

The influence of data curation on QSAR Modeling – examining issues of quality versus quantity of data

Kamel Mansouri, Chris Grulke, Ann Richard*, and Antony J. Williams

National Center for Computational Toxicology, US EPA, RTP, NC

This work was reviewed by EPA and approved for presentation but does not necessarily reflect official Agency policy.

March, 2016 ACS Spring Meeting, San Diego, CA

EPA's National Center for Computational Toxicology (NCCT)

- ToxCast (EPA) & Tox21 (Multi-Agency)
 - screening >3800 (ToxCast) to >10K (Tox21) environmentally relevant chemicals across 10's to 100's of HTS assays
- ACToR, ExpoCast, CPCat, ToxRef DB
 - meshed CAS lists, product-use database, exposure models, guideline animal toxicity study reference DB
- Public-facing, web-dashboards (ToxCast, EDSP, ...)

CHEMISTRY

facilitate access to & utility of EPA data

Chemical databases

Chemical linkages Cheminformatics

Chemical structures

SAR/QSAR models

ToxCast chemical x assay counts summary (Jan 2016)

ommental Protection

Tox Data & Use List Coverage of ToxCast Chemicals

Chemistry Foundation to Support Multiple NCCT & EPA Projects

DSSTox Update

DSSTox_v1

CEPA United States Environmental Protection Agency

National Center for Computational Toxicology (NCCT)

Home
About DSSTox
Work in Progress
Frequent Questions
Structure Data Files
Central Field Definition
Apps, Tools & More
DSSTox Community
Site Map
Glossary of Terms
Help
DSSTox Publications

You are here: EPA Home » Research & Development » CompTox » DSSTox

DSSTox

Distributed Structure-Searchable Toxicity (DSSTox) Database Network is a project of EPA's National Center for Computational Toxicology, helping to build a public data foundation for improved structure-activity and predictive toxicology capabilities. The DSSTox website provides a public forum for publishing downloadable, structure-searchable, standardized chemical structure files associated with chemical inventories or toxicity data sets of environmental relevance. More

DSSTox Structure-Browser information Page

- Manually curated 25K substance records
- EPA-focus, environmental tox datasets
- Emphasis on accurate CAS-namestructure annotations
- Public resource for high-quality structure-data files (SDF)

DSSTox_v2

- Convert DSSTox tables to MySQL
- Develop curation interface & cheminformatics workflow
- Expand chemical content
- Web-services & Dashboard access

DSSTox_v2 Construction

Data source load order:

- 1) DSSTox_v1 (~22K)
 - ✓ 1:1 CAS-structure mappings
 - ✓ Assign NOCAS_GSID
 - ✓ Related CAS & structure mappings (e.g., NOCAS, mixtures)

2) EPA SRS (~77K)

- ✓ systematic name → structure conversion
- ✓ internal CAS-structure conflicts (12.5%)
- ✓ ChemID conflicts (24% of 30K overlaps)
- ✓ DSSTox conflicts (8% of 6200 overlaps) → queue for curation
- 3) ChemID (~400K)
 - ✓ internal CAS-structure conflicts (4.5%)
 - ✓ PubChem conflicts (45% of 225K overlaps)... OUCH!!
 - ✓ DSSTox conflicts (11% of 2300 overlaps) → queue for curation

4) And so on ...

DSSTox_v2 Totals

QC Level Totals (12Jun2015)

QC Levels

DSSTox_High:	Hand curated - highest confidence
DSSTox_Low:	Hand curated and confirmed using multiple public sources
Public_High:	Extracted from EPA SRS and confirmed to have no conflicts in ChemID and PubChem
Public_Medium:	Extracted from ChemID and confirmed to have no conflicts in PubChem
Public_Low:	Extracted from ACToR or PubChem (single source)
Public_Untrusted:	Postulated, but found to have conflicts in public sources

Building the Chemistry Software Architecture

SEPA

renommental Protection

Building Predictive Models

NCCT Modeling Activities

Receptor-mediated activities (e.g., ER, AR) Toxicity endpoint QSAR models Metabolism prediction In vitro-in vivo toxicity extrapolation models (IVIVE)

Read-across toxicity estimation

Near and far-field exposure models

Water solubility MP, BP, Vapor Pressure

- Analytical dust and media screening for environmental contaminants
- Biotransformation, transport, fate modeling
- ADME, PBPK models
- Chemical use category modeling
- Green chemistry

Physical

chemical

properties

Partition coefficients (air/water/soil) LogP

Building a physical chemical property database

Measured (where available)

- Collect data
 (sort wheat from chaff)
- Determine how to best mesh data together (structure? CAS? Other?)
- Check data self-consistency
- Structure validation vs.
 property value validation
 (very different challenges)

Physical chemical properties

Predicted (where not available)

- Build training/test sets of chemicals with experimental values (collapse or resolve dups)
- Apply structure-cleaning workflow to produce
 "QSAR-ready" structures
- Calculate descriptors
- Apply modeling algorithm (regression, ML, etc.)

Store measured & predicted values in relational database, linked to data sources, model details, etc.

- Establish accurate linkage of measured data to chemical structure
- Published experimental data → chemical IDs {CAS, name, and/or structure}
 - Fix ID errors
 - Resolve ID conflicts
 - Normalize, clean structures
 - Resolve duplicate mappings

Lots of experience from building DSSTox!

EPI Suite[™] Property Estimation Software

- Developed by EPA's Office of Pollution Prevention & Toxics (w/ Syracuse Research Corp), published initial models over 20 yrs ago, released desktop app in 2000
- Estimates a wide range of physical and environmental properties using QSAR approaches,
 - KOWWIN™, AOPWIN™, HENRYWIN™, MPBPWIN™, BIOWIN™, BioHCwin, KOCWIN™
- and incorporates these into dependent fate and toxicity models,
 - WSKOWWIN™, WATERNT™, BCFBAF™, HYDROWIN™, KOAWIN, AEROWIN™, WVOLWIN™, STPWIN™, LEV3EPI™, ECOSAR™
- Used to fill data gaps in EPA Pre-Manufacture Notification (PMN) chemical submissions, wide usage outside EPA

EPI Suite[™] Property Estimation Software

🗱 EPI Suite									
UNITED STATES	File	Edit	Functions	Batch Mode	Show Structure	Output	Fugacity	STP	Help
MACOULANS			EPI S	uite - Wel	come (Screen			
PATAL PROTECTION	PhysProp	Previous	Get Use	r Save User	Searc	h CAS 🗧	Charles	Clear Input Fields	
	Draw						Laiculate	Out	out
AOPWIN	Input CAS #							()	Gummary
KOWWIN	Input Smiles:								
BIOWIN									
MPBPVP	Input Chem N	ame:							
WSKOW	Name Lool	kup							
WATERNT	Henry LC:	0	3 atm-m /mole	Water Solubility:	0	mg/L			
HENRYWIN	Melting Point:	0	Celsius	Vapor Pressure:	0	mm Hg			
KOAWIN	Boiling Point	0	Celsius	Log Kow:	0				
KOCWIN	boning i one.	D							
BCFBAF		niver 0							
HYDROWIN	Water Depth:			meters					
BioHCwin	Wind Velocity:	j U	U	meters/sec					
DERMWIN	Current Velocity:	0	0	meters/sec					
ECOSAR									
EPI Links									

- Downloadable Windows application available at: <u>http://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface</u>
- 14 PhysProp experimental property data sets used in training models can be freely accessed from within app

EPI Suite KOWWIN: 2447 Training Compounds

Fotal Training Set Statis	sti	cs:
number in dataset	-	2447
correlation coef (r ²)	-	0.982
standard deviation	-	0.217
absolute deviation	-	0.159
avg Molecular Weight	-	199.98

- 2447 chemicals with measured Log Kow values used to train model
- >15K measured Log Kow values available in PhysProp file

Overall Predicted vs. Experimental

©.FF

Why derive new models from EPI Suite PhysProp datasets?

- Significant advances in cheminformatics and modeling approaches since <2000
- Enlarged training sets likely to improve models and expand applicability domain
- But first...

Perhaps we should take a look at the >20 yr old PhysProp datasets that we'll be using to rebuild the models!

- Exported SDF files from EPI Suite application
- Basic manual review searching for errors:
 - hypervalency, charge imbalance, undefined stereo
 - deduplication
 - mismatches between identifiers

✓ CAS Numbers not matching structure
 ✓ Names not matching structure
 ✓ Collisions between identifiers

Incorrect valences

Differences in Values (MP)

Two experimental records: Same structure

Different CAS, name, experimental & predicted MP

Covalently bound salt structures

PHYSPROP database

Appropriate Depiction

Same structure depictions (Molfiles) - different CAS, different names, AND different SMILES

Missing or erroneous identifiers

- Many chemical names are truncated
- Many chemicals don't have CAS Numbers

SRC000-02-7	Ethanaminium, N,N,N-trimethyl-2-[(1-oxo-2/propen
SRC000-04-3	Guanidine, N-hydroxy-N"-[4-(methylthio)penzeneme
SRC000-04-4	Hydrazinecarboximidamide, N'-[4-(methylthio)benz
SRC000-04-5	NNN5-TeMe-N-(3FuranMe),amnon Br
SRC000-04-6	Benzenamine, 4-bromo-N,N-bis(2,2,2-trifluoroethy
SRC000-04-7	2-Propenoic acid, 3-(2-chlorophenoxy,-, methyl e
SRC000-05-1	9H-Purine-9-acetaldehyde, a-(1-formyl-2-hydroxye
SRC000-05-2	N1-Pr-N2-CN-N3-Me guanidine
SRC000-05-3	1-(2-OHEt)-2-Me imidazoline HCL

estall Protectio

Whoa!! Lots of problems...

15,809 chemicals in KOWWIN data file

- Invalid CAS Checksum: 3646
- Invalid names: 555
- Invalid SMILES: 133
- Valence errors: 322 Molfile, 3782 SMILES
- Duplicates check:
 - 31 MOLFILE; 626 SMILES; 531 NAMES
- SMILES vs. Molfiles (structure check):
 - 1279 differ in stereochemistry
 - 362 "covalent halogens"
 - 191 differ as tautomers
 - 436 are different compounds

Quality flags added to data: 1-4 Stars

4 levels of
A levels of
Consistency
possible
Molblock
SMILES string
Chemical name (based on ACD/Labs dictionary)
CAS Number (based on a DSSTox lookup)

FLAG	Definition		
4 Stars ENHANCED	4 levels of consistency with stereo information	1	
4 Stars	4 levels of consistency, stereo ignored	▶∎♠	G
3 Starts Plus	3 of 4 levels consistent; 4th is a tautomer		rati
3 Stars ENHANCED	3 levels of consistency with stereo information		5
3 Stars	3 levels of consistency, stereo ignored.		t of t
2 Stars Plus	2 of 4 levels consistent; 3rd is a tautomer		4
1 Star	Whatever's left – too many errors to count!		

KNIME structure-"cleaning" workflow

https://www.knime.org/knime

- Combine community approaches to structure processing (CERAPP)
- Develop a flexible workflow to be used by EPA and shared publicly
- Process DSSTox files to create "QSAR-ready" structures

Publicly available cheminformatics toolkits in KNIME:

- ✓ Explicit hydrogen removed
- ✓ Dearomatization
- Removal of chirality info, isotopes and pseudo-atoms
- ✓ Aromatization + add explicit hydrogens
- ✓ Standardize Nitro groups
- ✓ Other tautomerize/mesomerization
- ✓ Neutralize (when possible)

- QSAR ready forms for modeling standardize tautomers, remove stereochemistry, no salts
- Remove approx. 1800 chemicals due to poor quality score
- Build using 3 STAR and BETTER chemicals

Rederived model for PhysProp Log Kow (n=14049)

weighted KNN model 10 descriptors 12 10 8 6 LogP calc 0 training -2 test -2 n 2 6 8 10 12 -6 LogP exp

"CrippenLogP" Crippen's LogP

Weighted kNN model, 5-nearest neighbors Training: 11251 chemicals Test set: 2798 chemicals

5 fold cross validation: R2: 0.87 RMSE: 0.67

Open source PaDEL descriptors "GATS2c" Geary autocorrelation - lag 2 / weighted by charges
"LipoaffinityIndex" Lipoaffinity index
"AATS1p" Average Broto-Moreau autocorrelation - lag 1 / weighted by polarizabilities
"ATSC1i" Centered Broto-Moreau autocorrelation - lag 1 / weighted by 1st ionization potential
"ETA_EtaP" Composite index Eta relative to molecular size
"MLFER_S" Combined dipolarity/polarizability
"nN" Number of nitrogen atoms
"ETA_Beta" A measure of electronic features of the molecule
salt _ index salt info

Remember the original EPI Suite outlier scatter?

 Applicability domain (AD) of original EPI Suite LogKow Model improved in updated PhysProp model

* 280 cmpd cluster outside AD of EPI Suite -> no longer outliers in new model

Updated PhysProp results

- Performed curation and cleaning of all 14 PhysProp measured property datasets
- Rederived models using modern ML methods & open source descriptors provide significantly improved prediction accuracy over older EPI Suite models
- Predictions generated for entire (>700K) DSSTox database, stored in new property database
- Measured & predicted properties to be surfaced in first release of iCSS Chemistry Dashboard (April 2016)

→ Global statistics insensitive to local curation improvements in >15K training set, BUT exceedingly important when surfacing measured properties in support of individual prediction values

iCSS Chemistry Dashboard Releasing April 2016

United States Environmental Protectio

- PHASE 1 Delivery Web interface supporting CSS research
 - access to DSSTox content: >700,000 chemicals
 - access to experimental property data
- Initial set of models based on reanalysis of cleaned, curated EPI Suite PHYSPROP datasets – logP, BP, MP, Wsol etc.

Chemistry Dashboard

Search a chemical by systematic name, synonym, CAS number, or InChIKey

Q

Single component search Ignore isotopes

Need more? Use advanced search.

iCSS Chemistry Dashboard Releasing in April 2016

\$EP/

L

d States onmental Protection cy				Search Chemical
Bisphenol A 0-05-7 DTXSID7020182 Searched by Synonym: Found 1 rest	ult for 'bisphenol A'.	Formerly public su RDF/ser	/ DSSTox G lbstance ID nantic web	SSID, new unique , essential for applications
	Intrinsic	Properties		
H ₃ C CH ₃	Mole Aven Mone	cular Formula: C15H16O2 age Mass: 228.291 g/mol bisotopic Mass: 228.11503 g/r	nol	Q, Search in DSSTox Ph Ph Ph
но	Structur	al Identifiers		
Chemical External Links Properties	Synonyms PubChe Biologie	em PubChem Articles al Activities	PubChem Patents	Comments
CSV Excel Property	Average (Exp.)	Range (Exp.)	Average (Pred.)	Range (Pred.)
Solubility	0.001 (1)	0.0005257 to 0.0005257	0.38 (2)	0.003675 to 0.7565
Melting Point	154.929 (7)	153.0 to 158.0	144.033 (3)	131.8 to 158.0
Boiling Point	200.0 (1)	200.0 to 200.0	348.95 (2)	334.4 to 363.5
LogP	3.357 (3)	3.32 to 3.431	3.524 (3)	3.205 to 3.727
Atmospheric Hydroxylation Rate	N/A	N/A	0.0 (1)	4.237e-11 to 4.237e-11
About	Contact	ACToR	DSSTox Privacy	Accessibility Help

SEPA

Steeneye

owney mental Protection

iCSS Chemistry Dashboard Releasing in April 2016

Chemical Properties: Melting Point

CSV Excel

	Average	Range
Experimental	154.929 (7)	153.0 to 158.0
Predicted	144.033 (3)	131.8 to 158.0

• Original raw source result view

€FP

w towners Protection

• Users can submit comments

Property	Raw Result	Mean Result	Minimum Result	Maximum Result	Result Unit	Result Type	Source
Estimated MP (oC)	131.76	131.8	131.8	131.8	°C	predicted	EPI SUITE
Melting Point	153-158 ℃	155.5	153.0	158.0	°C	experimental	Alfa Aesar
Melting Point	154-157 ℃	155.5	154.0	157.0	°C	experimental	Merck Millipore
Melting Point	153-158 °C	155.5	153.0	158.0	°C	experimental	Alfa Aesar
Melting Point	155-158 °C	156.5	155.0	158.0	°C	predicted	J and K Scientifi
Melting Point	156 °C	156.0	156.0	156.0	°C	experimental	тсі
Melting	153 °C	153.0	153.0	153.0	°C	experimental	Jean-Claude Br

iCSS Chemistry Dashboard Releasing in April 2016

• Links to external resources: EPA, NIH, property predictors

Linkage to External Predictor, e.g. Chemicalize

Chemicalize.org (powered by ChemAxon)

Working to integrate other EPA predictors

- ExpoCast
 - > near & far-field exposure models
- Environmental Fate Simulator (EFS)
 > air/soil/water distribution, biotransformation
- CERAPP
 - strogen receptor activity QSAR model
- T.E.S.T (in progress)
 - > phys-chem properties & toxicity endpoints

e.g., T.E.S.T.

\$EPA

Abency

covinemental Protection

은 Español 中文: 繁體版 中文: 简体版 Tiếng Việt 한국머 United States Environmental Protection Agency									
Learn the Issues Scien	æ & Technology		Search EPA.gov	٩					
Related Topics: Safer Chemicals Research Contact Us Share									
Toxicity Est	imatior	rest)	Option						
_					Fathead minnow LC50 (96 hr)				
On this page:		Downloadable	Windows	app	Daphnia magna LC50 (48 hr)				
	N			T. pyriformis IGC50 (48 hr)					
 <u>QSAR Methodologies</u> 		Both phys-cher	n and tox		Oral rat LD50				
 What's New in Version 	4.1?	endpoints pred	icted		Bioaccumulation factor Developmental Toxicity				
 Prior Version History 			modeling	N					
 System Requirements 			noueiing	Mutagenicity					
Installation Instruction	<u>i</u> 1	methods emplo	byed		Normal boiling point				
<u>Publications</u>		Multiple views (of data		Vapor pressure at 25°C				
<u>Get Email Alerts</u>			or data		Melting point				
					Flash point				
The Tavisity Estimation C	thurse Teel (TE	CT) was developed to a	lleur users te er	a atha	Density				
octimate the toxicity of d	ontware Tool (TE	si) was developed to a	ilow users to ea	asily	Surface tension at 25°C				
(OSARs) methodologies	SARs are mathe	res of	Thermal conductivity at 25°C	$\neg \neg$					
toxicity from the physical	characteristics of	105 01	Viscosity at 25°C						
molecular descriptors) Si	mple OSAR mode	sing a	Water solubility at 25°C						
simple linear function of r	nolecular descrip	tors:	e. enemicale a	sing a	Molecular Descriptors				

T.E.S.T. QSAR Model Prediction Views

Model # 1296

Model statistics

Parameter	Value
Endpoint	Fathead minnow LC ₅₀ (96 hr)
r ²	0.793
q ²	0.733
#chemicals	101
Model	Model # 1296

Model fit results

Toxicity prediction results for 333-41-5 for Hierarchical clustering method

Prediction results							
Endpoint	Experimental value CAS: 333-41-5 Source: <u>ECOTOX</u>	Predicted value ^a	Prediction interval				
Fathead minnow LC ₅₀ (96 hr) -Log(mol/L)	4.81	5.39	$4.54 \le Tox \le 6.24$				
Fathead minnow LC ₅₀ (96 hr) mg/L	4.70	1.23	$0.17 \le Tox \le 8.71$				

^aNote: the test chemical was present in the external test set.

Prediction results

Cluster model	Test chemical descriptor values	Prediction interval -Log(mol/L)	r²	q²	#chemicals
<u>1296</u>	Descriptors	6.010 ± 1.136	0.793	0.733	101
<u>1300</u>	Descriptors	5.458 ± 1.312	0.729	0.645	111
<u>1301</u>	Descriptors	5.136 ± 1.169	0.747	0.718	294
<u>1302</u>	Descriptors	4.922 ± 1.182	0.774	0.751	641

Cluster model predictions and statistics

	Cluste	r model	ls with violate	d constraints
odel	r ²	q ²	# chemicals	Mess

Cluster model	1	ч	" chemicals	message
<u>1121</u>	0.810	0.576	10	Rmax constraint not met
<u>1209</u>	0.799	0.574	11	Fragment constraint not met
<u>1247</u>	0.919	0.647	20	Fragment constraint not met
<u>1264</u>	0.869	0.781	22	Fragment constraint not met
1268	0.675	0.553	24	Fragment constraint not met

Descriptor values for test chemical

Chusten W

Comparing ToxCast to various inventories based on computed properties

© FF

mmental Protection

In conclusion...

- iCSS Chemistry Dashboard will provide public access to data & services focused on chemicals of interest to EPA
- Initially serve up results for measured & pre-predicted physical chemical property data
- Chemical-Data consistency quality flags for DSSTox and property data add value to public domain data, BUT ... chemical-data linkages require curation/validation!!
- All data and models will be available as OPEN DATA and OPEN CODE

Acknowledgements

NCCT Contributors to the iCSS Chemistry Dashboard

- Jeff Edwards
- Jeremy Fitzpatrick
- Jordan Foster
- Jason Harris
- Dave Lyons
- Kamel Mansouri
- Aria Smith
- Jennifer Smith
- Indira Thillainadarajah
- Chris Grulke
- Antony Williams

