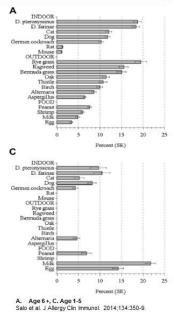

Day 2–Tues 5 May

# Greenspace and Health


### **Greenspace and Allergic / Respiratory** Disease

### **Background: Allergic Disease**

- Characterized by specific IgE production against allergens
  - HDM, pets cockroach, grass, trees, ragweed
- Runny, stuffy nose, itchy eyes, red/watery eyes, . sneezing
- · Closely linked to respiratory disease / asthma



Significant trend by age group. SOURCE: CDC/NCHS, Health Data Interactive, National Health Interview Survey.



### **Background: Asthma**

- Chronic inflammatory disorder of the airways associated with periods of reversible airflow obstruction (i.e. asthma attacks)
  - Airflow obstruction caused by inflammation and airway hyper responsiveness caused by contraction of the airway smooth muscle
  - Wheezing, shortness of breath, chest tightness, and cough
  - Triggers include: tobacco smoke, indoor allergens (e.g dust mites, cockroaches, pets), infections, exercise, weather, outdoor air pollution, outdoor allergens
  - Prevalence (US: 2008-2010)
    - 0-17: 9.5%

.

- · Male-11%, Female-8%
- White-8%, Black-16%
- 18+: 7.7%
  - Male-6%, Female-10%

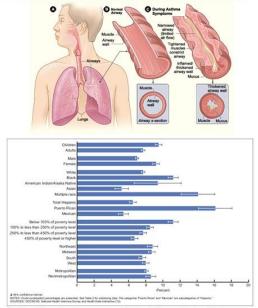
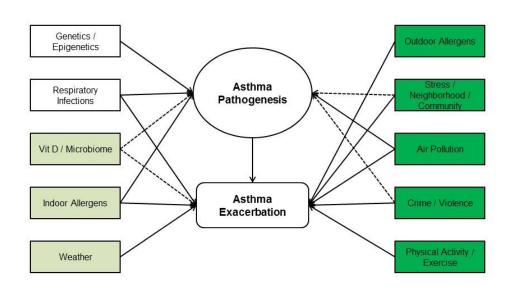
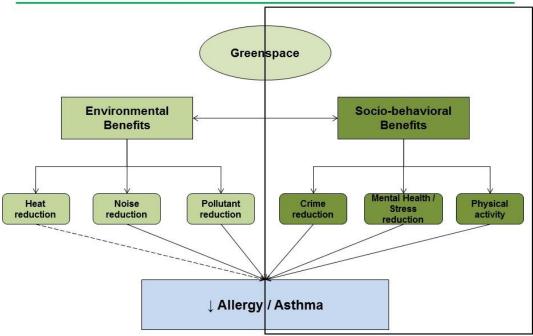
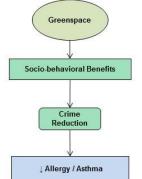





Figure 2. Current asthma prevalence, by see group, sex, race and ethnicity, poverty status, geographic region, and urbanicity; United States, average annual 2008-2010 Moorman UE, et al. National Center for Health Statistics. Vital Health Stat 3(35).2012.


### Greenspace and Asthma (Overly Simplified)







### Greenspace, Crime, and Allergic / **Respiratory Disease**



#### The association between community crime and childhood asthma prevalence in Chicago

Ruchi S. Gupta, MD, MPH\*<sup>+</sup>; Xingyou Zhang, PhD<sup>+</sup>; Elizabeth E. Springston, AB<sup>+</sup>; Lisa K. Sharp, PhD<sup>+</sup>; Laura M. Curtis, MS<sup>+</sup>; Madeline Shalowitz, MD, MBA<sup>+</sup>]; John J. Shannon, MD<sup>+</sup>]; and Kevin B. Weiss, MD, MPH<sup>+</sup># Ann Allerey Asthma Immunol, 2010;104:299–306. Ann Allergy Asthma Immunol. 2010;104:299-306.

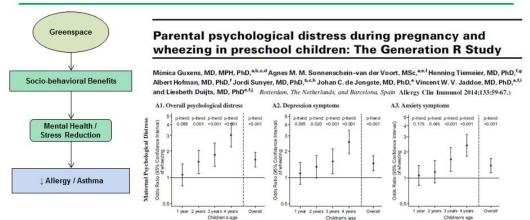
|                              | Likelihood of Asthma, OR (95% CI) |                                                                                                                  |                                      |  |  |
|------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|
| Variable                     | Unadjusted                        | Adjusted without<br>including race/ethnicity <sup>a</sup>                                                        | Adjusted<br>including race/ethnicity |  |  |
| Total crime®                 |                                   |                                                                                                                  |                                      |  |  |
| High vs low                  | 1.73 (1.48-2.03)d                 | 1.49 (1.26-1.76) <sup>d</sup>                                                                                    | 1.16 (0.98-1.37)                     |  |  |
| Moderate vs low              | 1.44 (1.28-1.62)d                 | 1.33 (1.19-1.48)4                                                                                                | 1.08 (0.96-1.20)                     |  |  |
| Violent crimes*              |                                   |                                                                                                                  |                                      |  |  |
| High vs low                  | 2.03 (1.76-2.34)d                 | 1.83 (1.52-2.20) <sup>d</sup>                                                                                    | 1.27 (1.04-1.55)                     |  |  |
| Moderate vs low              | 1.41 (1.26-1.57)d                 | 1.35 (1.21-1.51) <sup>d</sup>                                                                                    | 1.15 (1.02-1.29)                     |  |  |
| Property crimes <sup>9</sup> |                                   |                                                                                                                  |                                      |  |  |
| High vs low                  | 1.56 (1.32-1.84)d                 | 1.37 (1.17-1.60) <sup>d</sup>                                                                                    | 1.09 (0.93-1.26)                     |  |  |
| Moderate vs low              | 1.45 (1.28-1.63)d                 | 1.32 (1.18-1.47) <sup>d</sup>                                                                                    | 1.08 (0.97-1.20)                     |  |  |
| Drug abuse violationsh       |                                   | and the second | and a second second second           |  |  |
| High vs low                  | 1.81 (1.56-2.11)d                 | 1.51 (1.25-1.82) <sup>d</sup>                                                                                    | 1.14 (0.96-1.35)                     |  |  |
| Moderate vs low              | 1.32 (1.17-1.49)d                 | 1.23 (1.08-1.41)4                                                                                                | 0.11 (0.99-1.24)                     |  |  |

 Abbreviations: Cl. confidence interval; OR, odds ratio.
 1.22(1.09/141)

 \* Adjusted for age, sex, household member with asthma, and socioeconomic status.
 \* Adjusted for age, sex, household member with asthma, acioeconomic status.

 • Adjusted for age, sex, household member with asthma, acioeconomic status.
 \* adjusted for age, sex, household member with asthma, acioeconomic status.

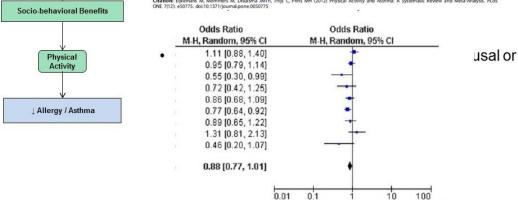
 • Adjusted for age, sex, household member with asthma, acioeconomic status.
 \* adjusted for age, sex, household member with asthma, acioeconomic status.


 • Annual incidence per population of 100,000: high, >1772; moderate, ≤1656 and >2440; and low, ≤452.

 • Annual incidence per population of 100,000: high, >2707; moderate, ≤1766 and >2440; and low, ≤2440.

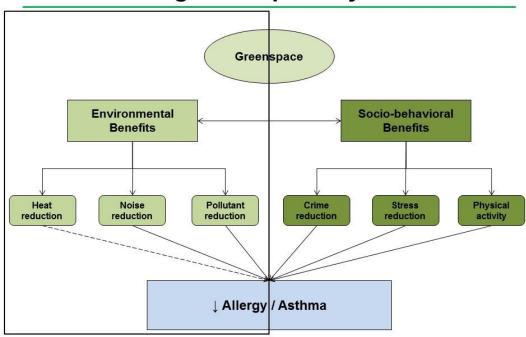
 • Annual incidence per population of 100,000: high, >2707; moderate, ≤2707 and >344; and low, ≤344.

Greenspace

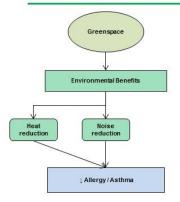

## Greenspace, Stress, and Allergic / Respiratory Disease



Greenspace, Physical Activity, and Allergic / Respiratory Disease


# Physical Activity and Asthma: A Systematic Review and Meta-Analysis

Marianne Eijkemans<sup>1,2</sup>\*, Monique Mommers<sup>2</sup>, Jos M. Th. Draaisma<sup>1</sup>, Carel Thijs<sup>2</sup>, Martin H. Prins<sup>2</sup> Citation: Eijkemans M. Mommers M. Draaisma JMTh, Thijs C. Prins MH (2012) Physical Activity and Asthma: A Systematic Review and Meta-Analysis. PLoS OKE 7021: 69775. doi:10.171/joumlyane.0630771

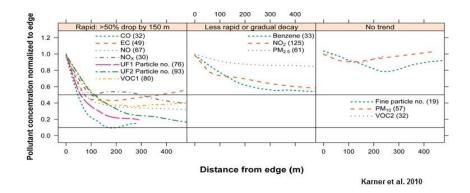





## Greenspace: Potential Beneficial Pathways for Allergic / Respiratory Disease



## Greenspace, Noise, Heat, and Allergic / Respiratory Disease




- Noise and asthma
  - Greenspace (trees and shrubs) may reduce noise by 5-10 db / 30m
  - Lack of studies designed to examine noise associated with asthma
    - · Activation of stress pathway?
- · Heat and asthma
  - Greenspace ↓ temperatures
  - Heat asthma link less clear
    - · Indirect pathway through ozone production

### Greenspace, Air Pollutants, and Allergic / Respiratory Disease

- Traffic-Related Air Pollution (TRAP)
  - PM, NOx, PAHs, EC, Metals
  - Significantly elevated near roadways
- Traffic-related air pollutants causally associated with asthma exacerbation

   Hospitalization, medication use, symptoms, lung function
- · TRAP 'usually' associated with new-onset asthma

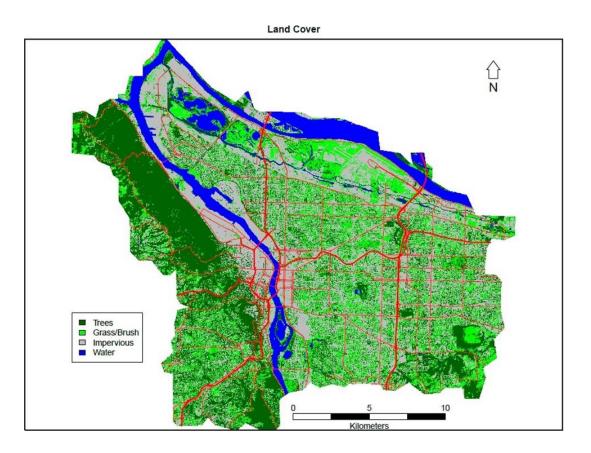


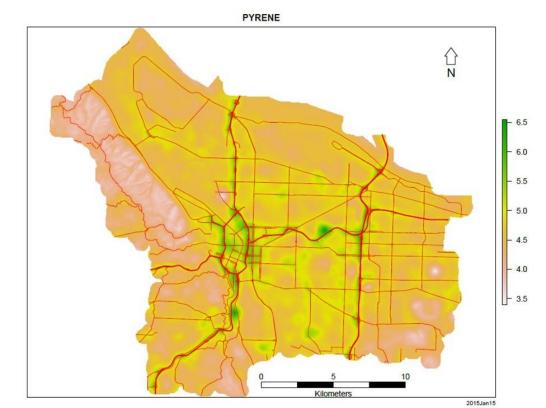
### **Greenspace and Air Pollutants**

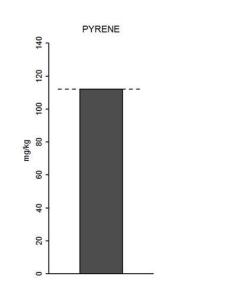


#### Surrounding Greenness and Exposure to Air Pollution During Pregnancy An Analysis of Personal Monitoring Data

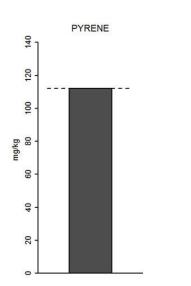
Payam Dadvand,<sup>1,2,3</sup> Audrey de Nazelle,<sup>1,2,3</sup> Margarita Triguero-Mas,<sup>1</sup> Anna Schembari,<sup>1,2,3,4</sup> Marta Cirach,<sup>1</sup> Elmira Amoly,<sup>4</sup> Francesc Figueras,<sup>5</sup> Xavier Basagaña,<sup>1,2,3</sup> Bart Ostro,<sup>1,6</sup> and Mark Nieuwenhuijsen<sup>1,2,3</sup> VOLME 120 | NUMEE 9 | September 2012 Environmental Health Perspectives Active and Lowers & Varian Active and d Table 2. Regression coefficients (5% Cls) of change in personal exposure and microenvironmental pollutant levels (µg/m<sup>3</sup>) associated with an IOR<sup>4</sup> increase in the average NOV within the buffers of 100 m, 250 m, and 500 m around maternal areadiential addresses.

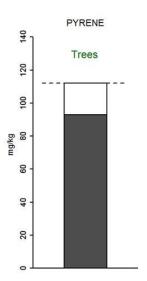

Environmental Benefits Pollutant reduction ↓ Allergy / Asthma

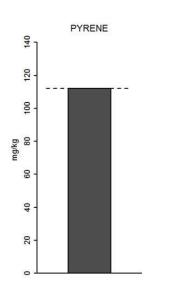

|                                                                      |                                                         |                     | Surrounding gree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nness                                    |                                                                    |               |
|----------------------------------------------------------------------|---------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------|---------------|
|                                                                      | 100-m buf                                               | fer                 | 250-m buffe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | er 👘                                     | 500-m butf                                                         | er            |
| Measurements                                                         | Regression<br>coefficient (95% CI)                      | p-Value             | Regression<br>coefficient (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p-Value                                  | Regression<br>coefficient (95% CI)                                 | p-Valu        |
| Personal (unadjusted)                                                |                                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                    |               |
| PM <sub>25</sub>                                                     | -5.2 (-9.4, -0.9)                                       | 0.02                | -2.4 (-5.0, 0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.06                                     | -2.8 (-5.8, 0.3)                                                   | 0.08          |
| NO,                                                                  | -2.6 (-15.3, 10.1)                                      | 0.68                | -2.3 (-9.7, 5.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.54                                     | -3.2 (-12.4, 6.0)                                                  | 0.49          |
| Personal (adjusted) <sup>b</sup>                                     |                                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                    |               |
| PM25                                                                 | -5.9 (-10.0, -1.8)                                      | < 0.01              | -2.4 (-4.8.0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05                                     | -2.3 (-5.1, 0.5)                                                   | 0.11          |
| NO,                                                                  | -5.1 (-18.6, 8.4)                                       | 0.45                | -3.0 (-10.7, 4.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.43                                     | -3.6 (-12.9.57)                                                    | 0.44          |
| Home-indoor <sup>c</sup>                                             |                                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                    |               |
| PM <sub>25</sub>                                                     | -6.1 (-10.6, -1.6)                                      | < 0.01              | -1.9 (-4.6, 0.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.17                                     | -2.3(-5.5, 0.9)                                                    | 0.15          |
| NO.                                                                  | -9.5 (-24.4, 5.3)                                       | 0.20                | -45(-133, 42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.31                                     | -6.7 (-17.3, 3.9)                                                  | 0.21          |
| Home-outdoord                                                        |                                                         |                     | the provide the pr |                                          |                                                                    |               |
| PM <sub>2.5</sub>                                                    | -4.4 (-9.5, 0.7)                                        | 0.08                | -3.2 (-6.6, 0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.07                                     | -5.5 (-10.5, -0.4)                                                 | 0.04          |
| NO.                                                                  | -5.8(-17.6.6.0)                                         | 0.33                | -53(-140.34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.23                                     | -5.6 (-19.5, 8.3)                                                  | 0.43          |
| and passive), use of gas-cooking<br>sampling round, the use of gas-c | appliances, time spent in<br>ooking appliances, smoking | transfer, and MEDEA | ed for the time spent at home (su<br>index of neighborhood deprivatio<br>), the number of inhabitants, and<br>the monitor, and MEDEA index of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n. Adjusted for the<br>MEDEA index of ne | temperature at home-indoors or<br>aighborhood deprivation. #Adjust | the first day |
| Unadjusted                                                           |                                                         |                     | -8.1 (-13.6, -2.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                   | -13.9 (-19.4, -8.4)                                                | < 0.01        |
| Adjusted <sup>®</sup>                                                |                                                         |                     | -9.0 (-13.8, -4.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.01                                    | -14.6 (-19.4, -9.8)                                                | < 0.01        |
| Black carbon (µg·m <sup>-3</sup> )<br>Unadjusted                     | 1.2 (0.8                                                | .)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.01                                    |                                                                    | <0.01         |
| Adjusted                                                             |                                                         |                     | -0.27 (-0.45, -0.08)<br>-0.30 (-0.44, -0.16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.01                                    | -0.47(-0.65, -0.28)<br>-0.46(-0.60, -0.32)                         | <0.01         |
| Traffic-related PM23 (ug-r                                           | m <sup>-3</sup> ) 5.0 (4.8                              | 'n                  | -0.50 (-0.44, -0.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                                     | -0.46 (-0.60, -0.32)                                               | 40.01         |
| Unadjusted                                                           | 0.00 ( 40                                               |                     | -1.2 (-2.3, 0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05                                     | -2.4(-3.6, -1.2)                                                   | < 0.01        |
|                                                                      |                                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                    |               |

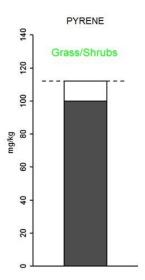

<sup>6</sup> 0.087 and 0.144 for greeness within and surrounding school boundaries respectively. <sup>6</sup> Adjusted for weekly average of background level of the pollutarian meteorological indicators (temperature, humidity, and precipitation), monitor placement (floor and orientation) and school characteristics including bialding age and vernitation. <sup>6</sup> Adjusted for weekly average of background level of that pollutarian meteorological indicators (temperature, humidity, and precipitation), monitor placement (floor and orientation) <sup>7</sup> Adjusted for weekly average of background level of that pollutarian meteorological indicators (temperature, humidity, and precipitation), monitor placement (floor and orientation)

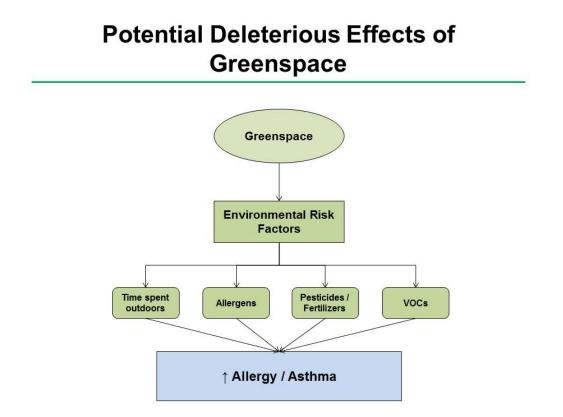

Adjusted for weekly average of background level of that politant, meteorological indicators (temperature, humidity, and precipitation), metoro placement (flow rand orientation), diraffic indicators (guared distance to the namest major road, product of traffic intensity on the narrest road and inverse of distance to the narest road, and usial length of roads (all pes) in a 1000 m buffer around the school). Adjusted for weekly average of background level of the politant, meteorological indicators (temperature, humidity, and precipitation), mentior placement (flow rand orientation).


<sup>a</sup> Adjusted for weekly average of background level of that pollutant, meteorological indicators (temperature, humidity, and precipitation), monitor placement (floor and orientation), d traffic indicators (the product of traffic intensity on the nearest road and inverse of distance to the nearest road and total traffic load (all road types) in a 50 m buffer around the school).














# Urban Tree Canopy and Asthma, Wheeze, Rhinitis, and Allergic Sensitization to Tree Pollen in a New York City Birth Cohort

Gina S. Lovasi,<sup>1</sup> Jarlath P.M. O'Neil-Dunne,<sup>2</sup> Jacqueline W.T. Lu, <sup>3</sup> Daniel Sheehan,<sup>1,4</sup> Matthew S. Perzanowski,<sup>5</sup> Sean W. MacFaden,<sup>2</sup> Kristen L. King,<sup>3</sup> Thomas Matte,<sup>6</sup> Rachel L. Miller,<sup>5</sup> Lori A. Hoepner,<sup>5</sup> Frederica P. Perera,<sup>5</sup> and Andrew Rundle<sup>1</sup> volume 121 Invases 41 April 2013 · Environmental Health Perspectives

- Birth cohort (n = 288 427)
- Tree canopy characterized by LiDAR and multispectral imagery < 0.25 prenatal address

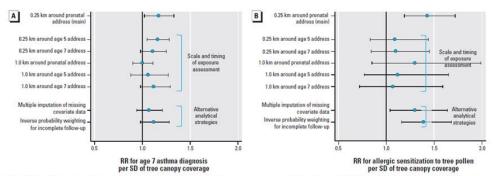
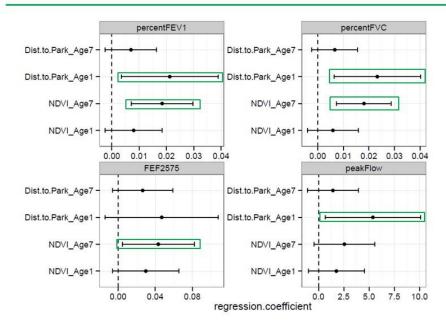



Figure 2. Sensitivity analyses to examine the robustness of associations tree canopy coverage with asthma and allergic sensitization to tree pollen. Values shown are 95% CI and risk ratio (RR) for an association between tree canopy coverage and either (A) parental report of physician-diagnosed asthma at 7 years of age or (B) allergic sensitization to tree pollen based on IgE testing from sensitivity analysis models adjusting for the following covariates: sex, age at the time of outcome measurement, ethnicity, maternal asthma, previous birth, other previous pregnancey, Medicaid enrollment, tobacco smoke in the home, active maternal asmoking, and the following characteristics of 0.25-km buffers: population density, percent poverty, percent park land, and estimated traffic volume.

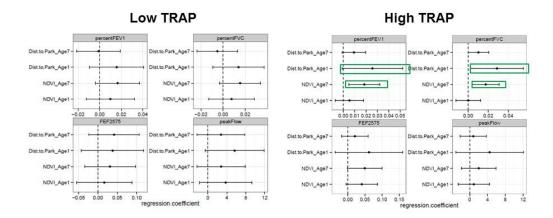
A modeling study of the impact of urban trees on ozone

David J. Nowak<sup>a,\*</sup>, Kevin L. Civerolo<sup>b</sup>, S. Trivikrama Rao<sup>b</sup>, Gopal Sistla<sup>b</sup>, Christopher J. Luley<sup>e</sup>, Daniel E. Crane<sup>a</sup> Atmospheric Environment 34 (2000) 1601-1613

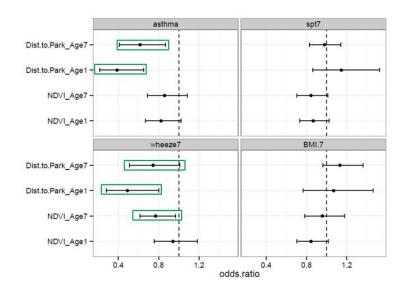
- Trees produce VOCs, which can in turn increase ozone.
  - Varies by species (sweet gums are bad, for example) but minor compared to anthropogenic sources


## Greenspace and Allergic / Respiratory Disease in the CCAAPS Cohort

- Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS)
  - Objective: Determine if children exposed to trafficrelated air pollution, specifically diesel exhaust particles, are at increased risk for developing allergic diseases, asthma, and impaired neurobehavioral development
  - Longitudinal birth cohort study of infants born 2001-2003 in greater Cincinnati region
    - Eligibility: Birth record address < 400 m major road or > 1500 m from major road
    - Enrolled 762; Age 7 617; Currently ongoing Age 12 ~500

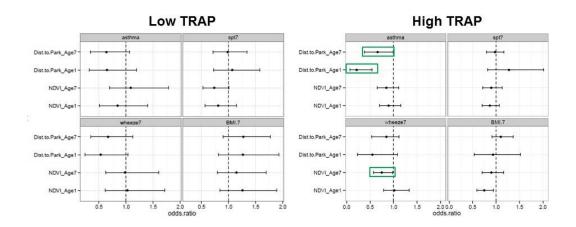

### **CCAAPS Methods**

- Clinical evaluations
  - 1-4: Questionnaire, SPT, physical exam, hair, saliva, blood, eNO, spirometry
  - 7: All above + behavior
  - 12: All above + intelligence, reading ability, attention/inhibition, memory, executive function, neuromotor function, behavior, anxiety/depression, MRI (structure, organization, and function)
- Indoor exposure (1,7)
  - Walk-through, dust (allergens, mold, endotoxin)
- Outdoor exposure
  - PM2.5, EC
  - Land-use regression model

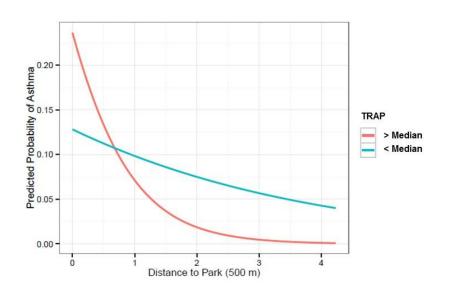

### Greenspace and Parks and Lung Function in the CCAAPS Cohort








### CCAAPS Preliminary Data: Greenspace, and Allergic / Respiratory Disease

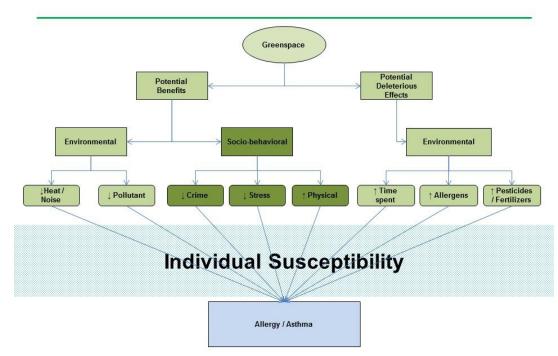



B2-15

## CCAAPS Preliminary Data: Greenspace, Traffic, and Allergic/Respiratory Disease



CCAAPS Preliminary Data: TRAP and Park Distance




B2-16

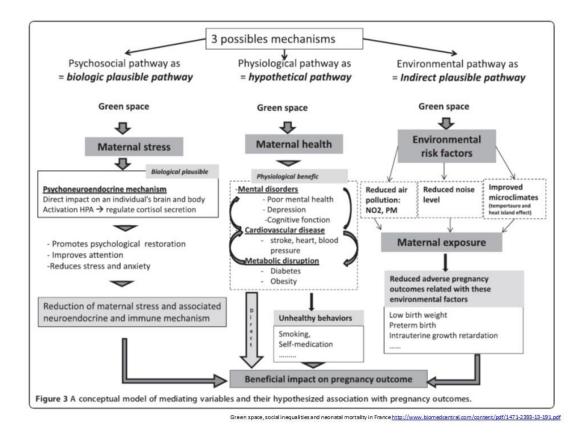
### **Susceptible Populations**

### Children

- More time spent outdoors
- More active  $\rightarrow \uparrow$  ventilation rates
- Respiratory / immune system development begins prenatally and continues through adolescence
  - Prenatal ~1-2 years especially important
- · Elderly
  - Pre-existing conditions
- · Socioeconomically disadvantaged
- · Black / Puerto Rican
  - ↑ asthma prevalence and morbidity / mortality



### Summary


## **Driving Questions**

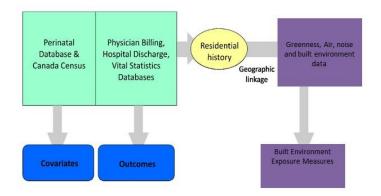
- How should cumulative risk assessment frameworks consider greenspace as it relates to respiratory health?
- What greenspace elements and metrics are relevant to respiratory health?
- What are the specific known or presumed mechanisms of respiratory health, and can this be used to inform biologic plausibility of reported associations with greenspace?
- Consideration of "active" vs. "passive" exposure pathways and health impacts—e.g. outdoor exercise (active) vs. visible greenspace around residence (passive)
- Considerations of community and individual level outcomes and specific populations

# **Reproductive Health**

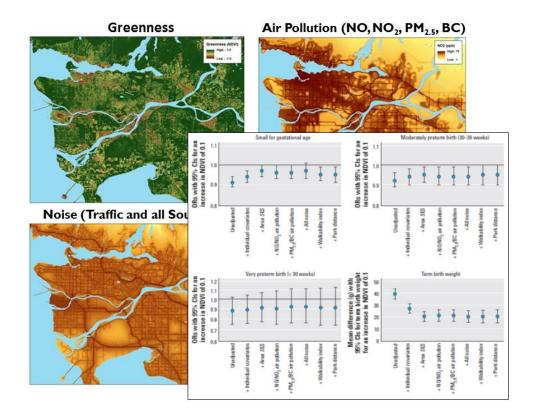
# **Reproductive Health**

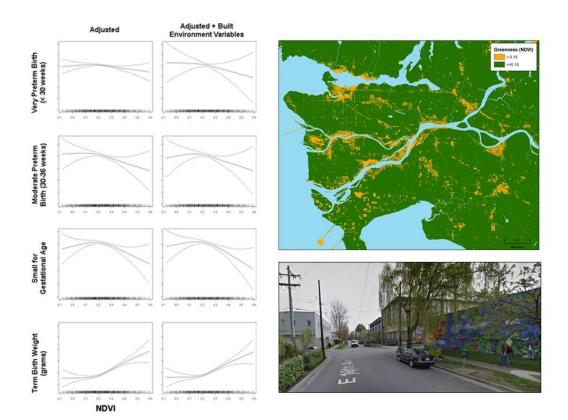
- Birth weight a major cause of neonatal and infant morality and influences health across the life course.
- Birth weight (and preterm birth and SGA) have been associated with several social and environmental exposures that may be related to greenspace.
  - Air pollution
  - Noise
  - Heat
  - Stress/depression
  - Social capital,
  - Etc...




All *EHP* content is accessible to individuals with disabilities. A fully accessible (Section 508–compliant) HTML version of this article is available at <u>http://dx.doi.org/10.1289/ehp.1308049</u>.

Research Children's Health


#### Residential Greenness and Birth Outcomes: Evaluating the Influence of Spatially Correlated Built-Environment Factors


Perry Hystad,<sup>1</sup> Hugh W. Davies,<sup>2</sup> Lawrence Frank,<sup>2,3</sup> Josh Van Loon,<sup>2</sup> Ulrike Gehring,<sup>4</sup> Lillian Tamburic,<sup>2</sup> and Michael Brauer<sup>2</sup>

<sup>1</sup>College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA; <sup>2</sup>School of Population and Public Health, and <sup>3</sup>School of Community and Regional Planning, University of British Columbia, Vancouver, British Columbia, Canada; <sup>4</sup>Institute for Risk Assessment Sciences, Urterkt University, Utterkt, the Netherlands



Birth cohort identified 92,158 children born in the Vancouver metropolitan area from 1999–2002.





| able 2                                                                                                                                                                          | ional are births (Portland Ore                | gen 2006 and 2007 n=5295)                                                  | J Pert                               |                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|-----------------------------------------|
| ble 2<br>Iultiple logistic regression of small for gestat<br>Variable                                                                                                           | ional age births (Portland, Ore<br>Odds ratio | gon, 2006 and 2007, n=5295).<br>95% Cl                                     | p-value                              | Marginal effect per<br>1000 births      |
| ultiple logistic regression of small for gestat<br>Variable                                                                                                                     |                                               |                                                                            | <b>p-value</b><br>0.0022             |                                         |
| ultiple logistic regression of small for gestat<br>Variable<br>Fotal births<br>Mother has no college education                                                                  | Odds ratio<br>0.8466<br>1.4424                | <b>95% CI</b><br>0.7611-0.9418<br>1.1267-1.8465                            | 0.0022<br>0.0037                     | - 10.3<br>25.3                          |
| ultiple logistic regression of small for gestat<br>Variable<br>Total births<br>Mother has no college education<br>Mother non-Hispanic white                                     | Odds ratio<br>0.8466<br>1.4424<br>0.6941      | 95% Cl<br>0.7611-0.9418<br>1.1267-1.8465<br>0.5580-0.8633                  | 0.0022                               | 1000 births<br>- 10.3<br>25.3<br>- 24.4 |
| ultiple logistic regression of small for gestat<br>Variable<br>Total births<br>Mother has no college education<br>Mother non-Hispanic white<br>Percent canopy cover within 50 m | 0.8466<br>1.4424<br>0.6941<br>0.9902          | 95% CI<br>0.7611-0.9418<br>1.1267-1.8465<br>0.5580-0.8633<br>0.9811-0.9993 | 0.0022<br>0.0037<br>0.0010<br>0.0343 | - 10.3<br>25.3<br>- 24.4<br>- 1.42*     |
| ultiple logistic regression of small for gestat                                                                                                                                 | Odds ratio<br>0.8466<br>1.4424<br>0.6941      | 95% Cl<br>0.7611-0.9418<br>1.1267-1.8465<br>0.5580-0.8633                  | 0.0022<br>0.0037<br>0.0010           | 1000 births<br>- 10.3<br>25.3<br>- 24.4 |

### Urban trees and the risk of poor birth outcomes

## **Systematic Review and Meta-Analysis**

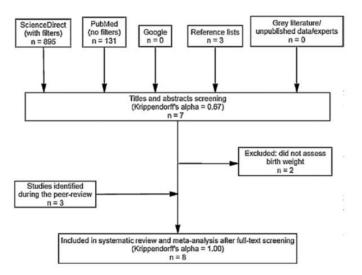



Fig. 1. Flow diagram of study selection and screening process.

Dzhambov A, Dimitrova D, Dimitrakova E. (2014). Association between residential greenness and birth weight: Systematic review and meta-analysis. Urban Forestry & Urban Greening 13 (2014) 621–629

| Study                    | β      | LCI    | UCI    | Weight (%) |
|--------------------------|--------|--------|--------|------------|
| Dadvand et al. (2014)    | 0.004  | 0.0003 | 0.007  | 1.766      |
| Dadvand et al. (2012a)   | -0.001 | -0.004 | 0.002  | 2.372      |
| Dadvand et al. (2012b)   | 0.007  | 0.001  | 0.013  | 1.494      |
| Markevych et al. (2014)  | 0.004  | -0.001 | 0.008  | 1.591      |
| Laurent et al. (2013)    | 0.0004 | 0.0001 | 0.001  | 58,728     |
| Donovan et al. (2011)    | 0.005  | 0.0003 | 0.010  | 1.887      |
| Agay-Shay et al. (2014)  | 0.002  | 0.001  | 0.002  | 16.872     |
| Hystad et al. (2014)     | 0.003  | 0.003  | 0.004  | 15.790     |
| Pooled $\beta$           | 0.001  | -0.001 | 0.003  | 100.000    |
| Heterogeneity statistics |        |        |        |            |
| I <sup>2</sup>           | 91.051 | 84.775 | 94.740 |            |
| Cochran's Q              | 78.221 |        |        |            |
| $\chi^2, P$              | 0.0001 |        |        |            |
| Q-Index                  | 10.812 |        |        |            |

#### Table 3

Meta-analysis results for 100-m buffer (standardized regression coefficients, quality effects model).

*Note*. LCI – Lower 95% CI; UCI – Upper 95% CI;  $\beta$  – standardized regression coefficient.

# Systematic Review and Meta-Analysis Conclusions

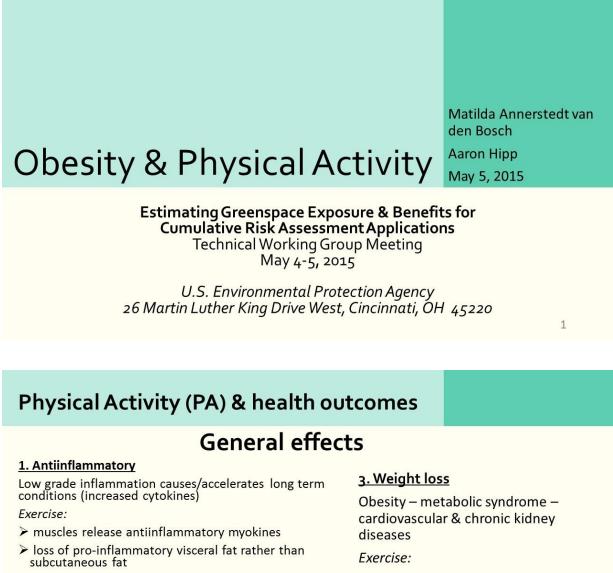
- The pooled correlation coefficient was 0.049 (95% CI: 0.039,0.059) and the pooled standardized regression coefficient was 0.001 (95%CI: -0.001, 0.003).
- "exposure-response" approach towards urban greenness is an oversimplification.
- Need for more theory-driven studies focusing prospectively on a smaller population of pregnant women (rather than extracting data from large populations).
- Additional studies published since meta-analysis demonstrating association with birth weight.
- Mixed evidence for greenspace and gestational age, PTB and VPTB.

| Table 1 Strength of evidence for gre | enness and health outcomes |
|--------------------------------------|----------------------------|
|--------------------------------------|----------------------------|

| Outcome                                | Study designs                                                                                                                                      | Setting                                                                                                                         | Findings                                                                                                                                                                                                                                                                                   | Strength of evidence |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Physical activity                      | 15 cross-sectional studies<br>[26•, 27, 28, 33-43, 45]<br>1 prospective study [44]                                                                 | 4 studies in the USA, 6 in the UK, 2 in France, 1<br>each in Australia, Netherlands, New Zealand, and Spain                     | Consistent evidence of positive association between<br>greenness and physical activity. Few prospective studies.                                                                                                                                                                           | νπ                   |
| Overweight/<br>obesity                 | 10 cross-sectional studies<br>[19, 43, 46-49, 51-54]<br>1 prospective study [50]                                                                   | 3 studies in the USA, 2 in the UK, 2 in Canada, 1<br>each in Australia, Denmark, Egypt, and Spain                               | Some evidence of negative association between<br>greenness overweight/obesity, though findings<br>(especially among children) were mixed. Possible<br>effect modification by gender. Few prospective studies.                                                                              | п                    |
| Mental health                          | 11 cross-sectional studies<br>[20, 22+, 23, 56,<br>58-61, 63-65]<br>3 prospective studies<br>[57, 66, 67]                                          | 4 studies in the UK, 2 in Netherlands, 2 in the USA,<br>1 each in Australia, Canada, Denmark, New<br>Zealand, Spain, and Sweden | Suggestive protective effect of greenness on self-<br>reported mental health. More prospective studies needed.                                                                                                                                                                             | п                    |
| Birth and<br>developmental<br>outcomes | 6 birth cohort studies<br>[31+, 68, 69, 71-73]<br>2 cross-sectional studies<br>of allergies and asthma<br>and hyperactivity [21, 32, 43].          | 2 studies in Spain, 2 studies in Germany, 1 each in<br>Canada, France, Israel, and the UK                                       | Consistent evidence of a positive relationship between<br>residential greenness exposure and birth weight.<br>Possible effect modification by SES. Findings for<br>other birth and developmental outcomes require<br>further evidence.                                                     | νı                   |
| Cardiovascular<br>outcomes             | 2 experimental studies [83, 84]<br>3 ecological studies [16, 78, 79]<br>3 cross-sectional studies [62, 80, 81]<br>1 prospective cohort study [82•] | 4 studies in the UK, 1 each in the USA, Netherlands,<br>Germany, Australia, and Canada                                          | Consistent evidence of higher greenness and lower<br>cardiovascular disease; however, most studies are<br>ecological and cross-sectional. One prospective<br>study could not account for individual-level smoking.                                                                         | плш                  |
| Mortality                              | 3 prospective studies [82•, 85, 87]<br>5 ecological studies<br>[16, 78, 79, 86, 88]                                                                | 3 studies in the UK, 2 studies in the USA, 1 each in<br>Japan, New Zealand, and Canada                                          | Fairly consistent evidence of higher greenness and lower<br>mortality, however, majority of studies are ecological.<br>Two prospective studies were in specific subpopulations<br>(elderly and stroke survivons). One prospective study<br>could not account for individual-level smoking. | П                    |

Strength of evidence definitions:

I = High: evidence is consistent, plausible, and precisely quantified and there is low probability of bias


II = Intermediate: evidence exists, but not entirely consistent, is not quantified precisely, or may be vulnerable to bias

III = Low: evidence is inconsistent, implausible, and/or may be vulnerable to bias severely limiting the value of the effect being described

James P, Banay R, Hart J, Laden F. (2015). A Review of the Health Benefits of Greenness. Curr Epidemiol Rep (2015) 2:131–142

# **Driving Questions**

- How should cumulative risk assessment frameworks consider greenspace as it relates to reproductive health?
- What greenspace elements and metrics are relevant to reproductive health?
- What are the specific known or presumed mechanisms of reproductive health, and can this be used to inform biologic plausibility of reported associations with greenspace?
- Consideration of potential cumulative effect of greenness on reproductive health -- "active" + "passive" exposure pathways—e.g. outdoor exercise (active) and visible greenspace around residence (passive)
- Considerations of community and individual level outcomes and specific populations



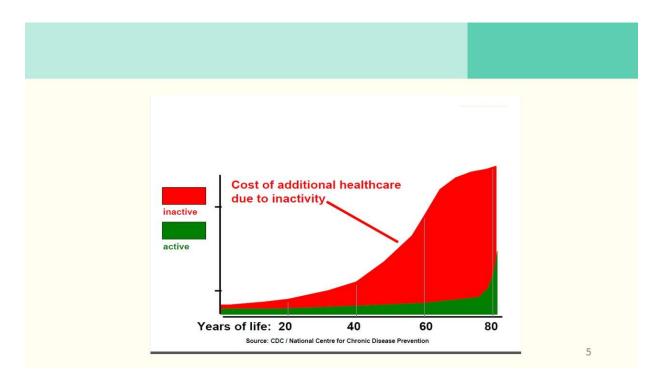
#### 2. Mitochondrial

Sedentary – mitochondria charges, free radicals – inflammation & aging

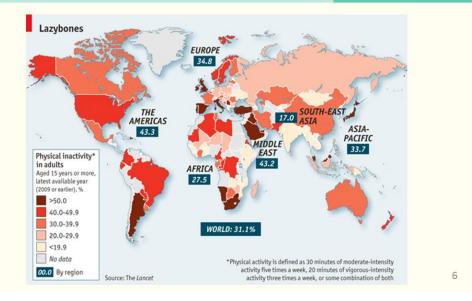
#### Exercise:

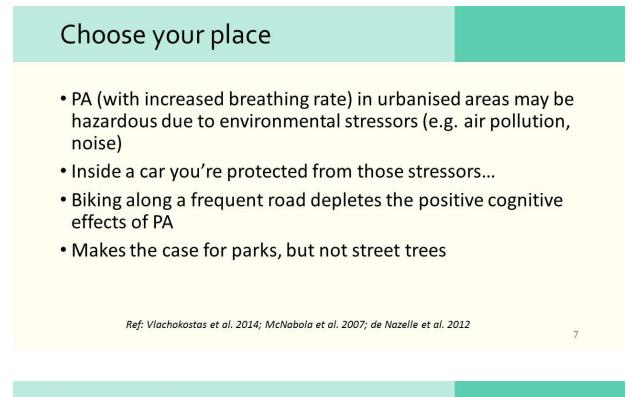
- Muscles need energy reduced charging
- Stimulates autophagy cleaning of cell cytoplasma
- >250 minutes/week weight loss
- Lowered BMI 10% of the health effects of physical activity

Source: BMJ Learning


### Physical Activity (PA) & health outcomes

### Organ and disease specific effects

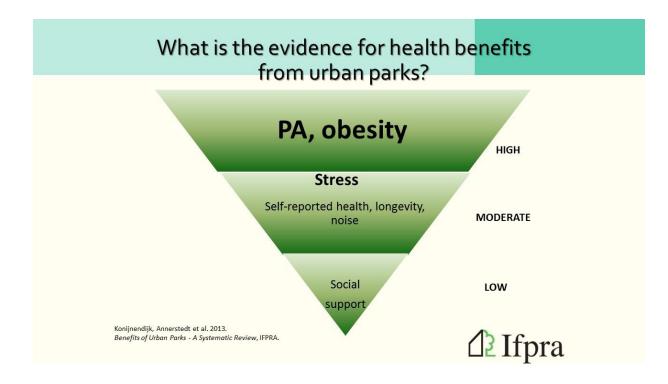

- ✓ Cardiovascular: reduce fibrinogen and inflammatory response, increase HDL, reduce blood pressure and pulse rate, increase stroke volume
- ✓ Musculoskeletal: stabilize joints, increase stability and balance, prevents osteoarthiritis, builds up cartilage
- ✓ Brain: reduce anxiety, depression and dementia, increase memory and learning, induce neuron growth
- ✓ Immune system: increased number of Natural Killer (NK) cells tumor suppression
- ✓ Cancer: Positive hormonal effects (delays menarche, reduced oestrogen & progestersone, increased insulin resistance), decreased cell proliferation, increased cellular antioxidants, increased NK-cells
- ✓ Diabetes: increased insulin sensitivity, increased number of mitochondria manufacture antioxidants


Source: BMJ Learning <sup>3</sup>

| Physical inactivity             | Disease                        | <b>Risk reduction</b> | Strength of evidence |
|---------------------------------|--------------------------------|-----------------------|----------------------|
|                                 | Death                          | 20-35%                | Strong               |
|                                 | CHD and Stroke                 | 20-35%                | Strong               |
| The fourth leading risk factor  | Type 2 Diabetes                | 35-40%                | Strong               |
| for premature death globally    | Colon Cancer                   | 30-50%                | Strong               |
| Causes more deaths than         | Breast Cancer                  | 20%                   | Strong               |
| smoking                         | Hip Fracture                   | 36-68%                | Moderate             |
|                                 | Depression                     | 20-30%                | Strong               |
|                                 | Hypertension                   | 33%                   | Strong               |
|                                 | Alzheimer's Disease            | 20-30%                | Moderate             |
| World Health Organization, 2010 | Functional limitation, elderly | 30%                   | Strong               |



# At least UK is worse....






## GS and PA

- Proximity to urban parks is correlated to higher levels of PA
- Some studies have shown a correlation between larger size (> 5 ha) of GS and PA
- But different features attract different user groups (e.g. life course perspective)
- Shape of association may be more important than magnitude
- No thresholds or benchmarking exist

Ref: Gomez et al. 2010; Sugiyama et al. 2010; Giles-Corti et al. 2005, 2013; Koohsari et al. 2013, Schipperijen et al. 2013; Konijendijk et al. 2013



# Suggested mechanisms

- Distraction
- Sustained effect
- Play and sports
- Shade encourages walking and active transport

# GPS, accelerometer, NDVI

### Community design (Smart Growth)

34-39% increased OR of MVPA for NDVI increase of 0.11 (10<sup>th</sup> to 90<sup>th</sup> percentile increase in GS exposure) Stronger association in Smart Growth communities

> 20 min GS exposure - 5 times the rate of MVPA of children with 0 exposure



A study of community design, greenness, and physical activity in children using satellite, GPS and accelerometer data  $% \lambda =0.011$ 

Estela Almanza <sup>a,a</sup>, Michael Jerrett<sup>a</sup>, Genevieve Dunton<sup>b</sup>, Edmund Seto<sup>a</sup>, Mary Ann Pentz<sup>b</sup>
<sup>a</sup>faktion of forwonwealt Hottlik, Ko Stellow, Schol of Abak- Hnabi, Neiversky of Calprinis, Berkely, Berkely, CA 9220-2930, USA
<sup>b</sup> Department of Netwine Modeline, Ko Stello of Modeline, University of Calprinis, Berkely, Department of Netwine Modeline, Ko Stellow, Schol Stellow, Sch

ABSTRACT

| Article history:                |  |
|---------------------------------|--|
| Received 15 May 2011            |  |
| Received in revised form        |  |
| 7 September 2011                |  |
| Accepted 7 September 2011       |  |
| Available online 16 September 2 |  |
| Knwords:                        |  |
| Physical activity               |  |
| QIS                             |  |
| Greenspace                      |  |
| Built environment               |  |
| Smart growth                    |  |
| Obesity                         |  |

This study enumined relationships between gerenness capsure and fee-bwing physical attivity behavior childness must provide all conversionally designed communities. Nonautical Difference Vegetarian Index (NDVI) was used to quantify childness' (n=200) gerenness persure at 20-s exochard designed conversional designed conversing designed conversional designed conversional d

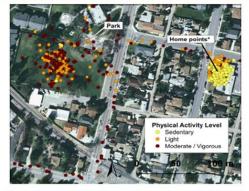
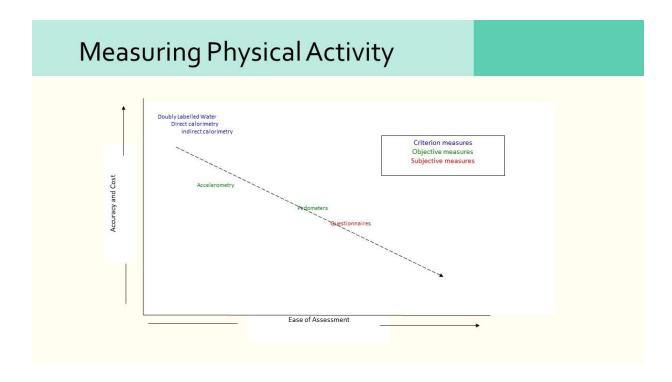



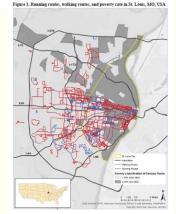

Fig. 1. Geovisualization of a child's personal monitoring points show MVPA occurring within green areas and during active transport (\* home points shifted for confidentiality).

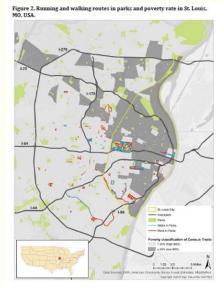
# Limited Intervention Research





# Publicly Available Data


frontiers in PUBLIC HEALTH L RESEARCH ARTICLE published: 23 May 2014

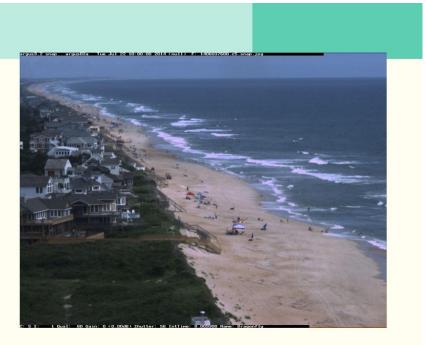

-

Use of emerging technologies to assess differences in outdoor physical activity in St. Louis, Missouri

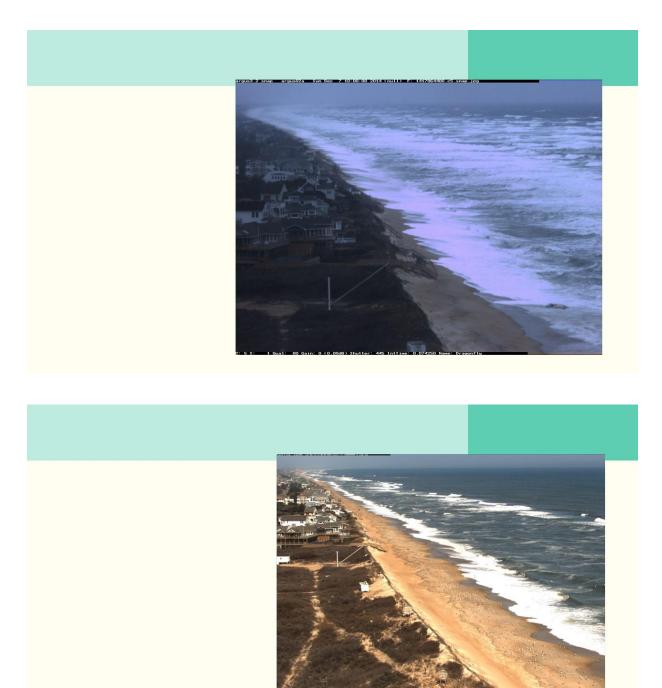
Deepti Adlakha\*, Elizabeth L. Budd, Rebecca Gernes, Sonia Sequeira and James A. Hipp Brown School, Washington University in St. Lovis, St. Lovis, MO, USA Figure 1. Ruaning roster, wall

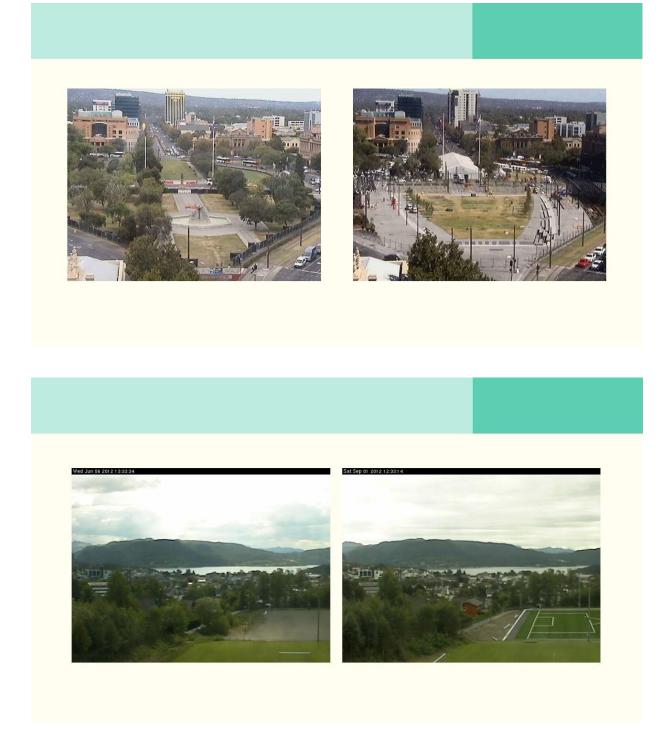
|                                     | Runs    | Walks  |
|-------------------------------------|---------|--------|
| N                                   | 287     | 71     |
| Total Distance (in miles)           | 1722.01 | 236.84 |
| Distance (in miles) in parks        | 519.60  | 101.00 |
| % in or tangential to parks         | 80.80%  | 70.40% |
| % in parks in low-SES neighborhoods | 6.97%   | 15.50% |







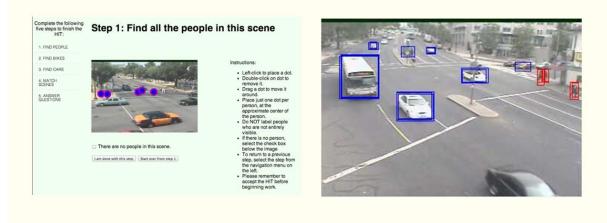





<u>USACE Field</u> <u>Research</u> <u>Facility</u>

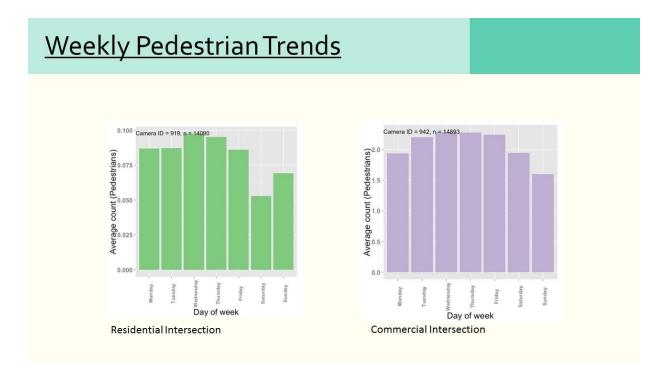

<u>Kitty Hawk, NC</u>



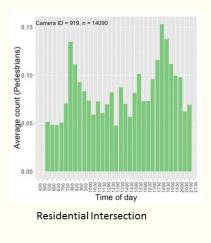


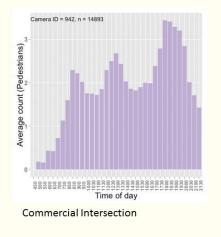


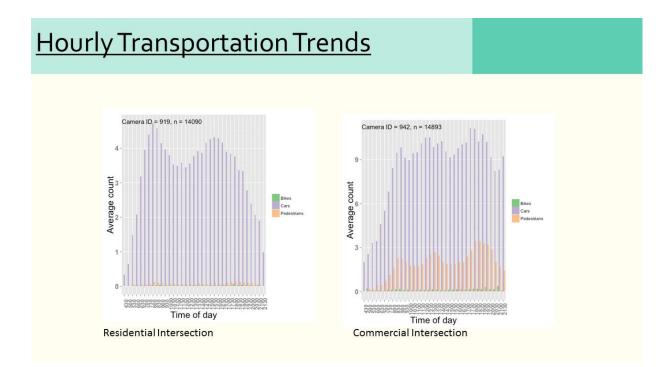


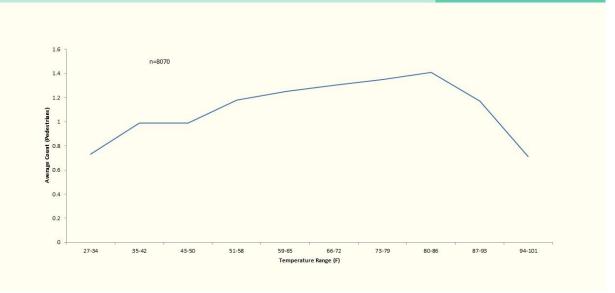

Hipp, J.A. et al. Emerging Technologies: Webcams and Crowd-sourcing to Identify Active Transportation. American Journal of Preventive Medicine. 44(1) 96-97.


# Human Intelligence Task





Hipp, J.A. et al., 2013. Do you see what I see: Crowdsource annotation of captured scenes. In Proceedings SenseCam 2013. ACM 978-1-4503-2247-8/13/11.




# Hourly Pedestrian Trends







# Weather and Active Transportation



#### Day 2- Obesity and physical activity



29

### Mobile devices for collecting data

- Hardware sensors: accelerometers, GPS, barometer, luminance, microphone, temperature, heart rate, etc.
- Behaviour inference sensors: calendar availability, communication patterns, social interactions
- Qualitative sensors: on-screen questionnaires, diaries, experience sampling
- Necessary to have power-efficient sensing architecture
- Real-time analysis
- Existing platforms: e.g. AWARE

30

#### Day 2- Obesity and physical activity



# Standards in policies

- Area-percentage (percentage reserved for GS)
- Catchment areas (size and distance)
- Often based on "common-sense approaches", rarely empirical evidence
- Internationally little or no evidence-based approach for developing planning standards for GS
- Quality of GS often ignored
- Consider needs-based approaches
- Lack of cost-efficiency analyses

Ref.: Veal, 2012; Kellett and Rofe, 2009)

32

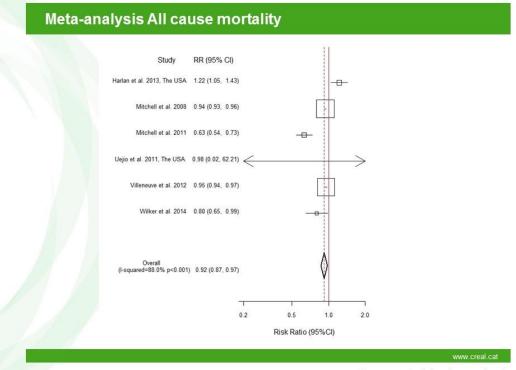


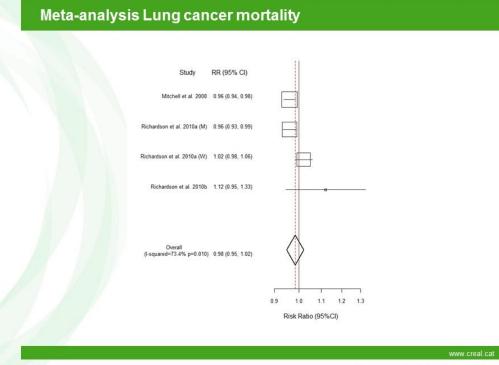
Exposure:
 -generally % in census area unit (CAU)
 -NDVI at CAU or buffer

| Author (year)                     | N                           | Exposure type                                                       | Exposure description                                             | Mortality outcome         | Outcome<br>description                                            | Estimate type         | Estimate provided<br>by the study |
|-----------------------------------|-----------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------|-----------------------|-----------------------------------|
| Harlan et al. 2013, The<br>USA    | 2081 CAUs                   | Surrounding<br>greenness at CAU<br>(Factor calculated<br>from NDVI) | IQR=1.16 <sup>a</sup>                                            | Extreme heat              | 11.4% of<br>CAUs with at<br>least one<br>death                    | OR (95%CI)            | 1.19 (1.02, 1.39) <sup>8,6</sup>  |
| Hu et al. 2008, The USA           | Not reported                | "Amount" of GS at<br>CAU (LCM)                                      | Min, Max= -52.4 to 7.1                                           | Stroke SMR                | Min, mean,<br>max (average<br>of all<br>CAU)=4.22,<br>8.06, 34.42 | $\beta  (SD)$         | -0.161 (0.067) <sup>e</sup>       |
| Lachowycz et al. 2014,<br>The UK  | Not reported                | % GS at CAU and<br>5 and 10km buffer<br>(LCM)                       | Quintiles (highest vs lowest)                                    | Circulatory causes<br>SMR | Not reported                                                      | Rate Ratio<br>(95%CI) | $0.95 \ (0.92, \ 0.98)^a$         |
| Mitchell et al. 2008, The<br>UK   | 40813236<br>individuals     | % GS at CAU<br>(LCM)                                                | Five equal interval groups<br>(every 20% - highest vs            | All-cause                 | 366348 cases                                                      | IRR (95%CI)           | 0.94 (0.93, 0.96)                 |
|                                   |                             |                                                                     | lowest)                                                          | Circulatory diseases      | 90433 cases                                                       |                       | 0.96 (0.93, 0.99)                 |
|                                   |                             |                                                                     |                                                                  | Lung cancer               | 25742 cases                                                       |                       | 0.96 (0.91, 1.02)                 |
|                                   |                             |                                                                     |                                                                  | Intentional self-harm     | 12308 cases                                                       |                       | 1.00 (0.92, 1.09)                 |
| Mitchell et al. 2011, The<br>UK   | 1625495<br>individuals      | % GS at CAU<br>(LCM)                                                | Five equal interval groups<br>(every 20% - highest vs<br>lowest) | All-cause                 | Not reported                                                      | IRR (95%CI)           | 0.63 (0.54, 0.73)                 |
| Richardson et al. 2010,<br>The UK | 28.6 million<br>individuals | % GS at CAU<br>(LCM)                                                | Four equal interval groups<br>(every 25%- highest vs             |                           |                                                                   | IRR (95%CI) by gender |                                   |
|                                   |                             |                                                                     | lowest)                                                          | Cardiovascular            | 103711 cases                                                      |                       | 0.95 (0.91, 0.98)                 |
|                                   |                             |                                                                     |                                                                  | disease                   |                                                                   | Women                 | 1.00 (0.95, 1.06)                 |

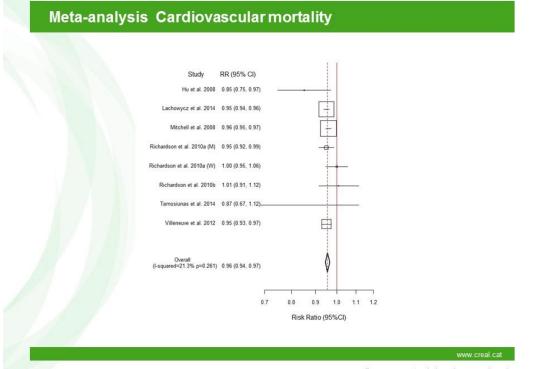
ww.creal.cat

Gascon et al (under review)


| Author (year)                          | N                         | Exposure type                                   | Exposure description                                                         | Mortality outcome         | Outcome<br>description     | Estimate type          | Estimate provided<br>by the study |
|----------------------------------------|---------------------------|-------------------------------------------------|------------------------------------------------------------------------------|---------------------------|----------------------------|------------------------|-----------------------------------|
|                                        |                           |                                                 |                                                                              | Respiratory disease       | 26591 cases                | Men                    | 0.89 (0.83, 0.96)                 |
|                                        |                           |                                                 |                                                                              |                           |                            | Women                  | 0.96 (0.88, 1.05)                 |
|                                        |                           |                                                 |                                                                              | Lung cancer               | 30110 cases                | Men                    | 0.96 (0.90, 1.02)                 |
|                                        |                           |                                                 |                                                                              |                           |                            | Women                  | 1.02 (0.94, 1.11)                 |
| Richardson et al. 2010,<br>New Zealand | 1546405<br>individuals    | % GS at CAU<br>(LCM)                            | Quartiles (highest vs lowest) -<br>mean (range) for all CAU=<br>42% (0-100%) | Cardiovascular<br>disease | 9484 cases                 | IRR (95%CI)            | 1.01 (0.91, 1.11)                 |
|                                        |                           |                                                 |                                                                              | Lung cancer               | 2603 cases                 |                        | 1.12 (0.94, 1.32)                 |
| Richardson et al. 2012,<br>The USA     | 43 million<br>individuals | % GS at CAU<br>(LCM)                            | Three categories (highest<br>(59%-72%) vs lowest (20%-                       |                           | Average (all cities)=27000 | β (95%CI) by<br>gender |                                   |
|                                        |                           |                                                 | 45%))                                                                        | All-cause                 | cases                      | Men                    | 132.9 (18.3, 247.5)               |
|                                        |                           |                                                 |                                                                              |                           |                            | Women                  | 94.2 (21.8., 166.7)               |
|                                        |                           |                                                 |                                                                              | Heart disease             |                            | Men                    | 6.5 (-62.5, 75.5)                 |
|                                        |                           |                                                 |                                                                              |                           |                            | Women                  | 1.9 (-42.0, 45.8)                 |
|                                        |                           |                                                 |                                                                              | Diabetis                  |                            | Men                    | 4.3 (-3.06, 11.73)                |
|                                        |                           |                                                 |                                                                              |                           |                            | Women                  | 4.2 (-0.8, 9.2)                   |
|                                        |                           |                                                 |                                                                              | Lung cancer               |                            | Men                    | 7.9 (-8.8, 24.6)                  |
|                                        |                           |                                                 |                                                                              |                           |                            | Women                  | 2.5 (8.8, 13.7)                   |
|                                        |                           |                                                 |                                                                              | Motor vehicle             |                            | Men                    | 0.6 (-8.1, 9.2)                   |
|                                        |                           |                                                 |                                                                              | fatalities                |                            | Women                  | -3.4 (-8.5, 1.7)                  |
| Tamosiunas et al. 2014,<br>Lithuania   | 5112 individuals          | Distance to the<br>nearest green space<br>(LCM) | Tertiles (≤347.8m, 347.81-<br>629.6m, ≥629.61)                               | Cardiovascular<br>disease | 83 cases                   | HR (95%CI)             | 1.15 (0.64, 2.07) <sup>a,d</sup>  |


#### www.creal.cat

| Author (year)                     | N                     | Exposure type                                                | Exposure description          | Mortality outcome                                                               | Outcome<br>description                                     | Estimate type         | Estimate provided                                           |
|-----------------------------------|-----------------------|--------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------|-------------------------------------------------------------|
| Uejio et al. 2011, The<br>USA     | 1741 CAUs             | Surrounding<br>greenness at CAU<br>(NDVI)                    | IQR=0.047 <sup>a</sup>        | Extreme heat                                                                    | 3.6% of<br>CAUs with at<br>least one<br>death <sup>3</sup> | OR (95%CI)            | 0.64 (0.01, 40.4) <sup>a,b</sup>                            |
| Villeneuve et al. 2012,<br>Canada | 574840<br>individuals | Surrounding<br>greenness in 50<br>and 300m buffers<br>(NDVI) | IQR=0.24                      | All-non accidental<br>cause<br>Cardiovascular<br>disease<br>Respiratory disease | 181110<br>66530<br>13730                                   | Rate Ratio<br>(95%CI) | 0.95 (0.94, 0.97)<br>0.95 (0.93, 0.97)<br>0.92 (0.88, 0.96) |
| Wilker et al. 2014, The<br>USA    | 1645 individuals      | Surrounding<br>greenness in 250m<br>buffer (NDVI)            | Quartiles (highest vs lowest) | Post-stroke all-cause                                                           | 929                                                        | HR (95%CI)            | 0.80 (0.65, 0.99)                                           |


www.creal.cat

Gascon et al (under review)

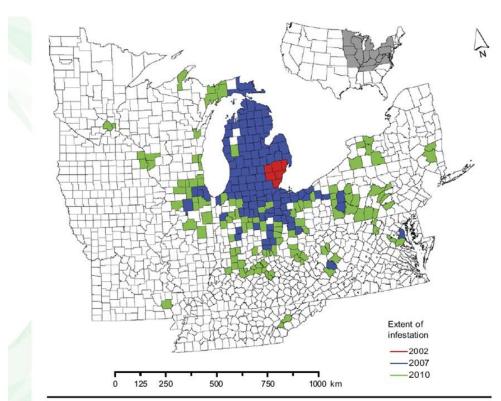




Gascon et al (under review)






# The Relationship Between Trees and Human Health

Evidence from the Spread of the Emerald Ash Borer

Geoffrey H. Donovan, PhD, David T. Butry, PhD, Yvonne L. Michael, ScD, Jeffrey P. Prestemon, PhD, Andrew M. Liebhold, PhD, Demetrios Gatziolis, PhD, Megan Y. Mao

**Purpose:** A natural experiment, which provides stronger evidence of causality, was used to test whether a major change to the natural environment—the loss of 100 million trees to the emerald ash borer, an invasive forest pest—has influenced mortality related to cardiovascular and lower-respiratory diseases.

Am J Prev Med 2013;44(2):139-145





### TREES AND MORTALITY IN THE USA

**Results:** There was an increase in mortality related to cardiovascular and lower-respiratory-tract illness in counties infested with the emerald ash borer. The magnitude of this effect was greater as infestation progressed and in counties with above-average median household income. Across the 15 states in the study area, the borer was associated with an additional 6113 deaths related to illness of the lower respiratory system, and 15,080 cardiovascular-related deaths.

| Variable                                                    | Beta coefficient*<br>(95% CI)              | p-value |                           | Variable                                            | Beta coefficient <sup>e</sup><br>(95% CI) | p-value |                           |
|-------------------------------------------------------------|--------------------------------------------|---------|---------------------------|-----------------------------------------------------|-------------------------------------------|---------|---------------------------|
| Time trend                                                  | -2.98 (-3.23, -2.72)                       | <0.001  | The presence              | Time trend                                          | -6,49 (-7,45, -5,54)                      | <0.001  | The presence              |
| 1-year mortality-rate lag                                   | 0.31 (0.303, 0.310)                        | <0.001  | of the borer in           | 1-year mortality-rate lag                           |                                           | <0.001  | of the borer on           |
| Percentage non-<br>Hispanic white                           | 9.40 (6.40, 12.40)                         | <0.001  |                           | High median income                                  | 11.03 (5.71, 16.34)                       | <0.001  | of the borer of           |
| Percentage Native<br>Hawalian and other<br>Pacific Islander | 2.14 (0.32, 3.97)                          | 0.022   | a county is<br>associated | Native Hawalian and<br>other Pacific<br>Islander, % | 30.07 (2.44, 57,71)                       | 0.033   | cardiovascular<br>related |
| High median income                                          | 13.95 (6.50, 21.39)                        | <0.001  | associated                | Aged >25 years with                                 | 5.80 (4.67, 6.92)                         | <0.001  | related                   |
| Aged >25 years with no high school                          | 1.22 (0.92, 1.52)                          | <0.001  | with 6.8                  | no high school<br>diploma, %                        |                                           |         | mortality is              |
| diploma, %                                                  |                                            |         | additional                | Aged >25 years with                                 | -1.92 (-3.26, -0.57)                      | 0.005   | 16 7 additional           |
| Aged >25 years with<br>college degree, %                    | -0.33 (-0.70, 0.03)                        | 0.077   |                           | college degree, %                                   |                                           |         |                           |
| Population below 100%                                       | 2.24 (1.89, 2.58)                          | < 0.001 | deaths per                | Population below<br>poverty line, %                 | -8.99 (-10.33, -7.64)                     | <0.001  | deaths per                |
| of poverty line, %                                          |                                            |         | year per                  | Percentage of county                                | -1.80 (-9.51, 5.91)                       | 0.648   | year per                  |
| Percentage of county<br>covered by ash                      | -5.22 (-7.79, -2.64)                       | <0.001  |                           | covered by ash<br>canopy                            |                                           |         | Second Second             |
| canopy                                                      |                                            |         | 100,000                   | Emerald ash borer                                   | -13.51 (-25.38, -1.64)                    | 0.026   | 100,000                   |
| Emerald ash borer<br>Emerald ash borer X                    | -4.24 (-8.10, -0.39)<br>6.23 (2.23, 10.22) | 0.031   | adults (95%               | Ash canopy X high median income                     | 18.24 (5.45, 31.02)                       | 0.0005  | adults (95%               |
| high median<br>Income                                       | 0120 (2120) 20122)                         | 0.002   | CI4.8, 8.7).              | Years of infestation                                | 2.77 (1.05, 4.48)                         | 0.002   | CI5.7, 27.7)              |
| Years of infestation                                        | 1.44(0.95, 1.92)                           | <0.001  | C(4.0, 0.7).              | Emerald ash borer X                                 | -3.42(-4.71, -2.13)                       | <0.001  | (10.7, 27.7)              |
| Ash canopy X high<br>median income                          | -0.85 (-1.30, -0.41)                       | <0.001  |                           | high median<br>Income                               |                                           |         |                           |
| R <sup>2</sup>                                              |                                            |         |                           | R <sup>2</sup>                                      |                                           |         |                           |
| Within counties                                             | 0.609                                      |         |                           | Within counties                                     | 0.753                                     |         | www.creal.cat             |
| Between counties                                            | 0.187                                      |         |                           | Between counties                                    | 0.298                                     |         | www.creal.cat             |
| Overall                                                     | 0.352                                      |         |                           | Overall                                             | 0.488                                     |         | al (under review)         |

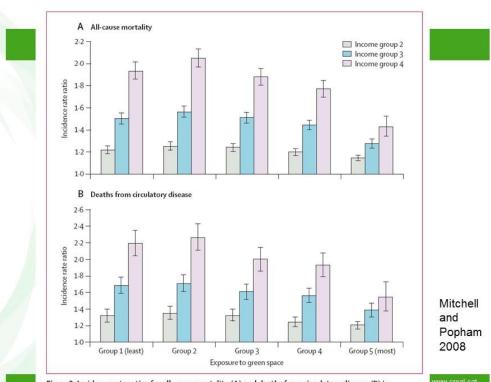
Aortality rate per 100,000 adults

rtality rate per 100,000 adults Gascon et al (under review)

#### Emerald Ash Borer and Mortality in the Women's Health Study

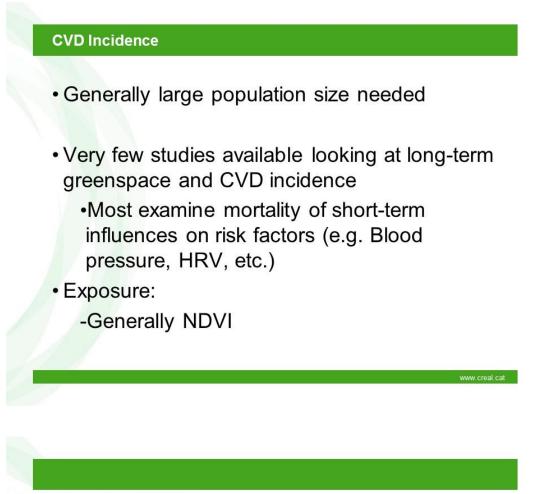
- Preliminary Results Examining Emerald Ash Borer and Mortality in the Women's Health Initiative Study (from Geoff Donovan, under review)
- Women living in a county infested with emerald ash borer had an increased risk of cardiovascular disease (HR=1.41, 95% CI: 1.37-1.45).

| Variable                                              | HR     | 95% CI        |
|-------------------------------------------------------|--------|---------------|
| Live in county infested with EAB                      | 1.406  | 1.37-1.45     |
| Age                                                   | 0.667  | 0.636-0.700   |
| (Age)^2                                               | 1.003  | 1.002-1.003   |
| Race                                                  |        |               |
| White                                                 | RER    |               |
| Asian                                                 | 0.729  | 0.649-0.819   |
| Black                                                 | 0.653  | 0.616-0.692   |
| Hispanic                                              | 0.855  | 0.773-0.946   |
| Native                                                | 0.973  | 0.767-1.24    |
| Other                                                 | 0.962  | 0.835-1.11    |
| Income                                                |        |               |
| <\$35,000                                             | REF    |               |
| \$35,000-\$49,999                                     | 0.911  | 0.875-0.948   |
| \$50,000-\$74,999                                     | 0.854  | 0.817-0.893   |
| \$75,000-\$100,000                                    | 0.759  | 0.709-0.814   |
| \$100,000-\$150,000                                   | 0.743  | 0.682-0.811   |
| >\$150,000                                            | 0.720  | 0.637-0.814   |
| Smoking Status                                        |        |               |
| Never Smoked                                          | REF    |               |
| Smoker                                                | 1.755  | 1.66-1.86     |
| Former Smoker                                         | 1.131  | 1.1-1.17      |
| Intervention Received                                 |        |               |
| HRT                                                   | 1.097  | 1.04-1.16     |
| Dietary Modification                                  | 0.969  | 0.922-1.02    |
| Calcium and Vitamin D                                 | 0.962  | 0.917-1.01    |
| Observational Study                                   | 1.513  | 1.45-1.57     |
| BMI                                                   | 1.018  | 1.002-1.038   |
| (BMI)^2                                               | 0.9997 | 0.999-1.000   |
| Alcohol Servings Per Week                             | 0.9877 | 0.984-0.992   |
| (Alcohol Servings Per Week)^2                         | 1.0001 | 1.0001-1.0002 |
| Recreational Energy Expenditure MET-Hours Per<br>Week | 0.9972 | 0.996-0.998   |
| Mean(Emotional Wellness)                              | 0.9951 | 0.994-0.996   |
| Diabetes                                              | 1.9470 | 1.88-2.04     |
| Hypertension                                          | 2 4696 | 2 39-2 55     |


#### Life expectancy

• Jonkers et al. (2014)

- An increase of 1 SD in the percentage of urban green space was associated with a 0.1-year higher LE, and, in the case of quality of green, with an approximately 0.3-year higher LE and HLE


• Takano et al. (2002)

- The probability of five year survival of the senior citizens studied increased in accordance with the space for taking a stroll near the residence (p<0.01), parks and tree lined streets near the residence (p<0.05), and their preference to continue to live in their current community (p<0.01).



Gascon et al (under review)

Figure 2: Incidence rate ratios for all-cause mortality (A) and deaths from circulatory disease (B) in income-deprivation quartiles 2–4, relative to income deprivation quartile 1 (least deprived), stratified by exposure to green space



| Outcome                                | Study designs                                                                                                                                      | Setting                                                                                                                         | Findings                                                                                                                                                                                                                                                                                   | Strength of evidence |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Physical activity                      | 15 cross-sectional studies<br>[26•, 27, 28, 33-43, 45]<br>1 prospective study [44]                                                                 | 4 studies in the USA, 6 in the UK, 2 in France, 1<br>each in Australia, Netherlands, New Zealand, and Spain                     | Consistent evidence of positive association between<br>greenness and physical activity. Few prospective studies.                                                                                                                                                                           | νπ                   |
| Overweight/<br>obesity                 | 10 cross-sectional studies<br>[19, 43, 46-49, 51-54]<br>1 prospective study [50]                                                                   | 3 studies in the USA, 2 in the UK, 2 in Canada, 1<br>each in Australia, Denmark, Egypt, and Spain                               | Some evidence of negative association between<br>greenness overweight/obesity, though findings<br>(especially among children) were mixed. Possible<br>effect modification by gender. Few prospective studies.                                                                              | п                    |
| Mental health                          | 11 cross-sectional studies<br>[20, 22+, 23, 56,<br>58-61, 63-65]<br>3 prospective studies<br>[57, 66, 67]                                          | 4 studies in the UK, 2 in Netherlands, 2 in the USA,<br>1 each in Australia, Canada, Denmark, New<br>Zealand, Spain, and Sweden | Suggestive protective effect of greenness on self-<br>reported mental health. More prospective studies needed.                                                                                                                                                                             | п                    |
| Birth and<br>developmental<br>outcomes | 6 binh cohort studies<br>[31, 68, 69, 71-73]<br>2 cross-sectional studies<br>of allergies and asthma<br>and hyperactivity [21, 32, 43].            | 2 studies in Spain, 2 studies in Germany, 1 each in<br>Canada, France, Israel, and the UK                                       | Consistent evidence of a positive relationship between<br>residential greenness exposure and birth weight.<br>Possible effect modification by SES. Findings for<br>other birth and developmental outcomes require<br>further evidence.                                                     | νπ                   |
| Cardiovascular<br>outcomes             | 2 experimental studies [83, 84]<br>3 ecological studies [16, 78, 79]<br>3 cross-sectional studies [62, 80, 81]<br>1 prospective cohort study [82•] | 4 studies in the UK, 1 each in the USA, Netherlands,<br>Germany, Australia, and Canada                                          | Consistent evidence of higher greenness and lower<br>cardiovascular disease; however, most studies are<br>ecological and cross-sectional. One prospective<br>study could not account for individual-level smoking.                                                                         | 11/111               |
| Mortality                              | 3 prospective studies [82•, 85, 87]<br>5 ecological studies<br>[16, 78, 79, 86, 88]                                                                | 3 studies in the UK, 2 studies in the USA, 1 each in Japan, New Zealand, and Canada                                             | Fairly consistent evidence of higher greenness and lower<br>mortality, however, majority of studies are ecological.<br>Two prospective studies were in specific subpopulations<br>(elderly and stroke survivors). One prospective study<br>could not account for individual-level studying | п                    |

#### Strength of evidence definitions:

I = High: evidence is consistent, plausible, and precisely quantified and there is low probability of bias

II = Intermediate: evidence exists, but not entirely consistent, is not quantified precisely, or may be vulnerable to bias

III = Low: evidence is inconsistent, implausible, and/or may be vulnerable to bias severely limiting the value of the effect being described

James P, Banay R, Hart J, Laden F. (2015). A Review of the Health Benefits of Greenness. Curr Epidemiol Rep (2015) 2:131-142

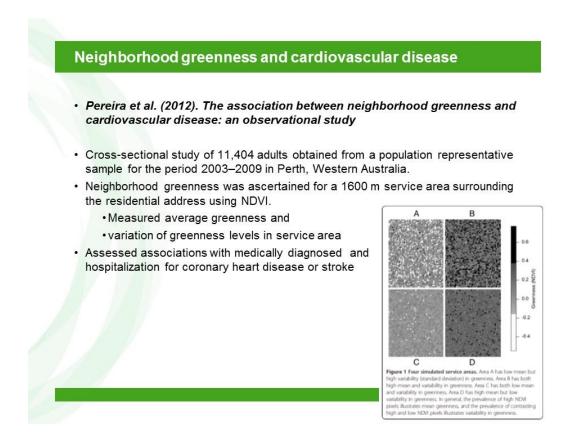
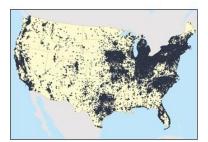




Table 2 Odds ratios (OR) and 95% confidence intervals (CI) of coronary heart disease or stroke for differences in neighborhood greenness for the 11,404 adults in the study population. Adjustment was made by cumulative inclusion of risk factors

|                  | Model A             | Model B                  | Model C                   | Model D                   | Model E                   | Model F                   |
|------------------|---------------------|--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Adjustment       | No adjustment       | Sociodemographics        | Sociodemographics         | Sociodemographics         | Sociodemographics         | Sociodemographic          |
|                  |                     |                          | <b>Biological factors</b> | <b>Biological factors</b> | <b>Biological factors</b> | <b>Biological factors</b> |
|                  |                     |                          |                           | Behavioral factors        | Behavioral factors        | <b>Behavioral factors</b> |
|                  |                     |                          |                           |                           | Air quality               | Air quality               |
|                  |                     |                          |                           |                           |                           | All greenness             |
| Self-reported i  | medical diagnos     | is with coronary hear    | t disease or stroke       |                           |                           |                           |
| Sample size (N)  | 11,374              | 9,216                    | 7,216                     | 5,903                     | 5,903                     | 5,903                     |
| Mean greenness   | (NDVI) in 1600 m :  | service area             |                           |                           |                           |                           |
| Low              | 1                   | 1                        | 1                         | 1                         | 1                         | 1                         |
| Moderate         | 0.91 (0.79, 1.05)   | 0.81 (0.69, 0.96)        | 0.83 (0.69, 1.00)         | 0.83 (0.68, 1.02)         | 0.83 (0.68, 1.02)         | 0.84 (0.69, 1.02)         |
| High             | 1.09 (0.95, 1.24)   | 0.98 (0.84, 1.15)        | 1.01 (0.85, 1.22)         | 0.92 (0.75, 1.13)         | 0.92 (0.75, 1.13)         | 0.94 (0.76, 1.15)         |
| Linear increase  | 0.98 (0.93, 1.04)   | 0.97 (0.90, 1.03)        | 0.98 (0.91, 1.05)         | 0.98 (0.93, 1.04)         | 0.93 (0.85, 1.01)         | 0.93 (0.85, 1.01)         |
| Standard deviati | ion (SD) of greenne | ss (NDVI) in 1600 m serv | ice area                  |                           |                           |                           |
| Low              | 1                   | 1                        | 1                         | 1                         | 1                         | 1                         |
| Moderate         | 0.84 (0.74, 0.97)   | 0.71 (0.60, 0.83)        | 0.70 (0.58, 0.84)         | 0.76 (0.62, 0.93)         | 0.76 (0.62, 0.93)         | 0.76 (0.62, 0.94)         |
| High             | 0.91 (0.80, 1.04)   | 0.83 (0.70, 0.97)        | 0.83 (0.69, 0.99)         | 0.84 (0.68, 1.02)         | 0.84 (0.68, 1.03)         | 0.84 (0.68, 1.03)         |
| Linear increase  | 0.94 (0.88, 1.01)   | 0.89 (0.82, 0.97)        | 0.90 (0.82, 0.99)         | 0.91 (0.82, 1.01)         | 0.91 (0.82, 1.01)         | 0.91 (0.82, 1.02)         |
| Hospital admis   | ssion with coron    | ary heart disease or s   | stroke                    |                           |                           |                           |
| Sample size (N)  | 11,198              | 8,901                    | 6,941                     | 5,637                     | 5,637                     | 5,637                     |
| Mean greenness   | (NDVI) in 1600 m :  | service area             |                           |                           |                           |                           |
| Low              | 1                   | 1                        | 1                         | 1                         | 1                         | 1                         |
| Moderate         | 1.16 (0.90, 1.50)   | 0.88 (0.65, 1.17)        | 0.87 (0.64, 1.19)         | 0.92 (0.65, 1.30)         | 0.92 (0.65, 1.30)         | 0.90 (0.63, 1.27)         |
| High             | 1.11 (0.86, 1.44)   | 0.95 (0.71, 1.28)        | 0.82 (0.59, 1.13)         | 0.85 (0.58, 1.24)         | 0.85 (0.58, 1.24)         | 0.87 (0.60, 1.27)         |
| Linear increase  | 0.98 (0.88, 1.08)   | 0.94 (0.83, 1.06)        | 0.89 (0.77, 1.02)         | 0.90 (0.77, 1.05)         | 0.90 (0.77, 1.05)         | 0.90 (0.77, 1.05)         |
| Standard deviati | ion (SD) of greenne | ss (NDVI) in 1600 m serv | ice area                  |                           |                           |                           |
| Low              | 1                   | 1                        | 1                         | 1                         | 1                         | 1                         |
| Moderate         | 1.01 (0.79, 1.30)   | 0.92 (0.69, 1.23)        | 0.92 (0.68, 1.24)         | 0.87 (0.61, 1.22)         | 0.85 (0.60, 1.20)         | 0.85 (0.60, 1.21)         |
| High             | 0.90 (0.69, 1.16)   | 0.81 (0.60, 1.09)        | 0.71 (0.51, 0.99)         | 0.66 (0.45, 0.96)         | 0.63 (0.43, 0.92)         | 0.63 (0.43, 0.92)         |
| Linear increase  | 0.94 (0.82, 1.07)   | 0.92 (0.79, 1.07)        | 0.89 (0.74, 1.05)         | 0.84 (0.70, 1.02)         | 0.82 (0.68, 1.00)         | 0.82 (0.68, 1.00)         |

#### Preliminary Results from Nurses Health Study (Peter James)

- Urban greenness exposures and CVD incidence in the Nurses' Health Study prospective cohort.
- 92,053 women followed from 2000-2010.
- <u>Time-varying</u> MODIS satellite NDVI (absolute and relative to urban area) linked to addresses.
- 1,715,019 person-years and 3,503 CVD events identified.
- Adjusted for wide-range of individual and contextual variables.





#### Preliminary Results

- No association between NDVI and CVD.
- One unit increase in long-term average Z-score of <u>relative NDVI</u> was associated with a 6% reduction in CVD incidence (95%CI: 0.90, 0.99).
- No associations between shortterm relative greenness and CVD.



Greenness and Cardiovascular Disease Incidence in the Nurses' Health Study Authors: Peter James, Jaime E. Hart, Perry Hystad, Rachel F. Banay, Francine Laden

www.creal.cat



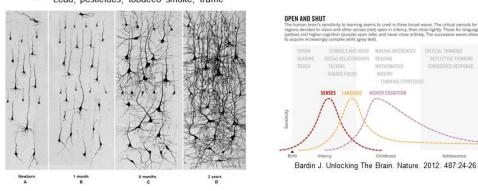
- Very little research has examined greenspace and CVD incidence
- Little evidence of an association in observational studies
- Some evidence of short-term impacts on CVD risk factors (e.g. blood pressure, hypertension, HRV, etc)

### Greenspace and Neurological / Neurodevelopmental Effects

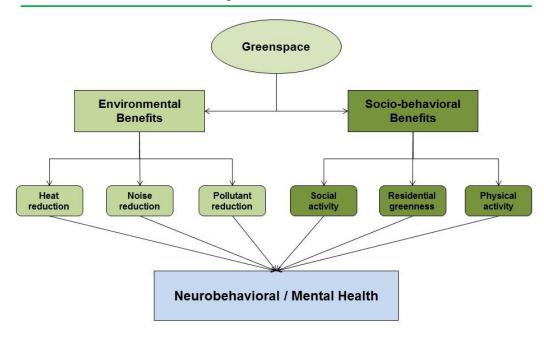
### **Background: Mental Health**

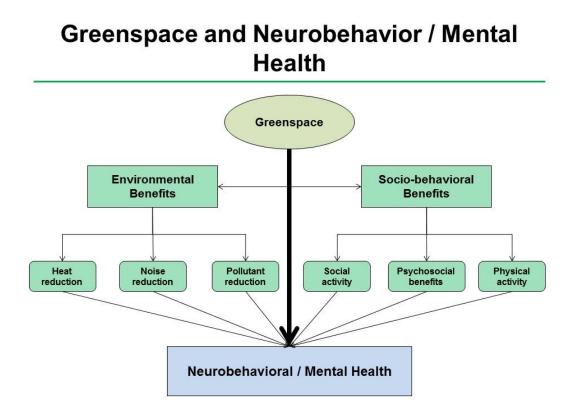
Leading causes of disability-adjusted life years (DALYs), in all ages

- · Mental and behavioral disorders
  - Clinically significant conditions characterized by alterations in thinking, mood (emotions), and behavior associated with personal distress and/or impaired functioning – WHO 2001 report
- Prevalence of mental and behavioral disorders rising globally
  - Affect > 25%
    - Point prevalence 10% adults


|    | Both sexes, all ages                  | % total |
|----|---------------------------------------|---------|
| 1  | Lower respiratory infections          | 6.4     |
| 2  | Perinatal conditions                  | 6.2     |
| 3  | HIV/AIDS                              | 6.1     |
| 4  | Unipolar depressive disorders         | 4.4     |
| 5  | Diarrhoeal diseases                   | 4.2     |
| 6  | Ischaemic heart disease               | 3.8     |
| 7  | Cerebrovascular disease               | 3.1     |
| 8  | Road traffic accidents                | 2.8     |
| 9  | Malaria                               | 2.7     |
| 10 | Tuberculosis                          | 2.4     |
| 11 | Chronic obstructive pulmonary disease | 2.3     |
| 12 | Congenital abnormalities              | 2.2     |
| 13 | Measles                               | 1.9     |
| 14 | Iron-deficiency anaemia               | 1.8     |
| 15 | Hearing loss, adult onset             | 1.7     |
| 16 | Falls                                 | 1.3     |
| 17 | Self-inflicted injuries               | 1.3     |
| 18 | Alcohol use disorders                 | 1.3     |
| 19 | Protein-energy malnutrition           | 1.1     |
| 20 | Osteoarthritis                        | 1.1     |

WHO: The World Health Report: 2001: Mental Health: New Understanding, New Hope.


### **Background: Neurodevelopment**


- Learning disabilities and activity disorders ↑ ~3% annually

   ~12 million children in the U.S. have at least one neurobehavioral disability impacting cognitive function, language, emotion, motor function, or behavior
- Prenatal and early childhood are particularly important as this is the time of rapid growth and cellular differentiation, unprotected barriers
  - Brain growth continues throughout childhood and prolonged period of myelination  $\rightarrow$  brain is not mature until young adulthood
- · Multiple factors including genetics, social, nutritional, and environment
  - Environmental neurotoxicants are associated with ~25% of neurobehavioral disabilities
     Lead, pesticides, tobacco smoke, traffic



### Greenspace: Potential Beneficial Pathways for Neurodevelopment / Mental Health





#### Mental Health Benefits of Long-Term Exposure to Residential Green and Blue Spaces: A Systematic Review

Green and Blue Spaces: A Systematic Review Mireia Gascon <sup>1,2,3,4,\*</sup>, Margarita Triguero-Mas <sup>2,3</sup>, David Martínez <sup>2,3</sup>, Payam Dadvand <sup>2,3</sup>, Joan Forns <sup>2,3,4</sup>, Antoni Plasència <sup>1</sup> and Mark J. Nieuwenhuijsen <sup>2,3</sup> Int. J. Environ. Res. Public Health **2015**, *12*, 4354-4379; doi:10.3390/ijerph120404354

· Four studies of children identified

- All evaluated emotional and behavioral problems using SDQ and/or ADHD symptoms
- No studies of cognitive or psychomotor development

| Author (Year,<br>Country)                             | Study Design        | Age of the Study Population<br>(Stratifications/Interactions) | N    | Tools to Measure<br>Mental Health | Mental Health<br>Item                    | Greenness<br>Data Source | Surrounding<br>Greenness Indicator | Risk of Mental Health Problems                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------|---------------------|---------------------------------------------------------------|------|-----------------------------------|------------------------------------------|--------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                       |                     |                                                               |      | Exclus                            | ively children                           |                          |                                    |                                                                                                                                                                                                                                                                                                                                             |
| Amoly 2014 et al.<br>Spain [30]                       | Cross-<br>sectional | Children 7–10 y                                               | 2111 | SDQ<br>ADHD DSM-IV                | Emotional &<br>behavioural<br>problems * | NDVI                     | 100 m, 250 m, 500 m<br>buffers     | Increasing greenness 100 m buffer: 1 tota<br>SDQ difficulties, SDQ<br>hyperactivity inattention & ADHD<br>(mattention)<br>250 m buffer: 1 total SDQ difficulties,<br>SDQ hyperactivity inattention<br>500 m buffer: 1 total SDQ difficulties,<br>SDQ hyperactivity inattention, SDQ<br>hyperactivity inattention, SDQ<br>emotional symptoms |
| Balseviciene <i>et al.</i><br>2014,<br>Lithuania [28] | Cross-<br>sectional | 4–6 y (maternal education)                                    | 1468 | SDQ                               | Emotional &<br>behavioural<br>problems * | NDVI                     | 300 m buffer                       | Higher maternal education group:<br>increasing greenness † conditional<br>problems & ‡ prosocial behaviour                                                                                                                                                                                                                                  |
| Flouri <i>et al.</i> 2014,<br>The UK [19]             | Longitudinal        | 3, 5 & 7 y<br>(socioeconomic status)                          | 6384 | SDQ                               | Emotional &<br>behavioural<br>problems * | Land-cover map           | % GS at CAU                        | Poor children of age 3y to 5y: increasing<br>greenness ↓ emotional problems                                                                                                                                                                                                                                                                 |
| Markevych et al.<br>2014, Germany<br>[29]             | Cross-<br>sectional | 10 y (gender, urbanity degree)                                | 1932 | SDQ                               | Emotional &<br>behavioural<br>problems * | NDVI                     | 500 m buffer                       |                                                                                                                                                                                                                                                                                                                                             |

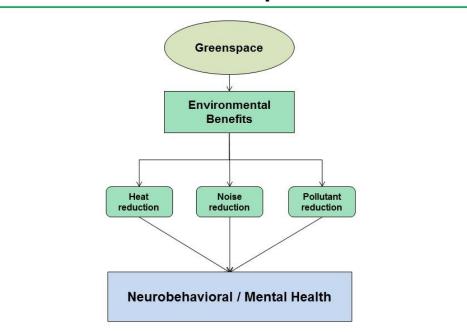
Table 1. Main characteristics and results of the studies on surrounding greenness and mental health.

# Mental Health Benefits of Long-Term Exposure to Residential

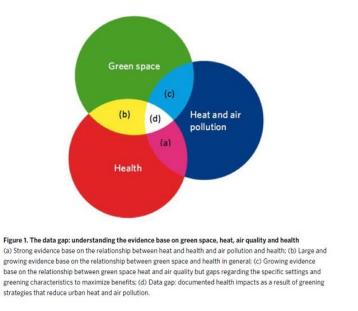
Green and Blue Spaces: A Systematic Review Mireia Gascon <sup>1,2,3,4,\*</sup>, Margarita Triguero-Mas<sup>2,3</sup>, David Martinez <sup>2,3</sup>, Payam Dadvand <sup>2,3</sup>,

Joan Forns<sup>2,3,4</sup>, Antoni Plasència<sup>1</sup> and Mark J. Nieuwenhuijsen<sup>2,3</sup> Int. J. Environ. Res. Public Health 2015, 12, 4354-4379; doi:10.3390/ijerph120404354

- · Twenty-four studies of adults
  - 6 longitudinal, 1 ecological, 17 cross-sectional
  - Most conducted in Europe, none in Asia or Africa

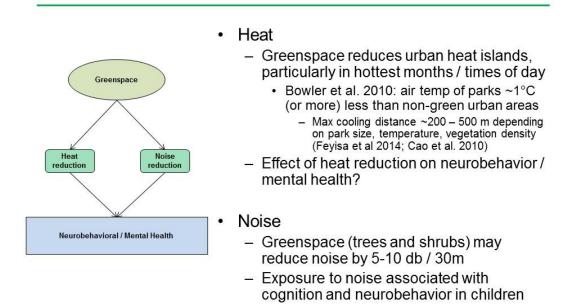

|                                                  |                     |                                                               |        | 140                               | le 1. Cont.                                            |                          |                                                                          |                                                                                                                    |
|--------------------------------------------------|---------------------|---------------------------------------------------------------|--------|-----------------------------------|--------------------------------------------------------|--------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Author (Year,<br>Country)                        | Study Design        | Age of the Study Population<br>(Stratifications/Interactions) | N      | Tools to Measure<br>Mental Health | Mental Health<br>Item                                  | Greenness<br>Data Source | Surrounding<br>Greenness Indicator                                       | Risk of Mental Health Problems                                                                                     |
|                                                  |                     |                                                               |        | Adults (or popul                  | ation irrespective of as                               | pe)                      |                                                                          |                                                                                                                    |
| Alcock et al.<br>2014, The UK [22]               | Longitudinal        | Adults                                                        | 1064   | GHQ-12                            | Mental health                                          | Land-cover map           | % GS at CAU<br>(residence change in<br>time)                             | † mental health in people<br>moving to greener areas                                                               |
| Araya et al. 2007,<br>Chile [31]                 | Cross-<br>sectional | Adults 16–64 y                                                | 3870   | CIS-R<br>ICD-10                   | Psychiatric,<br>anxiety and<br>depressive<br>disorders | BEAT (audit)             | Presence of public green<br>areas and its quality <sup>b</sup><br>at CAU | Increasing presence of public green areas 1<br>risk of depression (ICD-10)                                         |
| Astell-Burt et al.<br>2013, Australia<br>[32]    | Cross-<br>sectional | >45 y<br>(physical activity)                                  | 260061 | K10                               | Psychological<br>distress                              | Land-cover map           | % GS in 1 km buffer                                                      | Increasing greenness   risk in all<br>population (after stratification only in<br>physically active adults)        |
| Astell-Burt er al.<br>2014. The UK [18]          | Longitudinal        | >15 y<br>(age, gender)                                        | 65407  | GHQ-12                            | Minor psychiatric<br>morbidity                         | Land-cover map           | % GS at CAU                                                              | Increasing greenness ‡ risk in males >30<br>years and in females >41 years & living in<br>moderate greenness       |
| Beyer et al.<br>2014. The USA                    | Cross-              | 21-74 v                                                       | 2479   | DASS                              | Depression                                             | NDVI                     | At CAU                                                                   | Increasing greenness ‡ risk of depression<br>& anxiety                                                             |
| [33]                                             | sectional           | 21-74 y                                                       | 2475   | DASS                              | Anxiety Stress                                         | Land-cover map           | % tree canopy coverage<br>at CAU                                         | Increasing greenness 1 risk of depression<br>& stress                                                              |
| De Vries et al.<br>2003, The<br>Netherlands [34] | Cross-<br>sectional | All ages (education, urbanity<br>degree)                      | 10197  | GHQ                               | Minor psychiatric<br>morbidity                         | Land-cover map           | % GS in 1 km & 3 km<br>buffers                                           | Increasing greenness between 1 and 3 km j<br>risk in all population (after stratification<br>only in low educated) |
| Fan et al. 2011.                                 | Create              |                                                               |        |                                   |                                                        | NDVI                     | 800 m buffer                                                             | 1.1                                                                                                                |
| Fan et al. 2011,<br>The USA [27]                 | Cross-<br>sectional | Adults 18=75 y                                                | 1544   | PSS                               | Stress                                                 | Land-cover map           | Total park acreage in a<br>800 m buffer                                  |                                                                                                                    |

#### Mental Health Benefits of Long-Term Exposure to Residential Green and Blue Spaces: A Systematic Review

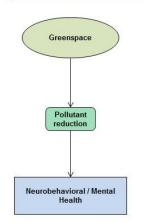

Green and Blue Spaces: A Systematic Review Mireia Gascon<sup>1,2,3,4,\*</sup>, Margarita Triguero-Mas<sup>2,3</sup>, David Martínez<sup>2,3</sup>, Payam Dadvand<sup>2,3</sup>, Joan Forns<sup>2,3,4</sup>, Antoni Plasència<sup>1</sup> and Mark J. Nieuwenhuijsen<sup>2,3</sup> Int. J. Environ. Res. Public Health **2015**, *12*, 4354-4379; doi:10.3390/ijerph120404354

- Summary and Conclusions
  - Limited evidence for causal relationship between surrounding greenness and mental health in adults
    - · Inadequate evidence for children
  - Limitations
    - · Few studies
    - · Heterogeneity in exposure assessment
  - Recommendations
    - · Effect modification by social class, education, age, and gender
    - · Sensitivity analyses regarding appropriate distance (300 m?)
    - · Euclidian or network distances?
    - Greenspace surrounding work / schools
    - · Additional outcome assessments

### Potential Pathways: Environmental Benefits of Greenspace

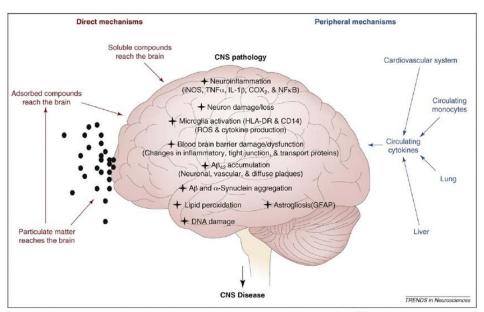



### Greenspace, heat, air quality, and health




Zupancic T, Westmacott C, Bulthuis M. The Impact of Green Space on Heat and Air Pollution in Urban Communities: A Meta-Narrative Systematic Review. March 2015. David Suzuki Foundation.

### **Greenspace: Heat and noise reduction**

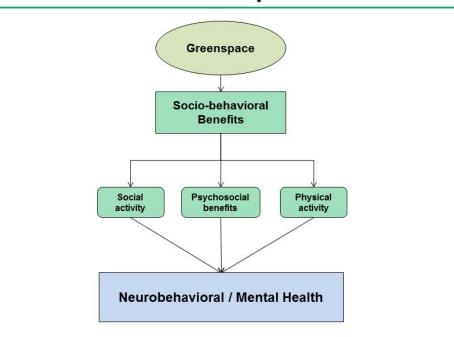



### **Greenspace: Pollutant reduction**

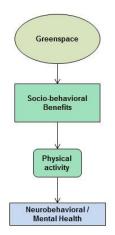


- ↓ ozone?
  - Dependent on vegetation type
- Gaseous pollutants
   Uptake via leaf stomata
- PM
  - Trees may serve as a barrier to PM
    - Maher et al (2013): ~50%↓ in measured PM inside houses
  - Dependent on PM size
  - Large urban forests ↓ PM2.5

### Air Pollution and the Central Nervous System

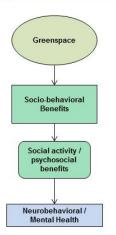



Block and Calderon-Garciduenas. Trends in Neurosciences. 2009;32:506-516.


### Air Pollution and the Central Nervous System

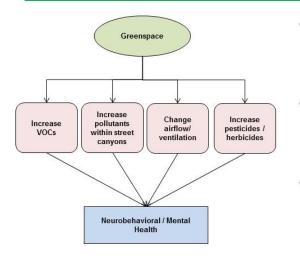
- Experimental Studies
  - ↑ microglia
  - ↑ neuroinflammation (TNFα, IL1β, IL-6)
- Epidemiologic Studies
  - Estimated life-time exposure to BC associated with ↓ vocabulary, IQ, memory and learning at age 10 (Suglia et al. Am J Epidemiol. 2008)
  - Prenatal exposure to polycyclic aromatic hydrocarbons associated with ↓ cognition (age 3), ↓ IQ (age 5), and ↑ anxiety and attention (age 6-7) (Perera et al. Environ Health Perspect. 2006, 2012. Pediatrics 2009)
  - Traffic-related air pollution associated with autism (Volk et al. JAMA Psychiatry. 2013; Becerra
    et al. Environ Health Perspect. 2013)

### Potential Pathways: Socio-behavioral Benefits of Greenspace




# **Greenspace: Physical Activity**




- Inconsistent / weak evidence for greenspace →physical activity → mental health link
  - Maas et al. 2008: No association between greenspace and meeting physical activity recommendations
  - Ord, Mitchell, et al. 2013: Availability of greenspace in the neighborhood not associated with physical activity
  - Lee and Maheswaran 2010: Physical activity
     → health, but weak evidence for greenspace
     → physical activity

# Greenspace: Social activity and psychosocial benefits



- Provide a meeting place for users to develop and maintain neighborhood social ties
  - Increased social support (Maas et al. 2009)
  - Increased sense of community
- · Mechanism not well studied

### Potential Deleterious Effects of Greenspace on Pollutant Concentrations



- Increase ground-level ozone
   precursors
  - Vegetation that emits biogenic VOCs
- - Increased exposure for pedestrians in canyon
- Change in airflow may ↓ ventilation resulting in reduction in TRAP dilution
  - ↑ CO
- Exposure to pesticides / herbicides associated with behavior and cognition

### Greenspace and Behavioral Outcomes in the CCAAPS Cohort

- Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS)
  - Objective: Determine if children exposed to traffic-related air pollution, specifically diesel exhaust particles, are at increased risk for developing allergic diseases, asthma, and impaired neurobehavioral development
  - Longitudinal birth cohort study of infants born 2001-2003 in greater Cincinnati region
    - Eligibility: Birth record address < 400 m major road or > 1500 m from major road
    - Enrolled 762; Age 7 617; Currently ongoing Age 12 ~500

# **CCAAPS Methods**

- Clinical evaluations
  - 1-4: Questionnaire, SPT, physical exam, hair, saliva, blood, eNO, spirometry
  - 7: All above + behavior
  - 12: All above + intelligence, reading ability, attention/inhibition, memory, executive function, neuromotor function, behavior, anxiety/depression, MRI (structure, organization, and function)
- Indoor exposure (1,7)
  - Walk-through, dust (allergens, mold, endotoxin)
- Outdoor exposure
  - PM2.5, EC
  - Land-use regression model

### **Neurobehavioral Assessment Battery**

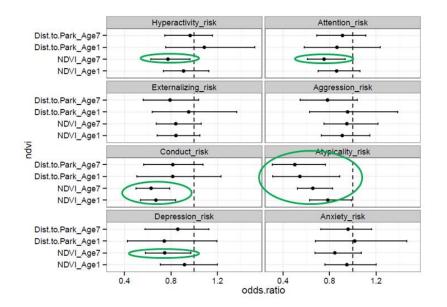
| Child Direct Assessments                                | Outcome / Assessment                                                                                                                |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Wechsler Intelligence Scale for Children (WISC-IV)      | Verbal comprehension, perceptual reasoning, working memory, processing speed, and full scale IQ                                     |
| Conner's Continuous Performance Test (Conner's CPT)     | Inattentiveness, impulsivity, sustained attention, and vigilance                                                                    |
| Children's Depression Inventory (CDI-II)                | Cognitive, affective, and behavioral signs of depression in children                                                                |
| Spence Children's Anxiety Scale (SCAS)                  | Generalized anxiety, panic/agoraphobia, social phobia, separation anxiety, obsessive compulsive disorder, and physical injury fears |
| Grooved Pegboard Test                                   | Eye-hand coordination and motor speed                                                                                               |
| Wide Range Achievement Test (WRAT-4)                    | Word reading and sentence comprehension                                                                                             |
| Children's Sleep Habits Questionnaire (CSHQ)            | Behaviorally and medically-based sleep problems in school-aged children                                                             |
| Caregiver Survey about Child                            | Outcome / Assessment                                                                                                                |
| Behavior Assessment System for Children (BASC-2)        | Child's behavioral and emotional function including internalizing, externalizing, and adaptive behaviors                            |
| Behavior Rating Inventory of Executive Function (BRIEF) | Assessment of executive function in children                                                                                        |
| Children's Sleep Habits Questionnaire (CSHQ)            | Behaviorally and medically-based sleep problems in school-aged children                                                             |
| Parenting Relationship Questionnaire (PRQ)              | Parent perspective on the parent-child relationship and rearing environment                                                         |
| Social Responsiveness Scale (SRS)                       | Social impairment and behaviors associated with autism spectrum disorders                                                           |
| Caregiver Direct Assessment                             | Outcome / Assessment                                                                                                                |
|                                                         | Brief measure of cognitive ability that provides a full scale IQ                                                                    |
| Wechsler Abbreviated Scale of Intelligence (WASI-2)     | Bher medsure of cognitive ability that provides a fail scale for                                                                    |

# Neuroimaging

- Nested substudy of children exposed to high (n = 100) and low (n = 100) TRAP during early childhood
  - 3T MRI Scanner

| Sequences Acquired                                               | Imaging Outcome Whole brain and substructure volumes |  |  |
|------------------------------------------------------------------|------------------------------------------------------|--|--|
| Three dimensional T1 weighted<br>imaging                         |                                                      |  |  |
| Standard T2 weighted                                             | Inflammatory changes noted with hyperintense signals |  |  |
| T2 map for quantitative T2<br>measurements                       | T2 rates for brain tissues                           |  |  |
| Diffusion Tensor Imaging of White<br>Matter                      | White matter integrity metrics                       |  |  |
| Magnetic Resonance<br>Spectroscopy                               | Metabolite concentrations                            |  |  |
| Functional Magnetic Resonance<br>Imaging<br>Verb generation task | Neural activation levels                             |  |  |

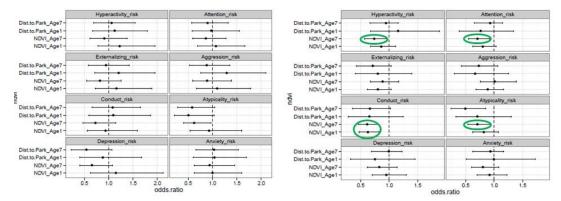
# TRAP Exposure Prior to Age 1 and Behavioral Scores at Age 7

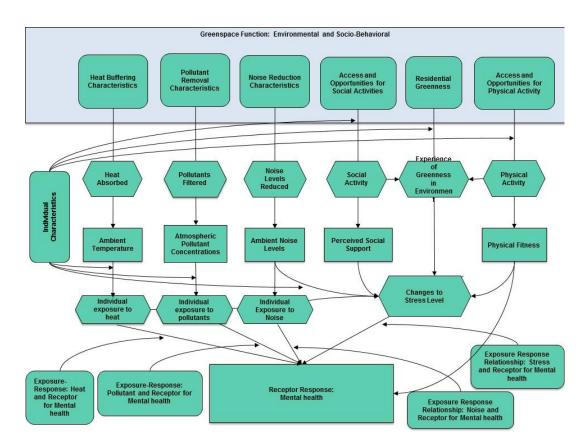

| BASC-2 Subscale    | % "at<br>risk"<br>(>59) | TRAP (High/Low)-<br>Unadjusted OR<br>OR 95% CI |             | TRAP (High/Low)-<br>Adjusted** OR<br>OR 95% Cl |             |
|--------------------|-------------------------|------------------------------------------------|-------------|------------------------------------------------|-------------|
|                    |                         | OR                                             | 90% CI      | UK                                             | 95% CI      |
| Hyperactivity      | 18%                     | 1.9                                            | (1.2 - 2.9) | 1.7                                            | (1.0 - 2.7) |
| Attention problems | 19%                     | 1.4                                            | (0.9 - 2.2) | 1.1                                            | (0.6 - 1.7) |
| Aggression         | 16%                     | 1.5                                            | (0.9 - 2.4) | 1.2                                            | (0.7 - 2.0) |
| Conduct problems   | 14%                     | 2.1                                            | (1.3 - 3.3) | 1.5                                            | (0.9 - 2.6) |
| Atypicality        | 14%                     | 2.0                                            | (1.3 - 3.2) | 1.5                                            | (0.9 - 2.6) |

\* Adjusted for gender, tobacco smoke exposure prior to age one, maternal education

Newman et al. Environmental Health Perspectives. 2013.




### CCAAPS Preliminary Data: Greenspace and Behavior




### CCAAPS Preliminary Data: Greenspace, Traffic, and Behavior

#### Low TRAP

High TRAP





# **Driving Questions**

- How should cumulative risk assessment framework consider greenspace as it relates to neurodevelopment?
- What greenspace elements and metrics are relevant to neurodevelopment?
- What are the specific known or presumed mechanisms of neurodevelopment, and can this be used to inform biologic plausibility of reported associations with greenspace?
- Consideration of potential cumulative effect of greenness on neurodevelopment – "active" + "passive" exposure pathways – e.g. outdoor exercise (activie) and visible greenspace around residence (passive)
- Considerations of community and individual level outcomes and specific populations

### Contribution of Greenspace to Neurobehavior / Mental Health

- · Greenspace widely viewed as beneficial to mental health
  - Recovery from fatigue
  - Reduction in stress
  - Reduction in crime
  - Improved self-reported general health
- Greenspace linked to reduction in biomarkers of stress
  - ↓cortisol
- Potential mechanisms
  - ↑ physical activity  $\rightarrow$  improved mental health
  - Exposure to nature
  - $-\uparrow$  social interaction
  - Decreased exposure to pollutants, noise, and heat

"...in every walk with Nature one receives far more than he seeks" John Muir 1992, p. 918

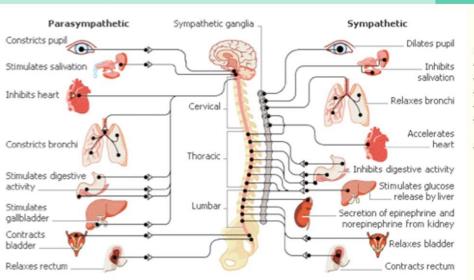
**Psychosocial effects** 

Michelle Kondo Julia Africa Matilda Annerstedt van den Bosch May 5, 2015

1

Estimating Greenspace Exposure & Benefits for Cumulative Risk Assessment Applications Technical Working Group Meeting May 4-5, 2015

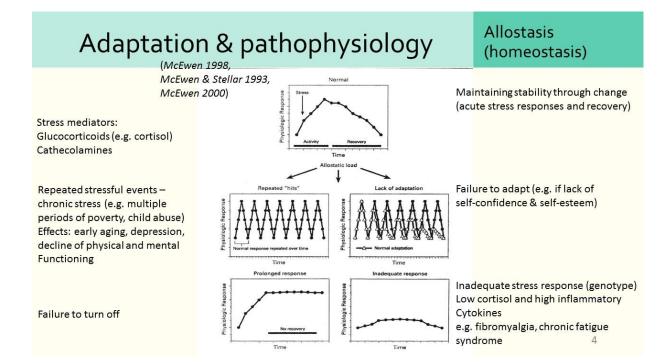
U.S. Environmental Protection Agency 26 Martin Luther King Drive West, Cincinnati, OH 45220

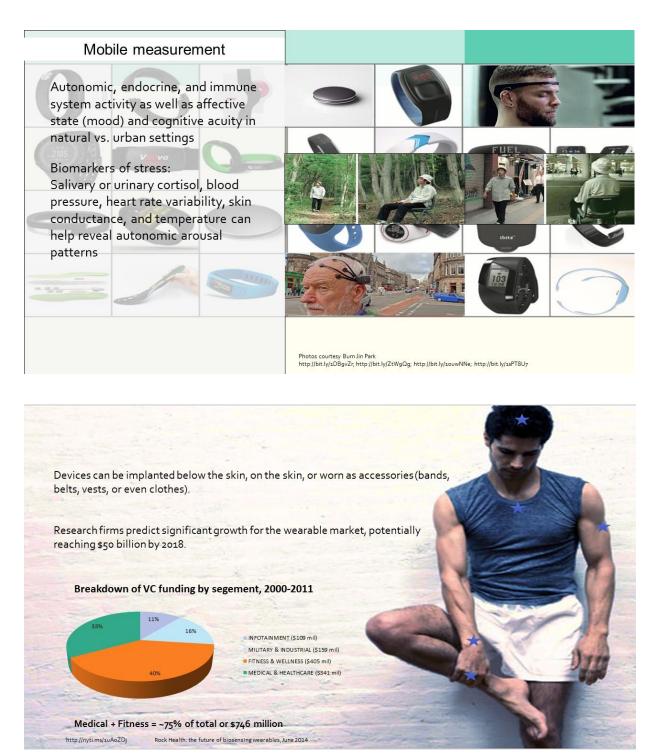

# Psychosocial health

#### Determinants:

- Stress
- Social capital
- Genetics
- Environment

### It's been a rough week but I made it - how about you?

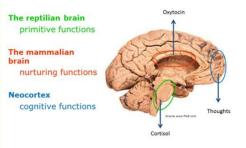



### Stress biology: Autonomic nervous system (ANS)



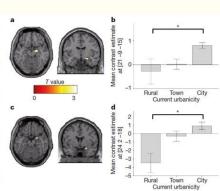
- Pulse rate
- Blood pressure
- HRV, TWA (ECG)
- Hormones (e.g. cortisol)
- Brain electricity signals
- (EEG) • Skin conductance






# Stress and the brain

- Deactivates neo-cortex
- Activates amygdala in limbic system (including interactions with hippocampus and prefrontal cortex)
- Paleocortex
- Unreasonable, agitated,
  - thoughtless behaviour
- Chronic stress chronic changes in brain (incl. epigenetic changes)
- Impaired coping/adaptation (allostasis)

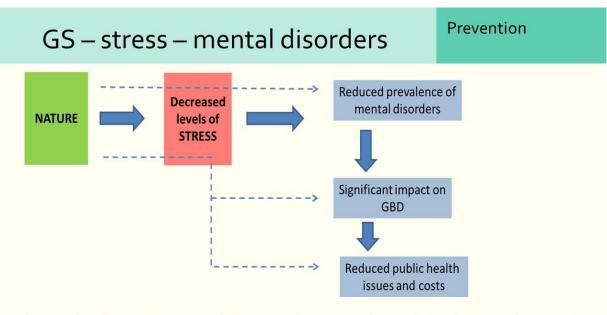

Ref: Gray et al. 2013, McEwen 2012, Davidson & McEwen 2012, McEwen & Gianaros, 2011)



# The brain: stress & environment



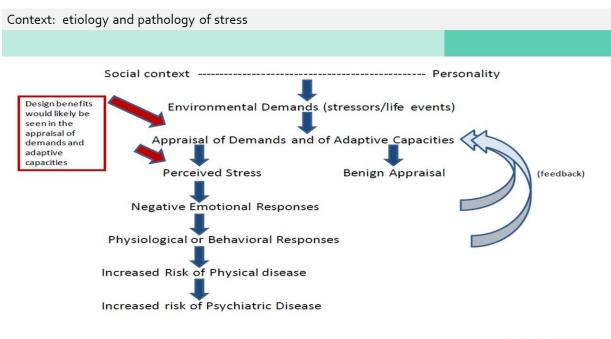
#### Urbanisation



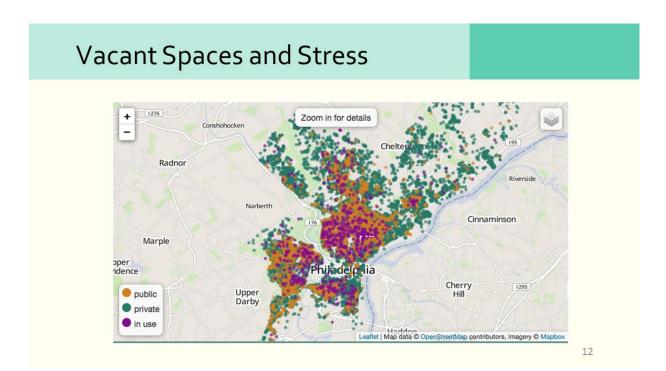

Lederbogen et al. 2011. City living and urban upbringing affect neural social stress processing in humans. Nature.

# Stress and mental illness

- Persons with major depression or schizophrenia have a 40 60% higher risk of dying prematurely as compared to a general population.
- Mental illness represents three of the **ten leading causes of disease burden** in low- and middle-income countries, and four of the leading ten in high-income countries.
- More than 800 000 persons die from suicide each year.
- Globally, only 2.8% of the health budget is allocated to mental health.
- Depression affects one of five people over the age of 65
- Prevention programmes are often the most efficient
- Unequal distribution
- High level of co-morbidity (somatic diseases, e.g. cancer, cardiovascular)
- Costs: US\$ 16.3 million 2011 2030

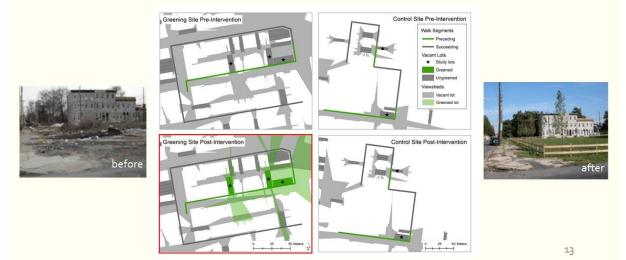

(Source: WHO; Bloom et al. 2012)




Q

Ref: Annerstedt et al. 2012, 2013, 2015; Ward Thompson et al. 2012; Roe et al. 2013; Ulrich et al. 1991; van den Berg et al. 2010; Grahn & Stigsdotter, 2003 10

#### Day 2-Psychosocial effects



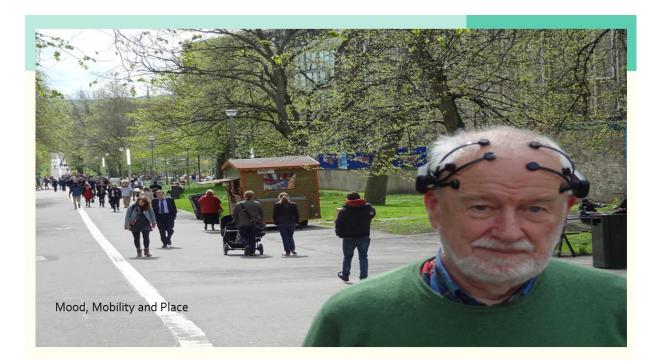

Cohen et al 1995



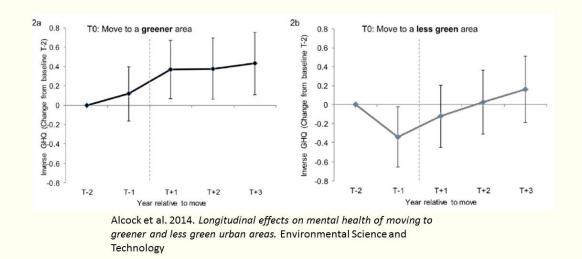
# Vacant Lot Greening & Stress

A mobile biosensing project with residents living near vacant lots




# Vacant Lot Greening & Stress

Results: heart rate decreases when in view of vacant lots


- 12 participants (7 Trx: 5 Ctrl)
- DDD estimates for Trx & Ctrl sites based on:
  - pre-post greening
  - within- vs. out-of-view
  - preceeding vs. succeeding greened lots
- -15.6 bpm (Trx site) vs. -1.7 bpm (Ctrl site)



South, Kondo, Cheney, Branas (2015) Neighborhood blight, stress, and health: A walking trial of urban greening and ambulatory heart rate. American Journal of Public Health 105(5): 909-913.



### Direct relation between nature and mental health



# Social cohesion

- Interaction with neighbors
- Sense of community

#### Barriers:

- Illness
- Lack of supportive community/environment
- Lack of social opportunities
- Fear
- Lack of self confidence

Ref: Goll et al. 2015, Bergh et al. 2009, Åslund et al. 2010

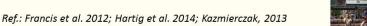


# Social cohesion and disease

- Social cohesion, both personally and in the environment prevents chronic illness
- Loneliness among main risk factors for disease, at same level as smoking
- Loneliness significantly correlated to impaired cognitive function
- Social cohesion mitigates other risk factors (e.g. smoking, physical inactivity, drug abuse)
- Elderly often affected
- Immigrants
- · Biological causality between loneliness and disease is unclear

Ref. Boss et al. 2015, Waverijn et al. 2014, Samuel et al. 2015

# Social cohesion and GS


- Green spaces and crime reduction
- Green Spaces increase social contact and the sense of belonging within a community
- Encourage getting familiar with persons of different social and ethnic backgrounds



Ref: Donovan & Prestemon, 2012; Maas et al. 2009; Lofland 1998; Peters et al. 2010; Kuo et al. 1998; Cohen et al. 2008; de Vries et al. 2013

## Quality aspects of GS & social cohesion

- Safety perceptions
- High quality GS
- Well maintained
- Good, attractive recreational facilities
- Community gardens



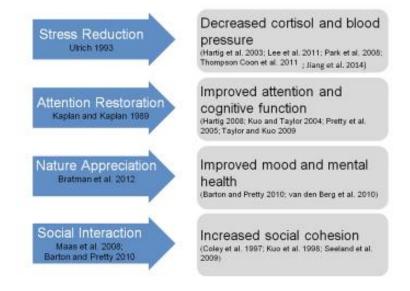


# GS and pro-social behaviour

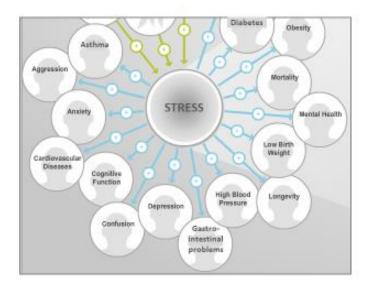
- Share, care, cooperate, and assist
- Less rational behavior
- External/internal stimuli automatic mind (10% of our decision are rationally based)
- "Choice architecture" /"Nudging"
- Exposure and relation to nature promotes prosociality

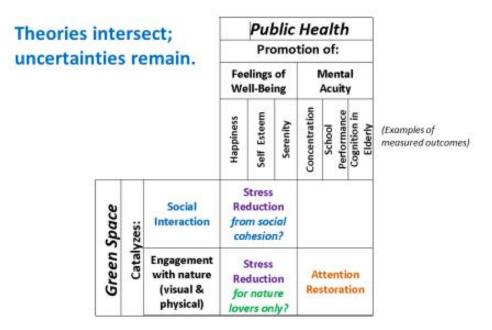
"No one really knows why humans do what they do." D.K Reynolds

21


Ref.: Mayer & Frantz, 2004; Zhang et al., 2014; Diessner et al. 2013; Piff et al. 2014;

GS and pro-environmental behaviour Public Health


- Automatic processes mirror neurons and mentalising system
- Enriched environments (rat models)
- Nature connectedness stimulates PEB
- Nature exposure promotes PEB
- GS PEB reduced climate change reduced negative effects on health


Ref. Coricelli, 2005; Engel et al. 2008; Sale et al. 2009; Nisbet et al, 2009; Hartig et al. 2001; Zelenski et al. 2015

## Engagement with Nature—How Does that Affect Health? Prevailing Mechanistic Theories



|             |            |                                                     | Public Health<br>Promotion of: |                          |                        |  |  |
|-------------|------------|-----------------------------------------------------|--------------------------------|--------------------------|------------------------|--|--|
|             |            |                                                     | Feelings of<br>Well-Being      | Mental<br>Acuity         | Healthy<br>Body Weight |  |  |
| 9           | Catalyzes: | Social<br>Interaction<br>介                          | Stress<br>Reduction            |                          |                        |  |  |
| Green Space |            | Engagement<br>with nature<br>(visual &<br>physical) | Stress<br>Reduction            | Attention<br>Restoration |                        |  |  |
|             |            | Physical<br>Exercise                                | Stress<br>Reduction            | Attention<br>Restoration | Bio-<br>energetics     |  |  |





## Day 2-Attention Restoration/cognition effects

|             |            |                                                     | Public Health             |                          |                        |                         |                         |                         |  |  |  |
|-------------|------------|-----------------------------------------------------|---------------------------|--------------------------|------------------------|-------------------------|-------------------------|-------------------------|--|--|--|
|             |            |                                                     | Promotion of:             |                          |                        | Protection against:     |                         |                         |  |  |  |
|             |            |                                                     | Feelings of<br>Well-Being | Mental<br>Acuity         | Healthy<br>Body Weight | Toxicity                | Extreme<br>Events       | Deprivation             |  |  |  |
|             |            | Social<br>Interaction                               | Stress<br>Reduction       |                          |                        | Increased<br>Resilience | Increased<br>Resilience | Increased<br>Resilience |  |  |  |
| Green Space | Catalyzes: | Engagement<br>with nature<br>(visual &<br>physical) | Stress<br>Reduction       | Attention<br>Restoration |                        |                         |                         |                         |  |  |  |
|             |            | Physical<br>Exercise                                | Stress<br>Reduction       | Attention<br>Restoration | Bio-<br>energetics     |                         |                         |                         |  |  |  |
|             | des:       | Hazard<br>Buffers                                   |                           |                          |                        | Filtration              | Modulation              |                         |  |  |  |
|             | Provides:  | Food<br>Water<br>Raw<br>Materials                   |                           |                          |                        |                         | Increased<br>Resilience | Increased<br>Resilience |  |  |  |







1. Nasar JL, Fisher B, Grannis M. Proximate physical cues to fear of crime. Landsc Urban Plan. 1993;26(1).

2. Nasar JL, Jones KM. Landscapes of fear and stress. Environ Behav. 1997;29(3).

3. Fisher BS, Nasar JL. Fear of crime in relation to three exterior site features prospect, refuge, and escape. Environ Behav. 1992;24(1).
 4. Chiang, Yen-Cheng, Jack L. Nasar, and Chia-Chun Ko. "Influence of visibility and situational threats on forest trail evaluations." Landscape and Urban Planning 2014;125.

## Green Space and Safety Perception



1. Kuo FE, Sullivan WC, Coley RL, Brunson L. Fertile ground for community: Inner-city neighborhood common spaces. Am J Commun Psychol. 1998;26(6):823-851.

2. Garvin EC, Cannuscio CC, Branas CC. Greening vacant lots to reduce violent crime: a randomised controlled trial. Inj Prev. 2012;19(3):198-203.





- 2. Troy A, Morgan Grove J, O'Neil-Dunne J. The relationship between tree canopy and crime rates across an urban-rural gradient in the greater Baltimore region. Landsc Urban Plann. 2012;106(3)
- 3. Donovan GH, Prestemon JP. The effect of trees on crime in Portland, Oregon. Environ Behav. 2012;44(1)

# Vegetation Type or Scale

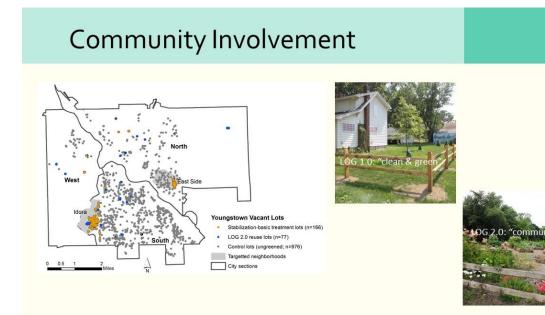




- 1. Valley Green Space
- 2. Green Cities: Good Health. Kathleen Wolf, University of WA / USFS
- 3. Kuo FE, Bacaicoa M, Sullivan WC. Transforming inner-city landscapes trees, sense of safety, and preference. Environ Behav.
- 1998;30(1) 4. Donovan GH, Prestemon JP. The effect of trees on crime in Portland, Oregon. *Environ Behav.* 2012;44(1)

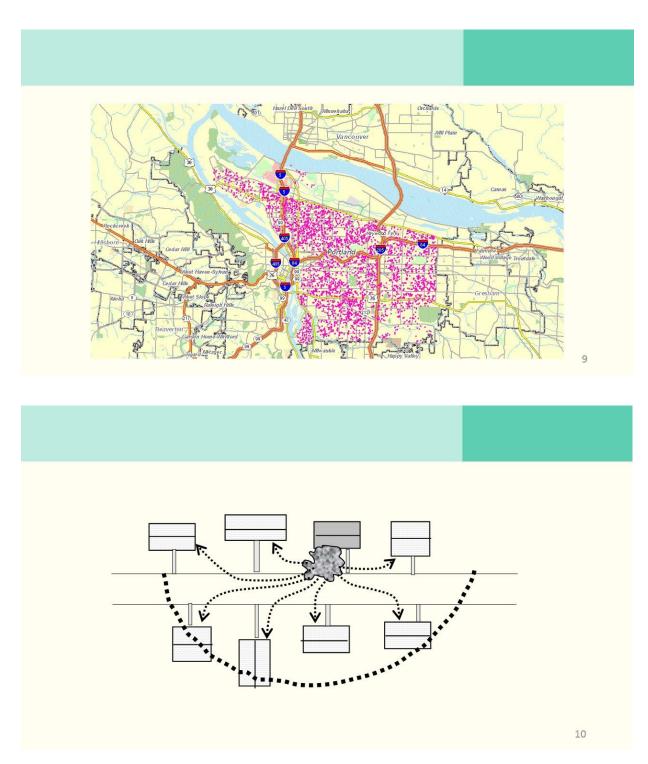




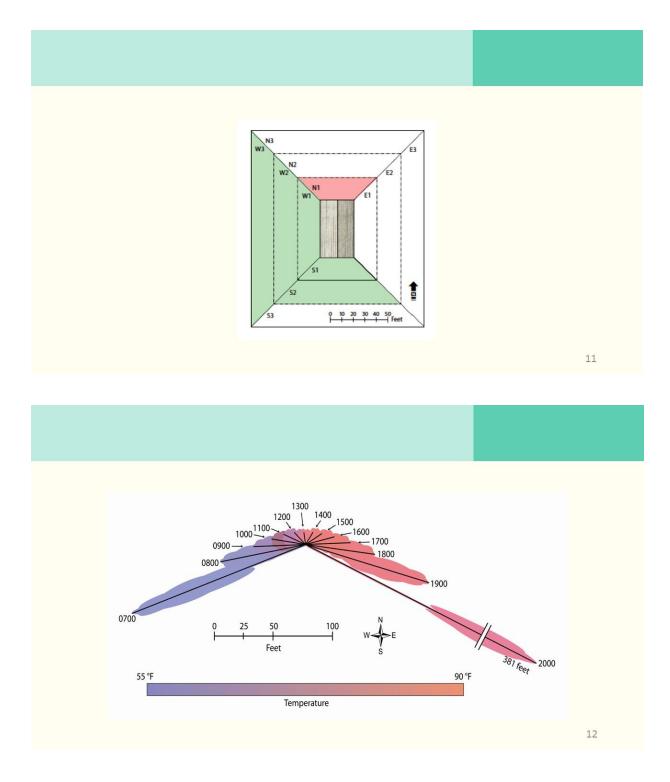

- safety. Am J Public Health. 2015(105):3
   Kondo, MC, Han, S, Donovan, G, MacDonald, JM. The Effect of Trees on Urban Crime: Evidence from the Spread of the Emerald Ash Borer in Cincinnati. Under review.
- 3. Donovan GH, Prestemon JP. The effect of trees on crime in Portland, Oregon. Environ Behav. 2012;44(1)

# <section-header><section-header><section-header><section-header><section-header><section-header><section-header><image><image><image>

3. Garvin EC, Cannuscio CC, Branas CC. Greening vacant lots to reduce violent crime: a randomised controlled trial. *Inj Prev.* 2012;19(3).

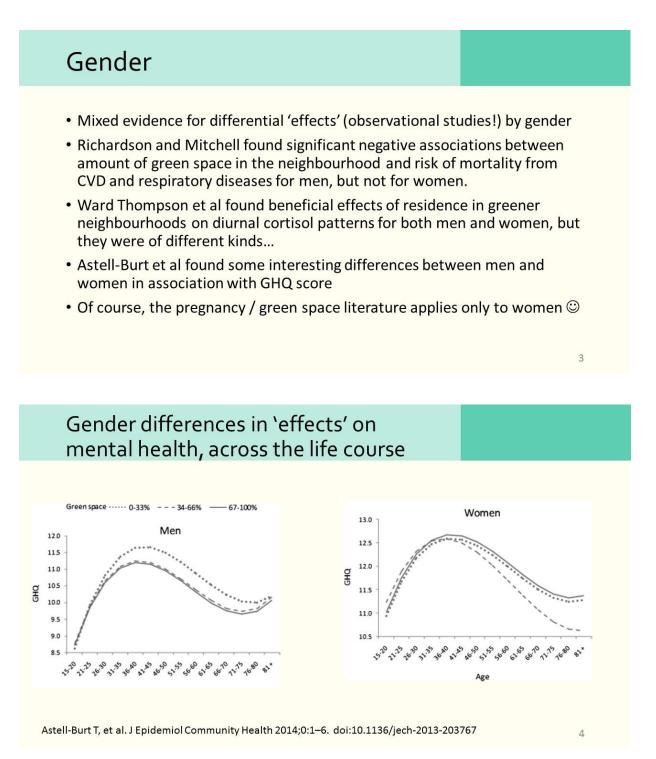

7

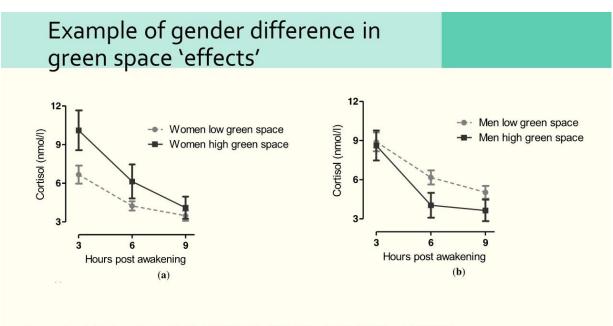
8




Kondo, MK, Hohl, BC, Han, S, Branas, C (under review) Effects of Greening and Community Reuse of Vacant Lots on Crime.

## Day 2–Economic and community benefits

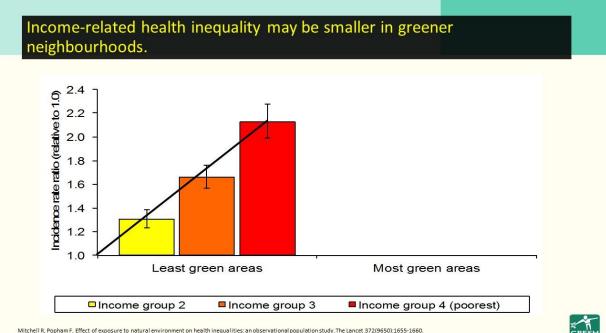




## Day 2–Economic and community benefits

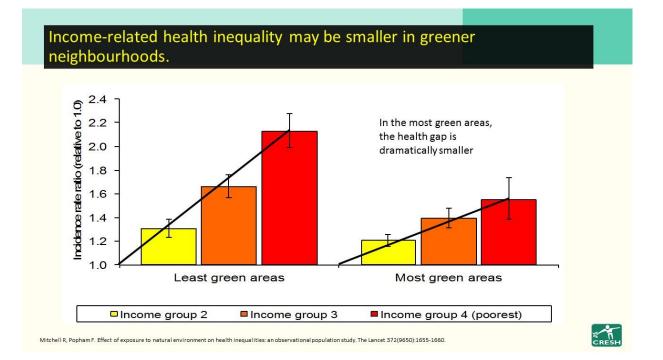


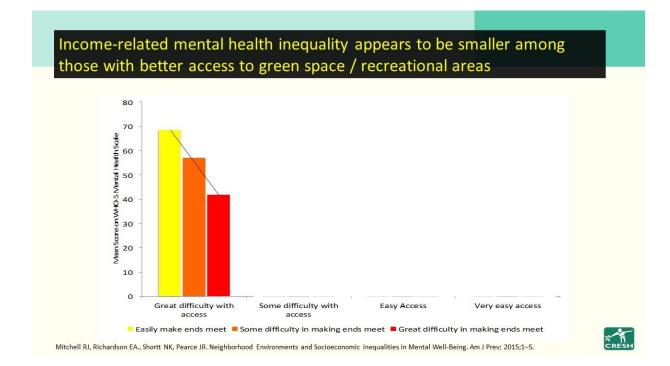


- What should we expect?
  - Important to note that the experimental studies, particularly on physiological benefits and psychological restoration, have generally not been stratified by population sub-group
  - We have no reason to think that the mechanisms will *work* in a different way for different sub-groups, but they might be triggered differently, be more or less important..

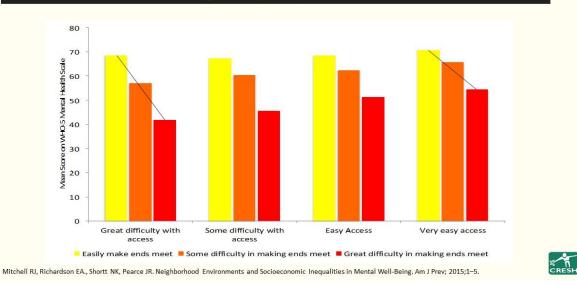


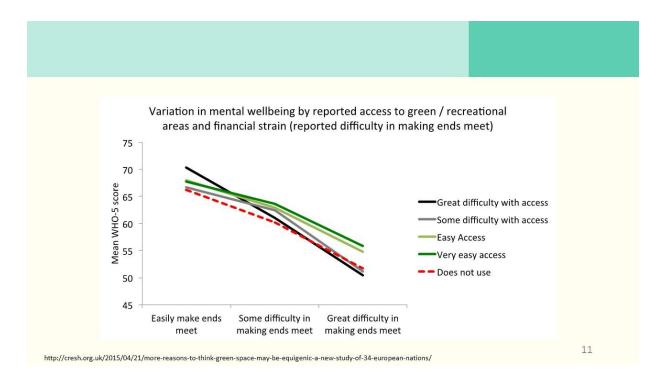




Roe et al Int. J. Environ. Res. Public Health 2013, 10, 4086-4103; doi:10.3390/ijerph10094086

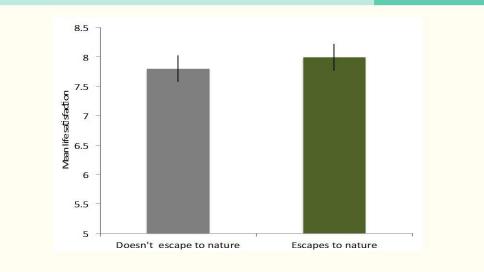

## Socio-economic position

- Differences in association with health by SEP is a key area of interest in my team.
- Chronic medical conditions of the kinds that green space might plausibly help - along with their associated signs/symptoms and mortality risks – are far more common among vulnerable populations.



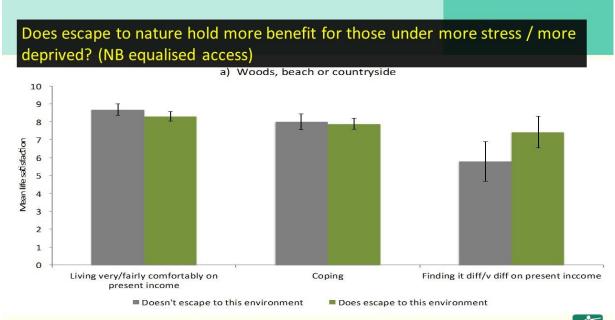


Mitchell R, Popham F. Effect of exposure to natural environment on health inequalities: an observational population study. The Lancet 372(9650):1655-1660.






Income-related mental health inequality appears to be smaller among those with better access to green space / recreational areas

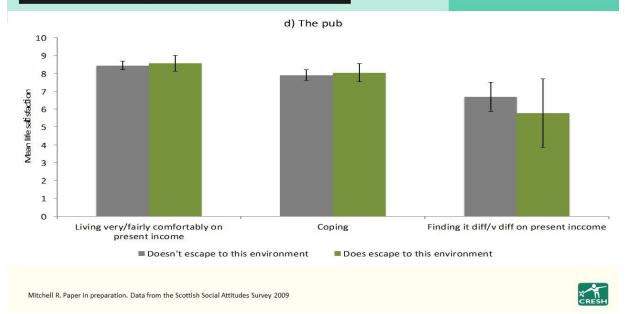





#### Is escaping to nature related to life satisfaction? (all those who need to escape)



X II

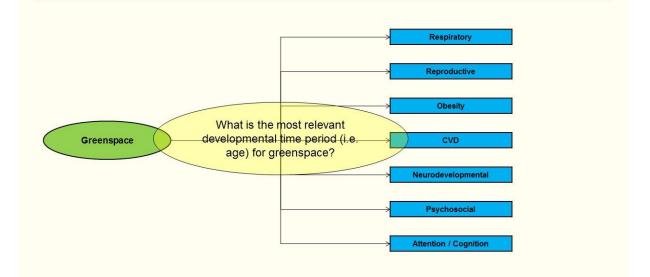

Mitchell R. Paper in preparation. Data from the Scottish Social Attitudes Survey 2009 (n=949)

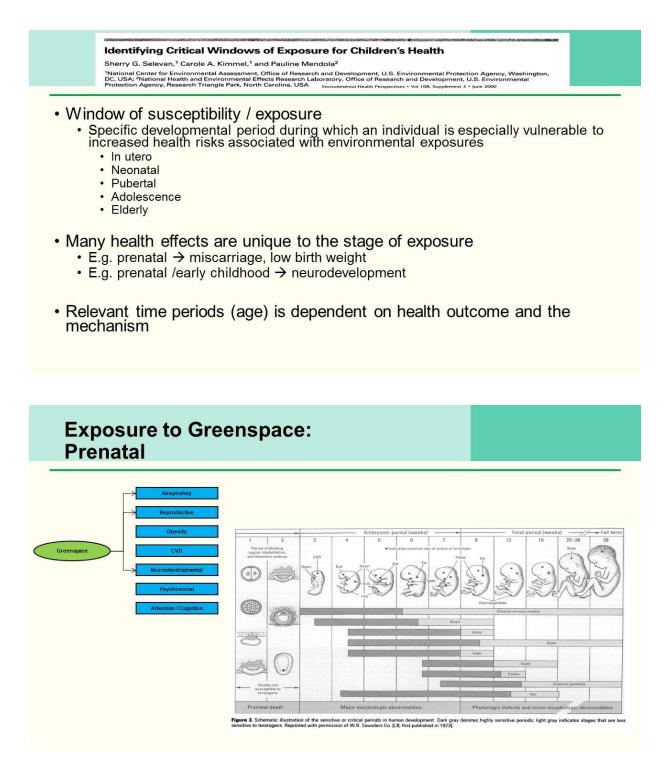


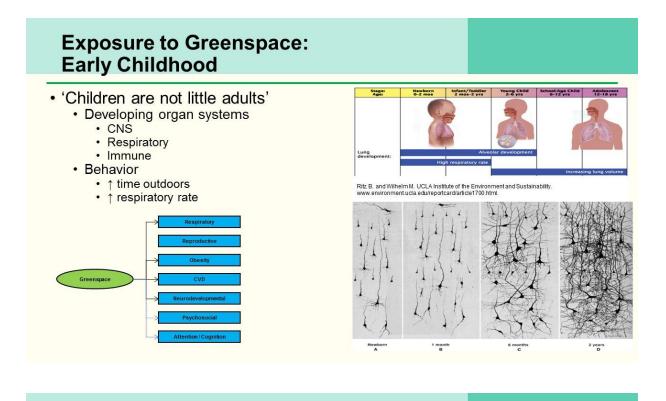
Mitchell R. Paper in preparation. Data from the Scottish Social Attitudes Survey 2009 (n=331)

CRESH

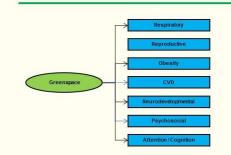
#### What about escape to other environments?



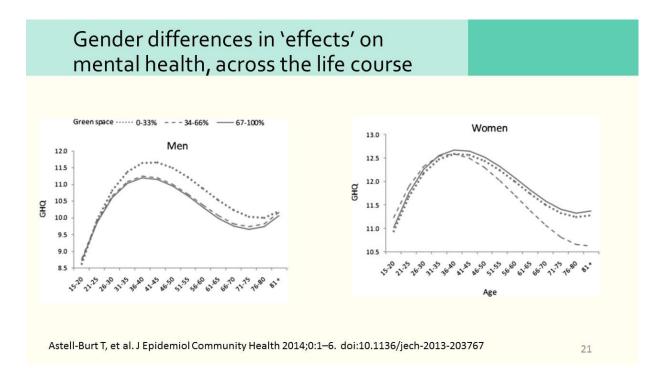


# Challenges to this work


- It's (so far) cross-sectional
- We don't know how the equigenic effect happens (if it's real)
  - Differences in use of the spaces seem an unlikely explanation
  - Perhaps the effects are more readily felt by those with a poorer health status to begin with
  - Perhaps our models (which assess variance after all), aren't well equipped to see a similarly supportive effect of nature for a population that already has good health
  - Residual confounding is a big problem




## **Review: Greenspace and Health**








## Adolescence, Adulthood, Elderly



- Adolescence
  - Relevant time period for greenspace in relationship to obesity, attention, respiratory, psychosocial
  - · CVD?
- Adulthood
  - Mental health, obesity, CVD, psychosocial, reproductive
- Elderly
  - · CVD, respiratory, mental health,



## **Summary**

- · Potential role for greenspace on health throughout lifespan
  - Similar to environmental exposures, the impact of greenspace is likely to vary by age and health outcome
  - Understanding the mechanism by which greenspace is associated with each health outcome is critical to define window of susceptibility
    - E.g. Potential mechanism: Greenspace → ↓ air pollution
      - · Health outcomes: Respiratory, CVD, reproductive, neurodevelopmental
      - · Relevant time windows: Prenatal, early childhood, adolescence, elderly