

Comparative LCA of Cooking Fuel Options in India and China

Sarah Cashman¹, Susan Thorneloe², Molly Rodgers¹, Rebe Feraldi¹, Melissa Huff¹

¹Eastern Research Group, Inc.; ²National Risk Management Research Laboratory, U.S. EPA LCA XV Vancouver BC, CA, October 6-8, 2015

Acknowledgements

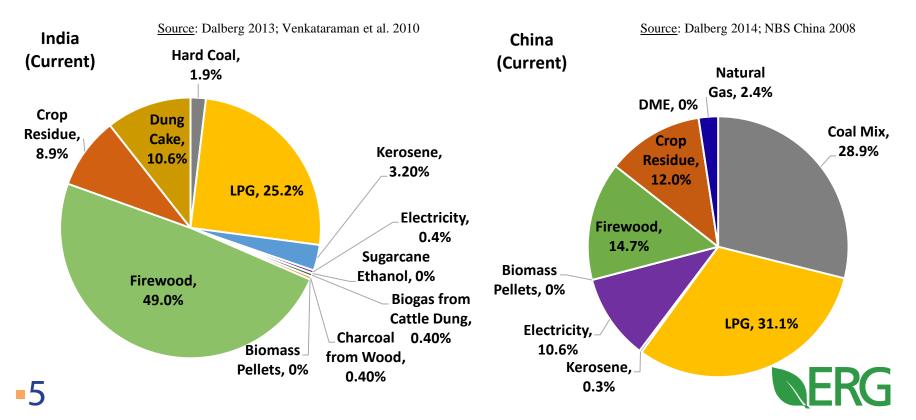
The U.S. Environmental Protection Agency (US EPA) through its Office of Research and Development funded the research described here.

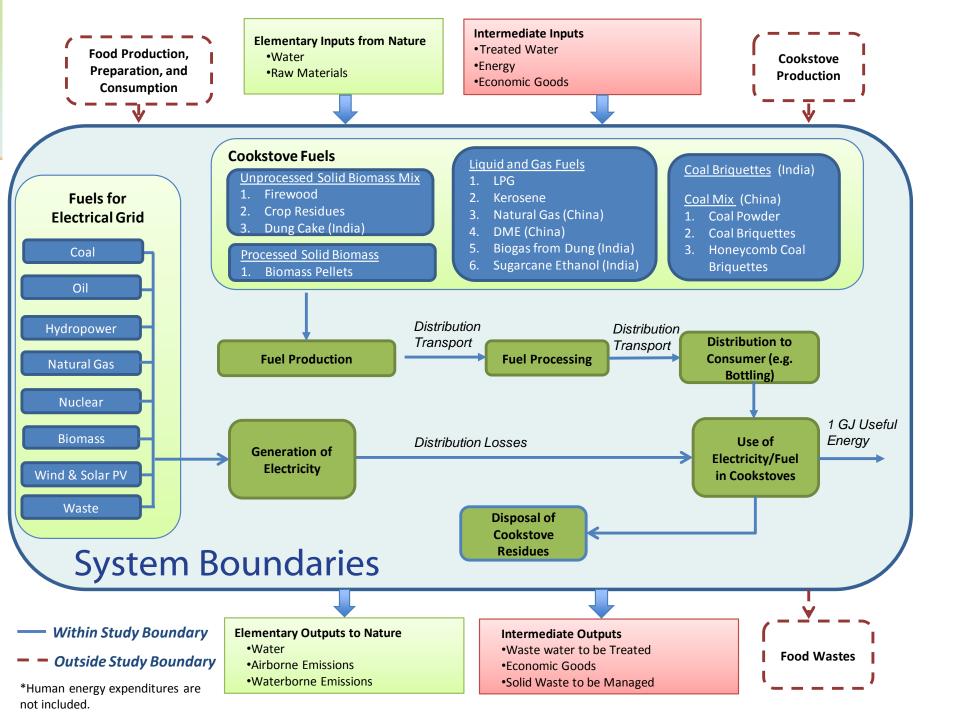
Draft report is under US EPA review.

Introduction

- More than 2.6 billion people in India and China use traditional cookstove fuels
- Over 1 million premature deaths from cookstove air pollutants
- Rapid population growth increases demand for traditional fuels leading to environmental degradation

 US EPA in partnership with the Global Alliance for Clean Cookstoves is working to provide information to guide decisions in the cookstoves sector


Introduction - Continued


- The term "clean cooking fuel" is commonly understood to represent fuels that produce less damaging emissions at the point of use
- Assessing only point of use emissions may neglect important impacts across the full life cycle of the fuel
- LCA conducted to facilitate a more holistic analysis of potential changes in cookstove fuel mixes to inform policy decisions and further sector knowledge

Goal and Scope

- Goal: Compare the environmental footprint of current and potential fuels and fuel mixes used for cooking within India and China
- Functional Unit: 1 GJ of useful energy delivered to the pot for cooking
- Fuel Systems Investigated:

Methodology

- Existing LCI data extracted from literature review of publicly available sources
- LCI data input into US Federal LCA Digital Commons Life Cycle Inventory Unit Process Templates and imported to OpenLCA
- Models created for each country and fuel combination
- LCIA results calculated by generating a contribution analysis for the selected fuel product system based on the defined functional unit of 1 GJ of delivered heat for cooking

Environmental Indicators Assessed

- 1. Global climate change potential (GCCP) (IPCC 2013)
- 2. Cumulative energy demand (CED)
- 3. Particulate matter (PM) formation (ReCiPe)
- 4. Black carbon (BC) and short-lived climate pollutants (GSF 2015)
- 5. Fossil fuel depletion (ReCiPe)
- 6. Photochemical oxidant formation (ReCiPe)
- 7. Water depletion (ReCiPe)
- 8. Terrestrial acidification potential
- 9. Freshwater eutrophication potential (ReCiPe)
- 10. Ozone depletion potential (ReCiPe)

Fuel Mix Scenario Development

- Fuel profiles developed to assess the environmental impacts from the current fuel mix and projected fuel mix scenarios:
 - Increases in electricity used for cooking
 - Increases in electricity using a cleaner electricity grid
 - Increases of LPG use in urban and/or rural areas, and
 - Increases of other cleaner burning fuels (e.g., biomass pellets, DME, ethanol, and biogas) currently used in smaller amounts

Cooking Fuel Mix Scenarios Evaluated for India

Fuels:	Current	Increase Urban Electric	Increase Urban LPG	LPG replaces Biomass	Increase Clean Electric	LPG replaces Rural Biomass	Increase Biomass Pellets	Ethanol replaces Biomass	Biogas replaces Biomass
	Scenario	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Hard Coal	1.9%	1.9%	1.9%	1.9%	1.9%	1.9%	1.9%	1.9%	1.9%
LPG from Natural Gas (NG)	5.3%	5.3%	7.4%	9.5%	5.3%	9.5%	5.3%	5.3%	5.3%
LPG from Crude Oil (CO)	19.9%	19.9%	27.8%	35.7%	19.9%	35.7%	19.9%	19.9%	19.9%
Kerosene	3.2%	3.2%	3.2%	3.2%	3.2%	3.2%	3.2%	3.2%	3.2%
Electricity	0.4%	10.4%	0.4%	0.4%	10.4%	0.4%	0.4%	0.4%	0.4%
Sugarcane Ethanol	0%	0%	0%	0%	0%	0%	0%	10.0%	0%
Biogas from Cattle Dung	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	10.4%
Charcoal from Wood	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%
Biomass Pellets	0%	0%	0%	0%	0%	0%	10.0%	0%	0%
Firewood	49.0%	40.7%	40.7%	32.2%	40.7%	36.5%	45.0%	45.0%	45.0%
Crop Residue	8.9%	7.2%	7.2%	5.7%	7.2%	6.4%	7.9%	7.9%	7.9%
Dung Cake	10.6%	10.6%	10.6%	10.6%	10.6%	5.6%	5.6%	5.6%	5.6%

Color Coding Legend:

Cooking Fuel Mix Scenarios Evaluated for China

I	Fuels	Current	Increase Electric	LPG replaces Coal	LPG replaces Biomass	Increase Clean Electric	Increase Biomass Pellets	Increase DME	Coal Swap	Ag replaces Wood
		Scenario	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Coal Mix		28.9%	8.9%	8.9%	28.9%	8.9%	18.9%	18.9%	28.9%	28.9%
50%	Coal Powder	14.5%	4.5%	4.5%	14.5%	4.5%	9.5%	9.5%	7.2%	14.5%
25%	Coal Briquettes	7.2%	2.2%	2.2%	7.2%	2.2%	4.7%	4.7%	10.8%	7.2%
	Honeycomb Coal Briquettes	7.2%	2.2%	2.2%	7.2%	2.2%	4.7%	4.7%	10.8%	7.2%
Biomass Mix		26.7%	26.7%	26.7%	6.7%	26.7%	16.7%	16.7%	26.7%	26.7%
55%	Fuel & Brush Wood	14.7%	14.7%	14.7%	3.7%	14.7%	9.2%	9.2%	14.7%	6.7%
45%	Ag Residues	12.0%	12.0%	12.0%	3.0%	12.0%	7.5%	7.5%	12.0%	20.0%
LPG		31.1%	31.1%	51.1%	51.1%	31.1%	31.1%	31.1%	31.1%	31.1%
Kerosene		0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%
Electricity		10.6%	30.6%	10.6%	10.6%	30.6%	10.6%	10.6%	10.6%	10.6%
Natural Gas		2.4%	2.4%	2.4%	2.4%	2.4%	2.4%	2.4%	2.4%	2.4%
Biomass Pellets		0%	0%	0%	0%	0%	20.0%	0%	0%	0%
DME		0%	0%	0%	0%	0%	0%	20.0%	0%	0%

Color Coding Legend:

11

indicates increase from current scenario

Stove Efficiencies

Chinese Stove Efficiencies

Fuels:	Stove Thermal Efficiencies	Improved		
Coal Mix	22%	23%		
Coal Powder	14%	17%		
Coal Briquettes	37%	27%		
Honeycomb Coal Briquettes	23%	31%		
Biomass Mix	15%	17%		
Fuel & Brush Wood	19%	16%		
Ag Residues	10%	17%		
LPG	45%	42%		
Kerosene	45%	46%		
Electricity	67%			
Natural Gas	54%	61%		
Biomass Pellets	53%			
DME	46%			

Indian Stove Efficiencies

Fuels	Stove Thermal Efficiency
Hard Coal	16%
LPG from NG	57%
LPG from CO	57%
Kerosene	47%
Electricity	67%
Sugarcane Ethanol	53%
Biogas from Cattle Dung	55%
Charcoal from Wood	18%
Biomass Pellets	53%
Firewood	14%
Crop Residue	11%
Dung Cake	9%

Results

- Modeling and analysis complete
- The LCA model built can serve as the basis to further the understanding of quantifiable and holistic tradeoffs between cookstove fuel choices
- Help decision-makers spur initiatives to shift to "cleaner" fuel choices
- Draft report submitted for EPA QA and Peer Review

Next Steps

- Finalize report
- Report will be publicly available
- Framework constructed can be continually improved in next research steps in coordination with the Global Alliance for Clean Cookstoves:
 - Additional sensitivity analyses
 - Uncertainty analysis
 - Increased geographic coverage
 - Improved data as more sources become available

Select References

- Aprevecho Research Center. 2006. Heat Losses in a Cook Pot at Constant Temperature. Berick, Alan.
- Aprovecho Research Center: Advanced Studies in Appropriate Technology Laboratory. 2009. Results of Testing of the CleanCook Stove for Fuel Use and Carbon Emissions. Prepared for Project Gaia, Practical Action, and World Bank. By Nordica MacCarty, June 26th, 2009.
- Dalberg. 2013. India Cookstoves and Fuels Market Assessment. Available at www.cleancookstoves.org/resources_files/india-cookstove-and-fuels-market-assessment.pdf (Accessed October 6, 2014).
- Dalberg. 2014. China Stoves and Fuels Market Assessment. May Presentation: Preliminary Findings. Global Alliance for Clean Cookstoves. May 19th 2014.
- Gold Standard Foundation (GSF). 2015. The Gold Standard: Quantification of climate related emission reduction of Black Carbon and Co-emitted Species due to the replacement of less efficient cookstoves with improved efficiency cookstoves. The Gold Standard Foundation, Geneva-Cointrin, Switzerland. Version 1.0, March 2015
- Government of India Ministry of Petroleum & Natural Gas Economics and Statistics Division. 2014. 2013-14 Indian Petroleum and Natural Gas Statistics. Table III.17. New Delhi
- Habib, G., Venkataraman, C., Shrivastava, M., Banerjee, R., Stehr, J.W. and Dickerson, R.R. (2004). New methodology for estimating biofuel consumption for cooking: Atmospheric emissions of black carbon and sulfur dioxide from India. Global Biogeochemical Cycles 18.
- Jetter, J., Zhao, Y., Smith, K.R., Khan, B., Yelverton, T., DeCarlo, P., and Hays, M.D. 2012. Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards. Environmental Science & Technology, 46: 10827-10834.

Select References (Continued)

- Jingjing L, Xing Z, DeLauil P, Larson E (2001). Biomass energy in China and its potential, Energy for Sustainable Development, (V):4: 66-80.
- Mainali, B. Pachauri, S. and Nagai, Y. 2012. Analyzing cooking fuel and stove choices in China till 2030. Journal of Renewable and Sustainable Energy 4,031805-1 – 031805-14.
- Singh P, Gundimeda H, Stucki M. 2014. Environmental footprint of cooking fuels: a life cycle assessment of ten fuel sources used in Indian households, International Journal of Life Cycle Assessment, 19: 1036-1048.
- Tsai S.M., Zhang J., Smith K.R., Ma Y., Rasmussen R.A., Khalil M.A.K. 2003. Characterization of Non-methane hydrocarbons emitted from various cookstoves used in China, Environmental Science & Technology, 37: 2869-2877.
- Tsiropoulos, I., Faaij, A.P.C., Seabra, J.E.A, Lundquist, L., Schenker, U., Briois, J.F., and Patel, M.K. 2014. Life cycle assessment of sugarcane ethanol production in India in comparison to Brazil. Int J Life Cycle Assess 19:1049-1067.
- Venkataraman, C. et al. 2010. The Indian National Initiative for Advanced Biomass Cookstoves: The Benefits of Clean Combustion. Energy for Sustainable Development, 14(2), 63–72. Available at https://cleancookstoves.org/binarydata/RESOURCE/file/000/000/147-1.pdf (Accessed August 17, 2015).
- Zhang J, Smith KR, Ma Y, Ye S, Jiang F, Qi W, Liu P, Khalil MAK, Rasmussen RA, Thorneloe SA (2000). Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors, Atmospheric Environment, 34: 4537-4549.

Thank you

For questions and/or comments please contact:

Sarah Cashman – ERG <u>sarah.cashman@erg.com</u>

Susan Thorneloe – U.S. EPA <u>Thorneloe.Susan@epa.gov</u>

