, provided an approach that allowed those consequences 
to be quantified. Once quantified, it becomes easier to determine whether the 
estimated effect is unacceptable or not. Clearly, population modeling provides a 
more complete assessment of the potential risk of a time-varying exposure than the 
traditional assessment methods. 
The population model used in this report is certainly not the only mathematical 
model that could have been employed. The specific model used, however, was 
selected based on several constraints. These included having sufficient demographic 
data on which such a model could be based, using a commonly tested species, and 
being able to derive toxicity parameters for the model based entirely on standard test 
data. While other models may prove eventually to be more appropriate, the general 
conclusions about the relative value of population modeling should still stand. 
The acute and chronic scenarios presented clearly indicate the potential for missing 
significant effects using only traditional endpoints such as LC50s, NOAECs and RQs. 
The model runs using different spawning seasons, however, did not show as great an 
effect on a mysids population’s response to a given time series. The preliminary 
model runs using a reduced weekly growth rate suggest this lack of an obvious effect 
could be because mysid populations in general have a rapid growth rate. A short-
term decline from a large exposure concentration can be rapidly overcome with a 
few weeks of lower concentration. It is likely that species with a significantly slower 
population growth rate—such as longer-lived invertebrates or fish—may display a 
more pronounced spawning season effect. 
The selection of IUCN Red List thresholds for decline are consistent with their 
assessments for vulnerable, endangered and critically endangered species. These are 
presented as examples of how population modeling output might be evaluated based 
on observations of population size over 30 years. Red List categories can be avoided 
by using the area under a risk curve to establish the effect of a time series on a 
population. This, however, does not eliminate the need for judgement. Someone still 
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has to decide where to place the cut off between an acceptable and unacceptable 
area. Ultimately, the significance of any difference is a policy decision. 
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Appendix A. Daily Modeled Pesticide Concentrations.
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Figure A-1. Three different time series used for the model comparative runs. 
Each time series has the same maximum value for each of the 30 separate 
years, all other values were either multiplied by 0.5 (low), 1.0 (medium) or 
1.5 (high). 
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Appendix B: Explanation of Periodic Model and Density 
Dependent Factor 
A periodic matrix model is named as such because each cycle of the matrix (often 
expressed as a year) is divided into several periods. Periods can be seasons, months, 
etc.—and they do not have to be equal in length of time covered. Each period has its 
own matrix model with its own demographic parameters (see Caswell 2001, Chapter 
13). The matrix product of all sub-matrices within a cycle is the projection matrix for 
that cycle, and its dominant eigenvalue is the annual growth rate for the population. 
While the model can provide annual growth rates via the eigenvalue method, its use 
herein is to following weekly population size. 

Density dependence is incorporated into each sub-matrix using a density dependent 
factor: 

Eq  B-1 

Where: 

Mi = a 13x13 sub-matrix for week i (i ranges from 1 to 52), 
ni = the population vector for week i (13 age classes), 
DDF = a density dependent factor, see Equation B-2, and 
ni+1 = the population vector for week i+1. 

The density dependent factor is calculated as (based on Leslie 1948): 

Eq B-2 

 [𝑀𝑀𝑖𝑖 ∙ 𝑛𝑛𝑖𝑖] ∙ 𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑛𝑛𝑖𝑖+1   

 

       
    

   
  

   

 1DDF= 
[1+(𝜆𝜆−1)∗ 𝑛𝑛𝑖𝑖

𝐾𝐾 ] 
   

 

          
 

     
   

  
 

   
 

  
  

   
     

    

 
 

                                                      

Where: 

λ = maximum weekly growth rate in the absence of density dependence 
(1.64), 
ni = the total number of individuals in the ith week, 
K = carrying capacity (set at 100). 

The use of density dependence requires a carrying capacity. Since the maximum size 
of field populations for mysids is not easily known, 100 was chosen as the 
maximum—100%, so the carrying capacity is a relative number. The weekly control 
population growth rate (lambda) for a spawning week was 1.64, for a non-spawning 
week, 0.49 19 . As a population size approaches zero, the weekly growth rate 
approaches the maximum rate. As a population size approaches the carrying 
capacity, the maximum weekly growth rate approaches 1.0. If a population exceeds 
the carrying capacity, the maximum weekly growth rate is less than 1.0. 

19 Based on average control demographic parameters from Thursby (2009). 
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Each year of exposure data is evaluated in 91-d running blocks—this is the expected 
duration of Americamysis bahia life history (13 weeks). This is visualized in Figure B-1. 
Each weekly sub-matrix is a 13x13 matrix, consisting of 13 age classes (Thursby 2009). 
Age class 1 is only exposed to the concentrations represented in the current week. 
Age class 2, however, has been exposed for 2 weeks—the current week and “reaches 
back” into the previous week. That is, the current concentration within individuals 
that are 2 weeks old is an integration of the previous 14 days. Each age class reaches 
back a different number of days. Age class 13 reaches back the full 91 days. This 
results in each age class having a different scaled internal concentration at any given 
time since they are integrating over a different number of days. Each sub-matrix 
covers a different portion of the annual exposure time series (Figure B-2). 
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Figure B-1. Demonstration of “reaching back” for each age class. The light 
green vertical bar represents the current exposure week. The horizontal 
black lines (solid and dashed) represent the time period to which each age 
class has been exposed. 
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Figure B-2. Picture of a single year’s worth of exposure evaluation within the 
model. Each sub-matrix (represented by a horizontal black bar) integrates 
different, but overlapping, portions of the time series. 

Figure B-3 demonstrates the cumulative internal concentration (represented by 
Q(t)/kin—see Appendix C for a detailed explanation) for each age class for a 
hypothetical 91-d exposure block. Survival for a given week is estimated as the lowest 
calculated survival probability from among the 7 days represented by the current 
week’s exposure. The lowest value is used since individuals can only die once. This 
survival value is the one used for a given age class within a given weekly sub-matrix. 
For each year, 676 survival values are calculated—one for each age class (13) for each 
week of the year. 
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Figure B-3. Calculated Q(t)/kin values for each age class over the entire 
length of their exposure. Note each curve does not begin a 0 because 
the calculations begin with the end of day 1. As long as there is an in 
water concentration greater that 0 on day 1 there will be a value for 
Q(t)/kin greater than 1 on day 1. 

Survivorship Calculations 

The “hazard function” or “hazard rate” approach is used by the model to estimate 
survival. Terms like “time-to-event” or “accelerated life testing” are also used in the 
literature. In this model there are no sensitivity sub-groups; every individual has the 
same probability of dying for any given exposure. Whether or not a particular 
individual dies is a random process. For example, if during a particular time interval 
the stressor exceeds some threshold, then a portion of the population will die. This 
portion is determined by the “killing rate” or proportionality constant. Because the 
sensitivities of the individuals that die are the same as the sensitivities of the 
individual that do not die, there is no change in the range of sensitivity within the 
population of living organisms. Thus, if during the next time interval the stressor level 
does not change, then more individuals will die (the same proportion as the previous 
time interval). 

To understand how we apply the hazard function approach to a series of time-varying 
exposures, we begin with raw data such as that shown in Figure B-4. This figure is 
hypothetical survival data from a single toxicant concentration monitored for 10 
periods (e.g., over 10 days). 
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Figure B-4.  A hypothetical time to death curve for a single toxicant exposure 
concentration.  

To use the hazard function we need to calculate a new constant that Kooijman and 
coworkers (e.g., Kooijman and Bedaux, 1996a,b) call the killing rate, kkill. We fit a 
survivorship curve to the above set of data that has kkill as the only unknown. The 
development of this survivorship curve is explained below. 

A good explanation for the relationship between the following is in Lee (1992). There 
are three main functions that we need to understand: 

S(t) = Survival Function—defined as the probability that an individual 
survives longer than t. Also defined as 1-F(t) where F(t) is the 
cumulative density function (cdf) for mortality;  

f(t) = Probability Density Function (pdf)—probability of dying in a given time 
interval divided by the duration of that interval (also defined as the 
derivative of F(t); 

h(t) = Hazard Function—probability of dying at time t assuming that the 
individual has survived to time t (also referred to as the age specific 
mortality rate. 

These values are interrelated.  

 
cdf

pdf
tS
tf

tF
tfth

−
==

−
=

1)(
)(

)(1
)()(  Eq B-3 

Since the pdf is the derivative of the cdf: 
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By substitution into h(t) equation above we get: 

 )](ln[
)(
)(')( tS

dt
d

tS
tSth ==  Eq B-5 

Integration from zero to t and using S(0) = 1 , we have 

 )](ln[)(
0

tSdxxh
t

=− ∫  Eq B-6 

Solving for S(t) 
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dxxhtS
0

)(exp)(  Eq B-7 

Widianarko and Van Straalen (1996) use the term hazard rate, which is just the 
probability of dying. They define hazard rate as being directly proportional to the 
internal concentration of a toxicant. They introduce a proportionality constant θ, and 
write the hazard rate as: 

 )()( tQth θ= 20 Eq B-8 

Their θ is similar to the killing rate kkill used by Kooijman and his coworkers. The two 
values are related by: 
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k=θ  Eq B-9 

Using the above definition of θ, and Eq C-2 (from Appendix C) and B-6 from above we 
get: 
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Which simplifies to: 
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Substituting this equation back into Eq B-4 we get: 
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 Eq B-12 

 

 

20 Others (e.g., Kooijman group) essentially use Q(t)-QNEC where QNEC is the no effect concentration of 
the toxicant—in other words the hazard rate is proportional to the degree to which the internal 
concentration exceeds some no effect concentration.  
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The solution to this integral is: 
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This equation is fit to the % survival vs. time data (e.g., Figure B-4) to determine kkill 
which will be the only unknown in the above equation—Cw will be known (and 
assumed a constant) for a particular data set. The constant kout is determined 
independently (see Appendix C). Once we have an estimate for kkill, we can relate 
survival to Q(t)/kin.  

If we just substitute the definition of θ into Eq B-8 we have: 
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Rearranging we get: 
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Applying Eq B-7: 
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Integrating: 

 















−= t

k
tQkktS

in
killout

)(exp)(  Eq B-17 

Since the time step is 1 (a single day), we substitute t = 1 in to Eq B-17 and apply this 
to the time series for Q(t)/kin (see Appendix D) and derive the time series for S(t).  

 

Reproduction 

Data sufficient to evaluate reproduction in the same manner as survival—that is, 
enough information to establish an empirical rate constant for reproduction 
analogous to kkill (e.g., krepro)—is seldom, if ever available. The model assumes a fixed 
relationship (user defined) between survival and reproduction.    
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Appendix C: Calculation of Elimination Constant  

The equation used for estimating internal concentration assumes a one-
compartment model where the likelihood of death is associated with the 
concentration of the toxicant in some critical compartment. One-compartment 
models are assumed by most of the references on this topic. The rate of change of 
the quantity of the toxicant in the organisms is defined by: 

 )(
)(

toutwin
t QkCk

dt
dQ

−=  Eq C-1 

Where Q(t) = concentration of toxicant inside organism at time t (µg/g); 
 
 
 
 

Cw = concentration of toxicant in external medium (e.g., water—µg/L); 
kin = uptake rate into organism (L/g∙t)  21; 
kout =  elimination or detoxification rate (1/t); 
t = time. 

Simply put, this means that the amount that the internal concentration increases by 
in a given time period is equal to a constant proportion of the external concentration 
minus an elimination (or detoxification) rate that is proportional to the current 
internal concentration. The solution to this differential is: 

 [ ]tk
w

out

in
t

outeC
k
k

Q ⋅−−= 1)(  Eq C-2 

Since kin and kout are considered constants for a given organism, the only variables 
that influence Q(t) in the above equation are the concentration of the toxicant in the 
water and the duration of exposure to that concentration. If we assume Cw is a 
constant, and that exposure is infinite, then the maximum internal concentration for 
the toxicant is (kin/kout)Cw

22. Note that kin/kout is the steady state bioaccumulation 
factor. 

Let’s assume that we are exposing a group of individuals to a concentration that will 
kill 50% of them. For this case, let’s define x as the median threshold value. Since x is 
the median internal threshold, this makes the external concentration that results in x 
an LC50 value. If we rearrange Eq. C-2, then we can show: 

  [ ] )(1 t
in

outtk
w Q

k
k

eC out =− ⋅−  Eq C-3 

  

21 Units of rate constants are somewhat arbitrary—established so that units of final value are correct. 
22 Mathematically as t approaches ∞, the “e” term in the above equation approaches 0. 
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Which at t =  ∞, becomes:  
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out  Eq C-4 

This, because we have defined Cw as an LC50, simplifies to: 

 ∞∞ == 50)( LCQ
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C
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w  Eq C-5 

Substituting back into Eq B-4 and rearranging, we can calculate the LC50 for any time 
t. 

 tktw oute
LCLCC ⋅−

∞

−
==

1
5050  Eq C-6 

In Figure C-1 the water concentration to achieve a given toxic event is plotted vs. 
time to that event. Although this can be any measure of toxicity, frequently we will 
be plotting median lethality as the event (i.e., tracking the change in LC50 over time). 
By fitting Eq B-6 to the data, we can estimate the asymptote (the LC50 at infinity—or 
the incipient LC5023) and the value for kout—which is the shape parameter for the 
curve, related to the steepness of the curve. Jager et al. (2011) make the point that 
determination of the elimination constant using toxicity data is actually preferred to 
basing that calculation on measured internal concentrations. Internal concentrations 
may include toxicant not located at the primary action site, whereas, effects data are 
always responding to the concentration at the action site—even if we do not know 
the location of the specific site. Figure C-2 shows the application of Eq C-6 to data for 
endosulfan LC50 values for Americamysis bahia. Data for days 1 through 4 are from 
Schimmel (1981). Datum for 28 day exposure is from (McKenney 1982).  

 

23 This term appears to have been introduced by Sprague, JB. 1969. 
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Figure C-1. Hypothetical relationship between time and LC50 values.  

 
Figure C-2. Plot of mysid LC50 values for endosulfan. Curve was fit 
using Eq C-6. The asymptotic LC50 is 0.80 ug/L and the kinetic 
parameter kout is 0.25 t-1. 
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Appendix D: Explanation of Mancini Calculation of Scaled 
Internal Concentration 

Toxicity is more closely related to internal toxicant concentration than external 
concentration. But, internal concentrations are rarely measured as part of traditional 
toxicity testing procedures. However, toxicity can be related to what has been 
recently called a scaled internal concentration (Jager et al. 2011). Because of this, all 
that is needed in order to estimate the internal kinetics of a given toxicant (using the 
one-compartment model) is the external concentration time series and kout. The 
latter is calculated using traditional toxicity data (see Appendix C), and the former is 
from either direct measurements or, as in our case, modeled. 

Even though Mancini (1983) was not the first to introduce the equations for the 
single-compartment model, he seems to have been the first to show how we can 
calculate internal values based on “environmental” time-varying concentrations. 
Ultimately what is needed is an estimate of the % survival for a group of organisms 
for each time period of interest. Ideally we would establish a relationship between 
internal concentration and % survival (or calculate rates of uptake and elimination: kin 
and kout). However, that would require that we actually measure the internal 
concentrations, which may be cumbersome and expensive. Alternately we can 
establish a relationship between survival and some estimate of internal kinetics. In 
the case of Mancini’s paper that kinetic estimator is Q(t)/kin. Recall from Appendix C 
that the LC50∞ and kout can be estimated using standard toxicity data. The LC50∞ is 
the same as kout∙Q(∞)/kin. So if we divide the LC50∞ by kout we get Q(∞)/kin. This means 
survival can be related directly to Q(t)/kin, so only how Q(t)/kin varies with time is 
needed and not Q(t). 

Mancini’s equation 5 shows us how to calculate the time-varying quantity Q(t)/kin. To 
do this, the previous internal “quantity” loss is calculated for the current time 
interval: 

 
tk

in

t oute
k

Q
amountpreviousofdecay ⋅−− ⋅= )1(___  Eq D-1 

And to this add the amount that this “quantity” would increase by from the current 
external concentration—based on Eq C-2 (Appendix C): 
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Where Cw(t) is the concentration in the external environment at time t. At the end of 
the current time interval t the new value is: 
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Using Eq D-3, the daily values for exposure concentrations are converted into daily 
values for Q(t)/kin. For a time step of 1 day Eq D-3 simplifies to: 
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)()1()(  Eq D-4 

Note: The “t” in Q(t), Q(t-1) and Cw(t) is part of the value name and not a mathematical 
value.  

Appendix B shows survival can be expressed as a function of Q(t)/kin , therefore, once 
the time series for Q(t)/kin is known, the time series for survival is known. 
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Appendix E: Mysid Chronic Data for Endosulfan and Model 
Calibration (Quality Control) 

In order to set the survival kinetic parameter (kkill), survival data over time are needed 
for the same concentration. The acute data available for endosulfan shown below 
does not provide a lot of these data (Figure E-1). I could have just used the 3.02 ug/L 
data—and that might have been okay. Instead, to increase the amount of data, the 
dose response data for each day, along with the 28-d survival dose response data 
(Figure E-2) were used to create a new data set of survival vs. time using four 
different concentrations (1.5, 2.0, 2.5 and 3.0 ug/L) that more evenly cover the effect 
range. These are plotted in Figures E-3 and E-4. 

 
Figure E-1. Acute data for endosulfan from raw data available from Schimmel (1981). 
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Figure E-2. Dose-response data for endosulphan survival (1, 2, 3 4 and 28 da) and 28-d reproduction dose 
response. 
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Figure E-3. Calculated survival dose-response data for endosulfan.  

 

Figure E-4. Plot of data from Figure E-3 for 1.5, 2.0, 2.5 and 3.0 ug/L. 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 1 2 3 4 5

Su
rv

iv
al

 P
ro

po
rt

io
n

Endosulfan (ug/L)

24 hr

48 hr

72 hr

96 hr

28 da

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20 25 30

Su
rv

iv
al

 P
ro

ba
bi

lit
y

Time (days)

1.5 ug/L

2.0 ug/L

2.5 ug/L

3.0 ug/L

42 
 



The data from Figure E-4 were combined into a single regression (Figure E-5). 
Equation B-17 was used to fit the data. The concentration (Cw) used was the average 
for the four data sets (2.25 ug/L). The kinetic parameter for elimination (kout) was 
from Equation B-6 fit to data in Figure C-2 (0.25 t-1). An estimate of 0.60 t-1 for kkill 
gave the best fit (r2 = 0.77).  

 
Figure E-5. Plot of survivorship versus time using data from Figure 15. Solid red 
line uses average concentration (2.25 ug/L) and all of the data (kkill = 0.60 t-1). 
Dashed red line is fit using a kkill = 1.00 t-1. 

Setting kinetic parameters for reproduction is not as straightforward as for survival. 
This is primarily because there is not as much time-to-reproduction data available so 
that Q(t)/kin can be related to reproduction kinetics. As a compromise, reproduction 
was considered to be a function of the survival kinetics through the ratio of survival 
LC50 to reproduction EC50 from the chronic test. This assumes that the short-term 
exposure relationship of survival to reproduction is the same as that relationship in 
the chronic data set. Figure E-2 (bottom 2 plots) shows that the chronic dose 
responses of survival and reproduction are similar. The survival to reproduction ratio 
is 0.89.  

For calibration purposes, the model was run using constant concentrations covering 
the range of measured values within the available 28-d chronic tests (McKenney 
1982). A special density independent version of the model was created for 
conducting the calibration24. This version of the model tracks population size; 

24 The assumption is that chronic tests have sufficient food and low enough density of individuals to 
make density dependent factors minimal. 
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however, because only the first four weeks of the model are used (corresponding to a 
chronic test’s 28 days) there was no problem with the model output exceeding 
Excel’s capacity for number size. As with a chronic test, the model run began with all 
individuals (100) assigned to the youngest age class. Calibration run only tracked this 
initial cohort through each week as a measure of survival (consistent with a chronic 
test). For reproduction, total number of young produced during the four weeks was 
totaled separately.  

The survival kinetic parameter of 0.60 was used as the starting point in the periodic 
model. However, the model output (for the first 4 weeks) under estimated the effect 
of endosulfan on mortality. Changing the kinetic parameter from 0.60 to 1.00 
resulted in a better fit between the model and the laboratory data (see Figure E-6). 
Note that a survivorship curve using 1.00 is not that different from the curve using 
0.60 (Figure E-5). 

 
Figure E-6. Comparison of model survival output with data from 28-d laboratory chronic 
tests. Solid black points are the data from the 28-d endosulfan chronic tests. Solid red 
line is the model output using the 1.00 kinetic parameter. Dashed red lines are plus and 
minus one standard deviation from the model runs. 

The model calibration runs used 0.89 as the survival-to-reproduction ratio. The 
reproduction calibration results (number young per female) are shown in Figure E-7. 
The match between test data and model run was reasonably good enough to keep 
the 0.89 ratio for use in the final model runs for time-varying exposures.  
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Figure E-7. Comparison of model reproduction (based on number young per female) 
output with data from 28-d laboratory chronic tests. Solid black points are the data from 
the 28-d endosulfan chronic tests. Solid red line is the model output using the 0.89 SRR. 
Dashed red lines are plus and minus one standard deviation from the 100 stochastic model 
runs. 
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