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Executive Summary for Coastal Managers 
We developed an approach for creating statistical models to predict seagrass 
presence/absence at the scale of individual grid cells (10 m x 10 m) as well as a number of 
endpoints relative to seagrass presence/absence along transects perpendicular to the 
shoreline: presence/absence, relative frequency along transects, and minimum and 
maximum depth of occurrence.  Unlike many of the statistical models that have been 
developed to predict seagrass occurrence, ours take into account the nonrandom 
distribution of seagrass (patchiness), nonlinear effects of light availability, salinity (as an 
indicator of total N gradients), sediment organic carbon, and parameter interactions.   

We tested this modeling approach using data for distribution of seagrass (Zostera marina) 
in Narragansett Bay, RI. Models developed were most robust for predictions of shoreline 
occurrence rather than at the 10 m x 10 m grid scale.  Based on model results, multiple 
factors affect seagrass success.  The minimum depth of occurrence is influenced by both 
wave energy (wave mixing depth) as well as sediment particle size, with finer sediments 
more susceptible to disturbance by wave action.  The maximum depth of occurrence is 
influenced by both transparency and sediment organic carbon, an indicator of past 
eutrophication.  Depth limits decrease as sediment organic carbon increases due to 
increased energetic demands for seagrass to counteract effects of increased toxicity of 
anaerobic sediments (e.g., sulfide toxicity).  Our models allowed us to distinguish multiple 
modes of action for nitrogen effects on seagrass distribution: 1) shading by phytoplankton 
affecting Secchi depths, 2) shading and/or competition by periphyton and macroalgae 
mediated by nitrogen concentrations, and 3) effects of sediment organic carbon on 
minimum light requirements.  Incorporation of historic distribution of seagrass patches did 
not improve model predictions, suggesting that patches may exist in a state of dynamic 
equilibrium with a lag time for recovery of disturbed sites. 

Our models detected significant differences in the probability of seagrass occurrence by 
shoreline even after we factored out the effect of site characteristics.  This could be 
explained by hysteresis effects related to tidal currents.  Tidal currents in Narragansett Bay 
are strong enough to resuspend fine sediments, thus limiting establishment of new 
seagrass patches, but not strong enough to damage established seagrass beds.  This 
suggests that better monitoring is needed for assessment of turbidity plumes near the 
bottom of the water column, not just water column transparency.  If hysteresis exists, this 
has implications for recovery strategies as well.  Specific restoration measures such as co-
restoration of shellfish beds (to reduce suspended sediments and effects of tidal currents 
and wave action) or use of existing or constructed coastal barriers to limit effects of wave 
action and tides might improve probabilities of initial colonization success and the 
initiation of positive feedback effects. 

Our predictive models have multiple potential applications: identification of aquatic life use 
zones for setting nutrient criteria for areas of potential seagrass habitat, prioritization of 
areas and strategies for seagrass restoration, and projection of potential benefits of 
management actions.  We applied our model to predict the potential recovery of seagrass 
given a 40% decrease in total N loading from wastewater treatment plants and 
atmospheric deposition (assuming an equivalent reduction in water column 

xi 



xii 

concentrations).  Based on the current model, the colonized area for all shorelines 
combined following a 40% reduction in TN loads (and concentration) would increase from 
12% of area in the 0 to 5 meter depth zone to about 63% of area in the short term and 
slightly more in the long term (as sediment organic carbon levels recover).  Adaptive 
management will need to take into account different projections for short-term versus 
long-term recovery due to the multi-decadal persistence of organic carbon in sediments 
and effects on minimum light requirements for seagrass.  

Abstract 

Restoration of ecosystem services provided by seagrass habitats in estuaries requires a 
firm understanding of the modes of action of multiple interacting stressors including 
nutrients, climate change, coastal land-use change, and habitat modification.  Often, 
managers have used the reported historic depth limits of seagrass to project the future 
distribution of seagrass in response to nitrogen load reductions.  In general, these 
predictions are based on empirical or modeled estimates of the influence of phytoplankton 
production in the water column on the light environment, and do not account for the 
interaction of multiple factors.  We explored the application of generalized linear mixed 
models ( GLMMs) and generalized additive mixed models (GAMMs) to describe the simple 
and interactive effects of environmental factors on the distribution of a common seagrass, 
Zostera marina, in Narragansett Bay, Rhode Island.  We used a random shoreline effect to 
account for “founder” (random colonization or extinction) effects.  We provide several 
strategies to overcome three challenges in developing empirical species distribution 
models to describe and predict seagrass distribution in estuaries: the fine-scale patchiness 
of seagrass distributions with attendant problems of spatial autocorrelation; the large 
areas of interest for model development and application entailing significant memory 
demands for modeling; and the potential co-variance of multiple interacting factors 
affecting seagrass.  We developed a spatial framework describing the coordinates of spatial 
autocorrelation in estuarine systems, with the main axis parallel to the shoreline and a 
secondary axis perpendicular to the shoreline.  We demonstrated an approach to 
incorporate a term for residual autocorrelation in GLMMs first introduced by Crase (Crase, 
B., Liedloff A.C., and B.A. Wintle. 2012).  To account for anisotropy in the system, we 
calculated zonal averages of residual errors within rectangular boxes oriented parallel to 
the shoreline along the longer main axis.  We successfully dealt with covariance of 
influential factors by centering variables, by using multiple strategies to describe the 
interaction of the light environment and wave energy with depth, and by excluding 
correlated variables where necessary.  We predicted seagrass distribution at the scale of 
10-meter grid cells, as presence/absence or average presence/absence associated with 
shoreline locations spaced at 10-meter intervals, and minimum or maximum depth of 
distributions at those locations.  Prediction of seagrass absolute or average 
presence/absence at shoreline locations was very robust, with area-under-the-curve (AUC) 
values associated with Receiver Operating Characteristic (ROC) curves of 0.95 – 0.98 
following 10-fold cross-validation of models.  Random shoreline effects varied over several 
orders of magnitude, probably tied to the distribution of tidal currents.  Tidal currents are 
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weak enough to allow persistence of existing seagrass beds, but strong enough to interfere 
with successful recolonization through resuspension of fine sediments. For the model 
predicting seagrass presence/absence at the grid cell scale, the most influential predictor is 
Secchi depth, followed by (in order): shoreline isolation, sediment percent total organic 
carbon, sediment type, and salinity.  The least influential variable is water depth greater 
than average wave mixing depth.  For the model predicting presence of seagrass at 
shoreline locations, the most influential predictor is sediment type, followed by sediment 
percent total organic carbon (at low Secchi depth), then salinity (as an indicator of 
downstream gradients in water column total nitrogen).  As demonstrated in other recent 
studies, sediment total organic carbon interacts with light availability by increasing energy 
requirements and the light compensation point for seagrass. For all shorelines combined, 
our model predicts that following a 40% reduction in TN loads (and concentration) the 
colonized area would increase from 12% of area in the 0 to 5 meter depth zone to about 
63% of area in the short term and slightly more over subsequent decades as sediment 
organic carbon recovers.   Finally, we provide data sources for application of this approach 
to other U.S. estuaries, with much of the data available through EPA’s Estuary Data Mapper 
application (www.epa.gov/edm). 

Keywords: eelgrass; seagrass; Zostera marina; estuary; Narragansett Bay; species 
distribution model; generalized linear mixed model; spatial autocorrelation



Chapter 1. Introduction 

1.1 Purpose 

Seagrasses are essential in providing valuable ecosystem services but are in decline 
globally (Orth et al. 2006). Compton et al. (2011) identified loss of seagrass habitat as one 
of the most costly impacts related to nitrogen loading based on the relationship between 
loss of submerged aquatic vegetation and fishery declines in estuaries.  Restoration of 
ecosystem services provided by seagrass habitats in estuaries requires a firm 
understanding of the modes of action of multiple interacting stressors including nutrients, 
climate change, coastal land-use change, and habitat modification. Managers often use the 
reported historic depth limits of seagrass to project the future distribution of seagrass in 
response to nitrogen load reductions based on empirical or modeled estimates of the 
influence of phytoplankton production in the water column on the light environment 
(Dennison et al. 1993). However, this approach does not account for the interaction of 
multiple factors, so more comprehensive models are needed. 

Recent discussions among Environmental Protection Agency (EPA) Office of Water, EPA 
Regions, EPA Office of Research and Development (ORD), and states have highlighted the 
need for states to refine aquatic life use (ALU) definitions. The Chesapeake Bay Program 
(CBP) has provided one example of tailoring ALUs to reflect different expectations and 
habitat support functions for different zones within an estuary (US EPA 2003). The 
Maryland Coastal Bays National Estuary Program has used seagrass potential habitat as a 
target for seagrass distribution and as a normalizing factor to describe seagrass coverage 
by estuarine segment (Wazniak and Hall 2005).  Their mapping of potential habitat 
considers only two factors: depth and % silt/clay in sediment. An extension and refinement 
of the CBP conceptual model for ALU definitions by region and habitat zone for different 
estuary types could help foster state efforts to refine ALUs. Defining appropriate ALUs 
provides the foundation for setting water quality criteria (including nutrient criteria) by 
establishing targets or expectations for ecosystem condition in the absence of pollution. 

Support for submerged aquatic vegetation (SAV) defines one of the potential habitat uses in 
the CBP model for aquatic life use (US EPA 2003).  To extend this model to estuaries in 
other regions, we need to define habitat constraints (essentially a habitat suitability index) 
for seagrass species dominant over different geographic ranges along the US coast using 
readily available data.  The regulatory objective of interest is to provide a scientific 
framework to support nutrient criteria and restoration plans by defining spatially-explicit 
targets for expected condition (seagrass habitat presence/absence) in estuaries. Many 
water quality criteria are based on an initial definition of the use (including ALU) that 
should be supported. Once areas suitable for seagrass habitat are identified, the state 
agencies responsible for setting criteria can determine appropriate targets for seagrass 
coverage within a system.  
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The purpose of this report is to: 

1) assess predictive modeling approaches for seagrass presence-absence,
2) discriminate the effects of nutrient enrichment from effects of other stressors

and co-factors on seagrass occurrence to foster improved management of
estuarine systems, and

3) provide users with easy access to input data for predictive models of seagrass
habitat on regional and national scales.

Our modelling approach can be applied to other estuaries, although specific data sources, 
variables included, and best models selected may differ across systems.  We illustrate the 
approach outlined for predictive seagrass habitat models with a case study using data for 
the Narragansett Bay estuary in Rhode Island.  The resultant models include both variables 
related to different mechanisms for nutrient effects on seagrass as well as other cofactors 
and stressors which limit the distribution of seagrass.  We show how the model can be 
applied to assess the potential improvement in seagrass coverage following nutrient load 
reductions.  We designed the approach to be generic and adaptable to other estuaries. To 
facilitate this process, we provide information on data sources and examples of R 
programming code in the appendices to this report.   

1.2 Conceptual Model 

Some of the main factors affecting seagrass presence/absence are water depth, light 
availability, temperature, salinity, energy regime, substrate type, sediment sulfide content, 
and macro-algal coverage (Burkholder et al. 2007, de Boer 2007, Koch et al. 2007, Lee et al. 
2007, Ralph et al. 2007, Touchette 2007). Many of these factors can be readily monitored in 
the field or calculated from measured parameters, mapped, and recorded as digital 
geographic information system (GIS) coverages, while others (sulfide concentration, 
macro-algal coverage) are not generally available from monitoring programs. Site-specific 
disturbances (wasting disease, wetland dredge/fill activities, boat anchors, grazing, 
hurricanes) can also limit the distribution of seagrass species but are not predictable, and 
so must be accounted for on a case-by-case basis (Short et al. 1987, 1988, Neckles et al. 
2005, Rivers and Short 2007, Oakley et al. 2013). We focus our habitat suitability model on 
factors for which georeferenced data are readily available, and for which optima or 
thresholds for seagrass growth and survival are available from the literature: wave energy, 
light availability at the sediment surface, substrate type (particle size, organic matter 
content), salinity, and temperature. 

1.3 Existing Approaches 

1.3.1 Preliminary Transplant Suitability Index:   
Short and Burdick (2005) developed a software application based on their report on a 
preliminary transplant suitability index (PTSI) for screening potential seagrass transplant 
sites.   This modeling software takes data availability into account, and requires some on-
site field measurements to assess light and bioturbation.  The modeling process was 
performed in three stages: the PTSI was developed using readily available data; field data 
were collected to assess light conditions and bioturbation; and then the final Transplant 
Suitability Index (TSI) score was developed.  The PTSI development process uses a set of 
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parameters (Table 1) and is calculated by multiplying the ratings for each parameter.   The 
higher the score, the better the likelihood that seagrass will survive transplantation at that 
site. The TSI does not include sites that were rated zero.  Sites close to existing seagrass 
beds receive lower scores not because they have a low likelihood of success but because 
transplantation to these sites will not increase the geographic extent of existing seagrass. 

Table 1.  Potential Transplant Suitability Index (PTSI) data listing. 

Parameter PTSI rating Reference 
Historical eelgrass 
distribution 

1: previously unvegetated Fonseca et al. (1998) 

2: previously vegetated 
Current eelgrass distribution 0: currently vegetated 

1: currently unvegetated 
Proximity to natural eelgrass 
bed 

0: < 100m Orth et al.  (1994) 

1: > 100m 
Sediment type 0: rock or cobble Kenworthy & Fonseca 

(1977) 
Short et al. (1987, 1993) 

1: > 70% silt/clay 
2: cobble free with < 70% 
silt/clay 

Wave exposure (calculation) 0: > mean + 2 STD Kopp et al. (1994), 
Murphey & Fonseca 
(1995), Fonseca et al. 
(1998) 

1: < mean + 2 STD 
Water depth 0: shallow Short et al. (1993) 

1: shallow edge of bed 
2: average of bed 
1: deep edged bed 

Water quality 0: poor Batiuk et al. (1992), 
Dennison et al. (1993), 
Costa et al. (1996) 

1: fair 
2: good 

1.3.2 Predictive modeling approaches 

Predictive modeling approaches for seagrass habitat range from simple empirical 
approaches to more detailed mechanistic modeling approaches.  The simplest approach 
involves predicting presence/absence of seagrass using generalized linear models (GLM; 
van der Heide et al. 2009) or generalized additive models (GAM) (Downie et al. 2013).  The 
latter allow nonlinear effects to be incorporated into models.  One variant of these models 
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has been proposed to predict potential habitat based on presence only, e.g., using the 
Maxent software (Downie et al. 2013).  More complex statistical approaches include 
Bayesian models which can incorporate prior knowledge of parameter distributions 
(March et al. 2013), and boosted regression trees (BRTs), which can handle both nonlinear 
effects and parameter interactions for a large number of predictive variables (Crase et al. 
2012).  Some investigators have incorporated not only the potential effects of the physical 
environment on individual plants, but also emergent properties influencing the accelerated 
growth of seagrass patches (Kendrick et al. 2005).  The most complex process-based 
modeling approaches incorporate specific mechanisms underlying growth, loss rates, and 
interactions between seagrass and their physico-chemical environment.  These processes 
can be incorporated into dynamic cellular automata models that can mimic the spread of 
seagrass patches with physical and biological feedback loops (Wortman et al. 1997, 
Fonseca et al. 2000b, Fonseca et al. 2004, Schonert and Milbradt 2005). 

1.4 Study Site (Narragansett Bay, RI)  
Narragansett Bay is one of the largest estuaries in southern New England, running from 
north to south along the state mid-line.  The upper eastern portion of the estuary, including 
part of Mount Hope Bay, is in Massachusetts.  The Bay’s surface area is approximately 380 
km2 with 618 km of tidal shore (Figure 1).  Much of the Bay is shallow and well mixed but 
depth varies, and descends to 40 m in some of the deepest channels.   

Narragansett Bay’s eutrophication problems began in the early to mid 1900s when 
increased development and sewering led to increased nitrogen loading to the Bay (Nixon 
and Pilson 1983).  More recent data suggest, however, that the bay’s nutrient 
concentrations are declining (Oviatt et al. 1995).  The bay receives much of its nitrogen 
inputs from wastewater treatment plants near the head of the Bay, and nutrient 
concentrations exhibit a strong north to south gradient (Oczkowski et al. 2008).  In general, 
Narragansett Bay remains well-mixed vertically under normal climatic conditions, and has 
a mean hydraulic residence time between 10 and 40 days depending on the time of year 
and on location in the Bay (Howarth 1988, Pilson 1985).  Significant runoff events, 
particularly during neap tides, can induce the onset of stratification in the Bay by 
strengthening vertical salinity gradients. 

Seagrasses were widespread in Narragansett Bay throughout the 1800s and early 1900s 
(Kopp et al., 1994).   During the early to mid–1900s a precipitous decline in seagrasses was 
observed globally and in the New England Region.  Many research studies suggest that 
decline may have been due to increases in environmental contaminants related to 
eutrophication, herbicide use, and increased turbidity. Reported instances of widespread 
infection (wasting disease) from Labryinthula zosterae (slime mold) in Narragansett Bay 
may have also contributed to seagrass decline (Short et al. 1987, 1988). 
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Figure 1.  Map of Narragansett Bay and Rhode Island with color-coded bathymetry.  WWTF = Wastewater treatment 
facility. 



Chapter 2. Methods 

2.1 Data Sources  
We identified potential predictors of seagrass habitat based on information in the literature 
regarding previous modeling efforts, as well as the public availability of data (Appendix A).  
Detailed information on how to access similar data for other systems is provided in 
Appendix B.  We selected data to be contemporaneous or within + 5 years of reported 
seagrass field sampling whenever possible, focusing on data from the primary growing 
season, May through October.  We reviewed data and metadata from each source for 
completeness and applied further geoprocessing if needed.  We converted each data source 
to a grid with 10 x 10 meter cells, clipped the grid to the zero to five meter depth zone in 
Narragansett Bay.  This depth zone represents the maximum potential extent of seagrass if 
no optically-active constituents are present in the water column (i.e., no light extinction 
due to chlorophyll, turbidity, or dissolved organic matter). Model points were sampled 
from the centroids of these grid cells within the 0 to 5 meter depth band (Figure 2a, b).  
This yielded 18,612 grid cells with seagrass present and 2,725,719 grid cells with seagrass 
absent. 

2.2 Data Pre-processing 

2.2.1 Salinity  
We derived salinity data for Narragansett Bay from a RI Department of Environmental 
Management (RIDEM) dataset collected by the Bay Assessment and Response Team 
(BART) (www.ri.dem.gov/bart/netdata.htm).   There are 12 BART sampling buoys that 
traverse the Bay from north to south.  These data included salinity values collected at 15- 
minute intervals from a variety of stations between 2003 and 2012.  Weekly salinity data 
from 2006 through 2012, were downloaded as excel spreadsheets, compiled, and averaged.  
We imported data into ArcGIS as points and created Thiessen polygons from original point 
data to fill in spatial data gaps.  These data were sufficient to capture the gradient of 
salinity from north to south but not detailed enough to represent variation at the scale of 
smaller subembayments. 

2.2.2 Temperature 
We downloaded daily sea surface temperature (SST) data from NASA’s multi-scale ultra-
high resolution sea surface temperature remote sensing product (MUR SST; ftp://podaac-
ftp.jpl.nasa.gov/allData/ghrsst/data/L4/GLOB/JPL/MUR/) using the EPA’s Estuary Data 
Mapper (EDM) interface (www.epa.gov/edm), and calculated weekly mean temperature 
values for the years 2003 – 2012.  In areas of the estuaries near the shoreline that were not 
covered by the SST data, we applied a Euclidean allocation method in ArcMap to fill in areas 
without data.  Euclidean allocation was used rather than focal statistics to fill in data gaps 
because Euclidean allocation uses the closest cell data to the analysis point rather than 
using a large rectangle to calculate a mean value (as is the case with focal statistics).   The 
resultant grid is a more realistic representation of sea surface temperature. 

2.2.3 Sediment Type (Grain Size and Percent Total Organic Carbon) 
We obtained sediment particle size classes as ArcGIS shapefiles from the RIDEM 
Narragansett Bay Estuary Program that were based on McMaster’s collection of 493 
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surficial samples (1960) (http://www.narrbay.org/biological_data.htm).  Sixteen sediment 
classes were available, including two missing data classes; ‘not mapped’ and ‘not sampled’.   
Size classes included; gravel, sandy gravel, gravel sand silt, sand, gravelly sand, silty sand, 
silt, sandy silt, clay silt, sand silt clay, gravel silt clay and rock.  No seagrass occurred in 
association with four of the original 14 sediment classes mapped; these four classes were 
relatively rare across the shallow water zone of Narragansett Bay.    

a) b) 

Figure 2a. Map of zone delineating boundaries of seagrass presence/absence grid (0 to 5 meter depth) in Narragansett Bay 
and b) close-up of 10-meter grid cells with seagrass presence (red) and absence (black).  In Figure 2b, the shoreline is to 
the south of the grids. 

We dropped the Rock class from the region of interest for modeling and combined the 
Sandy Gravel and Gravel-Sand-Silt classes (from which seagrass was entirely absent) with 
the Gravel class.  We combined the Silt class (from which seagrass was absent) with the 
Sandy Silt class.  Thus up to eight classes were used in the analysis. 

http://www.narrbay.org/biological_data.htm


We estimated total organic carbon was estimated across the Bay based on 119 surficial 
sediment grabs collected by the US EPA National Coastal Assessment 
(http://oaspub.epa.gov/coastal/coast.search).  We interpolated values to create a complete 
grid within the shallow-water zone using inverse distance weighting in ArcMap 10.1 
(©ESRI, Redlands, CA). 

2.2.4 Seagrass (Current/Historical) 
We obtained data layers for recent and historic eelgrass coverages for Narragansett Bay 
from Rhode Island Geographic Information System (RIGIS)(2000a, b, 2013) as ArcGIS 
shapefiles.  Both the 1999 (RIGIS 2000, ab) and the 2006 RIGIS (Current seagrass) data 
were collected by the state of RI using NOAA Coastal Change Analysis Program (C-CAP) 
protocols (http://coast.noaa.gov/digitalcoast/_/pdf/ccap-products.pdf), so these datasets 
should be  comparable.  The true color imagery was recorded and analyzed at a scale of 
1:12000 for both.  The 1999 data were collected on July 6th and the 2006 data were 
collected on August 6th. 

If eelgrass patch locations are stable from year to year, and patches progressively shrink or 
expand, then historic eelgrass locations should be a good predictor of current 
presence/absence.  We intersected model points with historic seagrass coverage (1996-
1998) to yield a presence/absence dummy variable (egPA99).  To create a composite of 
patch boundaries, we converted seagrass polygons to lines and merged these with historic 
seagrass line coverages (representing seagrass patches less than 40 feet in width).  Then 
we calculated distance to nearest historic seagrass patch boundary for each model point 
(DistToEG99).  We also calculated the area of each nearest historic seagrass patch (AREA) 
as a potential explanatory variable. 

We captured the effect of more distant historic events (wasting disease incidence in the 
1930s and subsequent recolonization of seagrass up through the 1960s) in the models with 
a random “shoreline” effect.  Because seagrass beds expand predominantly through 
vegetative growth rather than through reproduction by seeds, the growth of seagrass 
patches is most likely to occur along shorelines, areas of contiguous potential habitat.  Each 
of 18 contiguous shorelines within Narragansett Bay was assigned a code, considering 
different potential current delivery vectors (Figure 3).  We assigned a SHORLIN code of -99 
to minor shorelines associated with small islands not connected to the mainland by 
suitable habitat (0 to 5 meters depth) as well as a dummy variable for ISOLATED status. 

2.2.5 Transparency   
We described transparency across the Bay using three data sources.  We combined Secchi 
depths measured by the Narragansett Bay Commission between 2008 and 2012 
(http://snapshot.narrabay.com/app/MonitoringInitiatives/WaterClarity) with 
measurements collected by the US EPA’s National Coastal Assessment program between 
2000 and 2006 (http://oaspub.epa.gov/coastal/coast.search).  We averaged values by the 
Water Body Identification Code (WBID) estuarine segments used for assessment and listing 
by RI DEM.  To avoid biasing segment averages, we removed Secchi depths greater than the 
maximum depth at the site of measurement from the records before averaging.  We filled in 
gaps in transparency data along the southern shore of Conamicut Island (Sakonnett and 
Newport Bays) using Kd estimates from offshore MODIS satellite imagery.  (Conamicut 

8 

http://oaspub.epa.gov/coastal/coast.search
http://coast.noaa.gov/digitalcoast/_/pdf/ccap-products.pdf
http://oaspub.epa.gov/coastal/coast.search


9 

Island is the large island near the mouth of the western arm of Narragansett Bay, Shoreline 
code 14.)  We downloaded the latter data using the EDM tool and averaged over the 
growing season (May – October) for the years 2008-2012.  We extracted average grid cell 
values for locations greater than 30 meters in water depth, and averaged values over a 
swath of offshore cells parallel to the south shore of Conamicutt Island1.  We estimated 
Secchi depth from Kd values using an empirical relationship developed by Batuik et al. 
(2000). 

Figure 3. Shoreline code assignment for Narragansett Bay.  A value of -99 was assigned to unused segments and isolated 
shorelines.

1 Algorithms for Kd are not suitable for shallower water due to interference from bottom sediments. 



2.2.6 Wave Exposure Data – WEMo and WAVES models 
Assessment of estuarine wave energy is an important component of seagrass modeling.  
Wave energy relative to fetch and current can affect seagrass habitats in a number of ways, 
mainly by reducing the ability to establish and maintain effective beds, changing sediment 
grain size type and or loss, and physically damaging delicate sheaths and leaves.   Other 
ecological processes (e.g., TOC accumulation, bioturbation etc.) are also linked to wave 
energy and velocities in seagrass habitats.    Particle deposition and sediment resuspension 
are affected by wave energy, but these processes can be attenuated to some degree by 
established seagrass beds (Garcia et al. 1999).   

A variety of tools can be utilized to spatially model fetch and wave energy inputs to 
estuarine shorelines (Howes et al. 1999, Fonseca and Malhotra 2010, Rohweder et al. 
2012).  We used two tools to spatially model fetch and wave energy inputs, the National 
Oceanographic and Atmospheric Administration (NOAA) Wave Exposure Model (WEMo; 
http://products.coastalscience.noaa.gov/wemo/) for calculation of wave energy, and the 
United States Geological Survey (USGS) WAVES tool for calculation of mixing depth.  Each 
of these tools has varying input requirements relative to data and formatting, and all 
require additional pre-processing of input data through modeling applications.  WEMo 
requires a variety of data inputs:  closest weather station data (average wind speed and 
direction), bathymetry data (ESRI ArcGIS GRID format), shoreline edge (ESRI ArcGIS GRID 
format), and sampling points (generated by the user).  We performed WEMo modeling 
using preset (default) values/conditions as specified in Fonseca and Malhotra (2010).  No 
other WEMo modeling parameters were adjusted except for fetch interrogation distance, 
which was set to 5000 meters.  

We calculated average and maximum wave mixing depths for the 2006-2007 growing 
seasons using the USGS WAVES extension to ArcMap 10.1 (Rohweder et al. 2012).  
Chambers (1987) has predicted minimum depth of occurrence of submerged aquatic 
vegetation in lakes based on calculation of mixing depths from wave action, as one half of 
the wave length (Chambers 1987).  We calculated fetch and wave characteristics using time 
series of wind speed and direction from the nearest National Data Buoy Center (NDBC) 
station (Station PTCR1 - 8452951 - Potter Cove, Prudence Island, RI)  merged with 
topobathymetry grids from NOAA's Coastal Relief Model (NOAA National Geophysical Data 
Center, NGDC Coastal Relief Model, Volume 1-8, 
http://www.ngdc.noaa.gov/mgg/coastal/coastal.html). 

2.2.7 Distance to physical disturbance source: hardened shorelines and marinas 
We evaluated two different indicators of physical disturbance related to anthropogenic 
activities as predictors in regression models: distance to hardened shorelines and distance 
to marinas. Structural shoreline hardening in Rhode Island includes the use of rock 
revetments, bulkheads and other types of walls or groins. Much of this hardening took 
place before coastal regulations existed.  Many of the effects of shoreline hardening are 
very localized, with wave action reflecting off of hard structures causing scour (Shipman 
2010).  We obtained a GIS layer with locations of hardened shorelines from RIGIS (2003).  
Other potential sources of information on shoreline hardening (not used here) available for 
models in other estuaries include the Environmental Sensitivity Index (ESI) 
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(http://response.restoration.noaa.gov/maps-and-spatial-data/download-esi-maps-and-
gis-data.html) and high resolution imagery with coastal LIDAR. 

Although mooring beds are permitted throughout Narragansett Bay, there are no common 
GIS data layers available to document their location.  As an indicator of the potential for 
damage from boat anchors, we calculated the distance to nearest marina based on a data 
layer obtained from RIGIS (1996) using the NEAR function in ArcGIS. 

2.2.8 Unsewered residential development on high infiltration soils 
Groundwater inputs to estuaries (with attendant nutrient loads) can be significant, but are 
generally poorly quantified.  If groundwater nutrient inputs are taken up within seagrass 
beds, they may not be reflected in overlying phytoplankton concentrations.  We used the 
density of unsewered residential development occurring on high infiltration soils in coastal 
catchments as an indicator of potential groundwater nitrogen inputs to seagrass habitats.  
The Narragansett Bay Sustainability Pilot Appendix A describes the derivation of data for 
this indicator (http://www2.epa.gov/sites/production/files/2013-12/documents/nbsp-
phase-i-report-appendices.pdf) (data provided by Industrial Economics, Inc.).  Grid 
centroid points were spatially “joined” to the polygon coverage to add this variable to point 
attributes. 

2.2.9 Canada goose grazer density 
Canada geese have been identified as a potential impact to seagrass growth and survival in 
Narragansett Bay (Rivers and Short 2007).  The density of geese and their impact will vary 
by location and seagrass type.  We estimated Canada goose density by zone in Narragansett 
Bay based on winter waterfowl surveys conducted in 2004 – 2006 
(http://www.nbnerr.org/waterfowl.htm).  Shapefiles of survey zones were provided by 
Rick McKinney, US EPA Atlantic Ecology Division, Narragansett, RI. 

2.3 Statistical Model Development 

2.3.1 Strategies to limit memory requirements 
Due to the large geographic area covered and fine spatial resolution of seagrass 
presence/absence grids, we applied several strategies to limit memory requirements for 
statistical analyses.  First, following the best practices outlined for species distribution 
models by Maggini et al. (2010), we restricted analyses to the geographic range and range 
of predictor variables associated with points at which seagrass was present in 2006 (Table 
2).  Second, we limited analyses to the 0 – 5 meter depth zone.  Third, we generated models 
at multiple scales: a) predicting seagrass presence/absence at individual grid cells (grid 
presence/absence P/A; n = 518,890), b) predicting P/A at any point along transects 
perpendicular to the shoreline (shoreline segment P/A; n = 19,204), c) predicting relative 
frequency of occurrence along transects perpendicular to the shoreline (shoreline segment 
frequency; n =19,204), and d) predicting minimum and maximum depth of occurrence 
along transects perpendicular to shoreline where seagrass was present (seagrass minimum 
or maximum depth; n = 2,749; Figure 4).   
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2.3.2 Modeling approaches at different scales 
Depending on the scale of dependent variables defined, we applied different model 
approaches, different initial sets of independent variables with associated interaction 
terms and R packages (Table 3, Figure C1 in Appendix C).  We evaluated GLM and GAM for 
minimum and maximum depth endpoints.  For all other seagrass endpoints, we developed 
mixed models (including both random and fixed effects, see below).  For mixed models, we 
evaluated two approaches, the first a general linear mixed model which incorporated 
random effects related to potential shoreline-specific colonization or disease incidence 
using the glmmPQL function in the R MASS package (http://stat.ethz.ch/R-manual/R-
patched/library/MASS/html/glmmPQL.html).  Second, where memory demands were not 
too large to prevent application, we also analyzed general additive mixed models using the 
function gamm in the mgcv R package to account for potential nonlinearities in response 
(https://stat.ethz.ch/R-manual/R-devel/library/mgcv/html/gamm.html).   

 We modelled “shoreline” as a random effect because seagrass coverage varies significantly 
among Narragansett Bay shorelines.  The “shoreline effect” can be interpreted as the 
combined result of random colonization (i.e., of wasting disease organisms) and re-
colonization (seagrass recovery) effects.  We evaluated two different types of mixed effect 
models with respect to their performance in predicting seagrass presence/absence in  
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Figure 4. Seagrass endpoints defined at different scales: presence/absence (P/A) at individual grid cell centroids, P/A within 
transect perpendicular to shoreline (assessed after points were snapped to shoreline), relative frequency of points along 
perpendicular transect, minimum depth (z) of occurrence along transect, and maximum depth of occurrence along transect. 

https://stat.ethz.ch/R-manual/R-devel/library/mgcv/html/gamm.html
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Table 2.  Range of predictors of seagrass habitat for sites at which seagrass is present or absent within Narragansett Bay 
buffer zone.  Shoreline event measure is an index assigned to each 10-meter shoreline segment based on distance from the 
beginning of a shoreline route. 

Variable 

Seagrass present 
 (n = 14527)  
min max 

Seagrass absent 
(n = 1309011)  
Min max 

Depth 0.0 5.1 0.0 6.6 
Salinity (PSU) 26.6 28.7 11.3 28.7 
Avg Secchi depth (m) 1.3 3.8 0.8 3.8 
Min Secchi depth (m) 0.7 3.7 0.5 3.7 
Avg SD - water depth (m) 
Min SD - water depth (m) 
Sediment total organic carbon (%) 
Isolated shoreline 

-2.7 
-3.7 
0.0 
0 

3.7 
3.7 
3.5 
1 

-4.2 
-5.0 
0.0 
0 

3.8 
3.7 
7.7 
1 

Wind wave energy (Joules/m) 0 81724 0 91021 
Avg wave mixing depth: water depth 
Max wave mixing depth: water depth 
Temperature (deg C) 

0.002 
0.002 
14.7 

11.2 
145.4 
15.0 

0.002 
0.002 
14.5 

12.4 
206.6 
15.0 

Shoreline event measure (m) 125430 3094040 115340 3957430 

Narragansett Bay: general linear mixed models (GLMM) and general additive mixed models 
(GAMM).  We analyzed initial model residuals for evidence of spatial autocorrelation (see 
below).     

2.3.3 Selection of best-fitting models 
We applied different strategies to identify best-fitting models for simple GLMs and GAMs as 
compared to mixed models.  For GLMs and GAMs we refined original models (Table 3) 
using the step function in R.  We compared model fits for GLM or GAM using AIC values and 
prediction errors (Burnham and Anderson 2002, Zuur et al. 2009).  For GLMMs, this 
approach was not possible because AIC values are not provided by the R packages we used.  
We fit models in a manner analogous to backward stepwise regressions, sequentially 
eliminating variables from initial full models (Table 3) based on lack of significance (i.e., p > 
0.01).  The glmmPQL package yields approximate p-values which should be used with 
caution when they are marginal (i.e., near p = 0.05), so p-values were interpreted   
conservatively using a p-value of 0.01. We evaluated final models using a 10-fold cross-
validation procedure to test for robustness of results and as a check against overfitting.  
Sampling with replacement was conducted separately within each shoreline class to 
provide proportional representation. 
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Table 3.  Initial full models evaluated for each seagrass endpoint.  Second- and third-order terms were added to models in 
later stages only in cases where plots of residual error versus predictors showed evidence of nonlinearities. 

Seagrass model dependent variable 

Grid cell 
P/A 

Shore-line 
segment 

P/A2 

Shore-line 
segment 
relative 

frequency1 

Minimum 
depth of 

occurrence 

Maximum 
depth of 

occurrence 

Model type  GLMM  GLMM  GLMM GLM, GAM GLM, GAM 

R package(s) glmmPQL glmmPQL glmmPQL glm, gam glm, gam 

Initial set of independent variables included in models prior to backward stepwise selection 

Variable Definition Units Fixed or 
random 
effect 

Fshorlin Shoreline code -99, 1-18 R x x x 

cSAL Centered growing 
season salinity 

PSU F x x x 

cTEMPER Centered growing 
season average water 
temperature 

Deg C F x x x 

fSEDn Sediment type (n 
represents # classes 
after lumping) 

1 to 13 F x x x x 

cWIND Wind wave energy Joules/m F x x x x 

cPTTOC Centered sediment 
percent total organic 
carbon 

% F x x x x 

csecchiminMax Centered Secchi Depth 
(max along transect) 

Meters F x 

cSDavggtrZ Centered growing season 
average Secchi depth – 
water depth 

Meters F x x x 

cSDmingtrZ Centered growing season 
minimum Secchi depth – 
water depth 

Meters F x x x 

fZgtrMXZ Depth greater than wave 
mixing depth (0 = FALSE, 
1 = TRUE) 

F x x x 

cZgtrMXZ Centered water depth 
greater than wave mixing 
depth 

Meters F x x x 

halflen0708gsa
Max 

Maximum growing season 
wave mixing depth 

Meters F x 

fISOLATED Isolated shoreline (0 = 
FALSE, 1=TRUE) 

F x x x 

1 Average or optimum (minimum or maximum depending on variable) value for transect substituted for point 
values 
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Seagrass model dependent variable 

Grid cell 
P/A 

Shore-line 
segment 

P/A3 

Shore-line 
segment 
relative 

frequency1 

Minimum 
depth of 

occurrence 

Maximum 
depth of 

occurrence 

Model type  GLMM  GLMM  GLMM GLM, GAM GLM, GAM 

R package(s) glmmPQL glmmPQL glmmPQL glm, gam glm, gam 

Initial set of independent variables included in models prior to backward stepwise selection 

Variable Definition Units Fixed or 
random 
effect 

cDistHdShor Centered distance to 
hardened shoreline 

Meters F x x x 

cDistMarina Centered distance to 
nearest marina 

Meters F x x x 

cUSRMARIkm2 Centered unsewered 
residences on high 
infiltration soils/catchment 
area 

#/km2 F x x x x 

cCG046avkm2 Centered winter 2004-2006 
Canada goose density 

#/km2 F x x x 

fEGPA99 Historic (1999) eelgrass 
presence (0 = FALSE, 
1 = TRUE) 

F x4 x x 

cAREA Centered area of 1999 
eelgrass patch 

Meters2 F x1 x x 

cDistEG99 Centered distance to edge of 
nearest 1999 eelgrass patch 

Meters F x1 x x 

Interaction 
terms 

cWIND x fsedn F x x x 

halflen0708gsaMax x 
fSEDn 

F x 

csecchiminMax x 
cpttocMax 

F x 

csecchiminMax x 
cUSRMARIkm2Max 

F x 

cpttocMax x 
cUSRMARIkm2Max 

F x 

1 Average or optimum (minimum or maximum depending on variable) value for transect substituted for point 
values 
4 Models were run both with and without historic seagrass predictors 

Table 3.  (Continued)
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Seagrass model dependent variable 

Grid cell 
P/A 

Shore-line 
segment 

P/A5 

Shore-line 
segment 
relative 

frequency1 

Minimum 
depth of 

occurrence 

Maximum 
depth of 

occurrence 

Model type  GLMM  GLMM  GLMM GLM, GAM GLM, GAM 

R package(s) glmmPQL glmmPQL glmmPQL glm, gam glm, gam 

Initial set of independent variables included in models prior to backward stepwise selection 

Variable Definition Units Fixed or 
random 
effect 

csecchiavMax x cpttocMax 
x cUSRMARIkm2Max 

F x 

cSAL x cSDavtomaxZ F x x x 

cSAL x fZgtrMXZ F x x x 

cSDavtomaxZ x fZgtrMXZ F x x x 

cSAL x cptTOC F x x x 

cSDavtomaxZ x cptTOC F x x x 

fZgtrMXZ x cptTOC F x x x 

cSAL x cSDavtomaxZ x 
fZgtrMXZ 

F x x x 

cSAL x cSDavtomaxZ x 
cptTOC 

F x x x 

cSAL x fZgtrMXZ x cptTOC F x x x 

cSDavtomaxZ x fZgtrMXZ x 
cptTOC 

F x x x 

cSAL x cSDavtomaxZ x 
fZgtrMXZ x cptTOC 

F x x x 

1 Average or optimum (minimum or maximum depending on variable) value for transect substituted for point 
values 

Table 3.  (Continued)



2.3.4 Model diagnostic tests  
For both simple and mixed models, we used a series of diagnostic tests to check model 
assumptions.  Methods and example codes are described in detail in Appendix C.  We 
checked models for independence of predictor variables using correlation coefficients  and 
variance inflation factors (VIFs) , for homogeneity of variance based on visual examination 
of residual versus predicted value plots, for linearity of response based on visual 
examination of conditional probability plots and of residuals plotted against predictors, 
and for spatial autocorrelation (SAC).   

2.3.5 Development of coordinate framework to assess SAC 
To assign coordinates to grid cell centroids, we first assigned a shoreline “event” measure 
for each observation.  We edited the shoreline polyline to facilitate development of a 
shoreline “route” in ArcMap.  Creation of a route in ArcMap allows one to assign distances 
to points along the line relative to the start of the shoreline route, termed “events”.  We 
eliminated areas of channel “braiding” in estuarine headwaters (and thus, divergent 
flowpaths), and “flipped” the direction of line segments in the polyline to ensure that all 
segments were oriented in a common direction.  We visualized problem segments by 
changing the line symbol to an arrow and noting locations with adjacent arrowheads 
pointing in opposite directions.  We “dissolved” the shoreline to minimize the number of 
features, then used the dissolved shoreline to create a shoreline route.  We artificially 
created equidistant points along the shoreline route by generating an event table in 
Microsoft Excel, with MEAS values increasing in 10-meter increments and DISTANCE (from 
line) set to zero, then used the event table and shoreline route to create shoreline events in 
ArcMap.  We saved the temporary shoreline events as permanent point features, then used 
the NEAR function in ArcMap to assign each observation to the nearest shoreline point with 
an associated shoreline distance (Figure 5).  We provided variogram or correlation 
structure functions in R with the MEAS value as an “X-coordinate” and a constant of zero as 
the “Y-coordinate” to allow the program to calculate interpoint distances parallel to the 
shoreline. 

2.3.6 Assessment of SAC ranges 
Due to memory constraints with R packages and anisotropy we used two different R 
packages to evaluate SAC.  Anisotropy exists when spatial autocorrelation varies by 
direction.  Based on the elongated nature of seagrass patches and the different controls on 
spread along the shoreline as compared to along depth gradients, one would expect 
anisotropy in spatial autocorrelation of seagrass presence/absence.  Vegetative spread of 
seagrasses predominates over long range seed dispersal as the mechanism for patch 
growth (Marba and Duarte 1998).  Thus, seagrass is more likely to spread in a direction 
parallel to shorelines rather than perpendicular to shorelines over areas of deeper water.   

To evaluate the range of spatial autocorrelation parallel to shorelines, we used spline 
correlograms based on shoreline distance.  We evaluated SAC in a direction parallel to  
shorelines using nonparametric spline correlograms with the R spline.correlog function in 
the ncf package (Bjornstad 2013).  Creation of nonparametric spline correlograms requires 
no assumptions about the distribution of errors or the shape of the correlogram plots.  
Thus, spline correlograms are more appropriate than standard correlograms for ecological
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Figure 5.  Process for assigning x-, and y-coordinates to seagrass grid cell centroids.

datasets which can exhibit a complex pattern of SAC at different scales resulting from 
different processes.  We created coordinate inputs to the spline.correlog function by 
assigning shoreline distance as the x-coordinate and a fixed off-shore distance of zero as 
the y-coordinate.  The spline function encounters memory limitations when more than 
~9000 points are included in the analysis.  Therefore, we had to develop the spline 
correlograms separately by shoreline, using a random subset of 9000 for each shoreline.  

To evaluate the range of autocorrelation along depth gradients perpendicular to the 
shoreline we used the CommunityCorrelogram package in R to create Mantel correlograms 
(Andrus et al. 2014).  The CommunityCorrelogram package adds functionality over existing 
Mantel correlogram functions by allowing directional (anisotropic) restrictions in both the 
xy (surface) plane and the z (depth) plane. 

2.3.7 Eliminating or incorporating SAC into models 
We evaluated two complementary methods to incorporate the effects of spatial 
autocorrelation into models.  First, we incorporated local SAC into models using the 
approach of Crase et al. (2012).  We initially fit models assuming spatial independence of 
errors.  We then used zonal statistics in ArcMap to estimate a local average of original 
model residuals for each grid cell across the local range of SAC, using a moving window of 3 
x 3 grid cells.  We then incorporated the residual zonal averages into a modified predictive 
model to explicitly include the effect of SAC.  We again checked adjusted model Pearson 
residuals for SAC patterns using the spline correlograms.  The output includes confidence 
intervals for the spline fit and can be used to generate 95% confidence intervals for the first 
zero intercept, or the range at which spatial autocorrelation is no longer observed.  
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Attempts to use the Crase et al. approach in its original form failed because the range of 
SAC was much greater than the scale of the 3 x 3 moving window.  Thus we reran the 
process using the empirically-derived range of SAC to adjust the size of the moving window 
for calculating residual zonal averages.  We used the median value of SAC values across 
shorelines to calculate zonal averages, which also corresponded to the shoreline with the 
greatest abundance of seagrass. 

Second, we eliminated some of the spatial autocorrelation in models by reducing 
dimensionality.  We assigned the associated shoreline event measure (shoreline location) 
to each seagrass grid centroid, then calculated an average and maximum presence/absence 
value to estimate relative seagrass frequency (along a swath extending perpendicular to 
the shoreline) or simply seagrass presence/absence by 10-meter shoreline unit.  For each 
shoreline event with seagrass present, we also calculated a minimum depth of occurrence 
and a maximum depth of occurrence.  Predictive models for minimum and maximum 
depths were simpler because the random shoreline effect could be dropped, yielding a 
fixed effect model. 

2.3.8 Strategies for eliminating multicollinearity 
Development of GLM, GLMM and GAM models was constrained by the need to exclude 
predictor variables that exhibited collinearity (as evidenced by Spearman correlation 
coefficients of > 0.7) or multicollinearity (as evidenced by variance inflation factors (VIF) < 
10; Zuur et al. 2009).  Many of the variables reported in the literature as potential 
influences on seagrass growth and survival are potentially correlated with one another, 
making it difficult to determine precise model coefficients.  We minimized the potential for 
collinearity by centering continuous variables (i.e., subtracting the mean) as per 
recommendations of Zuur et al. (2009).  Centering variables also facilitates interpretation 
of coefficients in logistic models because the model intercept represents the predicted 
value when all independent variables are at their mean levels (and dummy variables equal 
zero). To prevent multi-collinearity, we also dropped sediment particle-size categories 
with no seagrass from the model, combined sediment particle-size categories representing 
a very small fraction of the model points into new classes, and adjusted the chosen 
“reference” level of the sediment type factor so that it represented one of the more 
common sediment types.   

Effects of both transparency (Secchi depth) and wave energy (mixing depth) have to be 
evaluated with respect to water depth.  The ratios of Secchi depth to water depth and 
mixing depth to water depth are highly correlated because they share a common 
denominator.  Therefore we created one predictor based on the difference between Secchi 
depth and water depth and a second categorical predictor indicating whether or not mixing 
depth exceeded the actual water depth.  The former variable had a more even distribution 
than the corresponding ratio and was less likely to create problems with outliers.  
Temperature and salinity were highly correlated, so we dropped temperature from our 
predictive models because it was not likely to reach critical levels in the subtidal zone of 
this system, and Z. marina does not occur in exposed locations in Narragansett Bay.  We 
initially evaluated a subset of potential interaction terms in regression models based on 
probable mechanisms of action (Table 3).  However, we eventually dropped almost all 



potential interaction terms from the GLM, GLMM, and GAM models because they had 
extremely high VIF values. 

2.3.9 Alternative approaches 
We were limited in the range of R statistical packages available for mixed effects logistic 
models that could also incorporate spatial correlation structures 
(http://glmm.wikidot.com/pkg-comparison).  The most commonly used functions for 
mixed modeling in R are: MASS::glmmPQL, lme4::glmer, MCMCglmm::MCMCglmm.  Of the 
available R packages, glmmPQL is less memory-intensive as it applies a Penalized Quasi-
Likelihood approach rather than producing true Maximum Likelihood Estimates (Venables 
and Ripley 2002).  As a result, glmmPQL does not yield an estimate of log-likelihood or 
Aikake’s Information Criteria (AIC), values commonly used in comparing model fits.  
Although we attempted to fit models using the glmer function in lme4, models often failed 
to converge, yielded “out of memory” errors before convergence, or proved impractical 
because model runs required more than 12 hours for a single iteration.  Attempts to run the 
glmmADMB package in R also failed.   

In summary, our approach yielded predictive models for five seagrass endpoints: grid-cell 
presence/absence, shoreline presence/absence, shoreline relative frequency, minimum 
depth of occurrence, and maximum depth of occurrence.  We evaluated glmmPQL or GAMM 
models for the first three endpoints, and GLM or GAM models for the latter two.  We 
incorporated SAC into predictive models using the Crase et al. (2012) approach after 
modifying the moving window to account for the actual range of SAC observed in model 
residuals.  Finally, we minimized the potential for multi-collinearity across independent 
variables.  See Appendix C, Figure C1, for a summary of the GIS and R processes necessary 
to develop the GLMMs. 
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Chapter 3. Results 

For more detailed results, see Appendix D for exploratory analyses and description of 
intermediate models. 

3.1 Final Models 

3.1.1 Seagrass Grid Presence/Absence 
The final model fit for seagrass grid cell occupancy was: 

fsavcode = cSAL + cSAL2 + cSDavgrtrZ + cSDavgrtrZ2 + cSDavgrtrZ3 + cptTOC 
+ cptTOC2 + cptTOC3 + fZgtMXZav + cCG046avkm + cDstoMarin + fISOLATED (1) 
+ fSED4 + PResid14fa, 

where fsavcode = seagrass presence/absence code (1/0) 
cSAL = centered salinity 
cSDavgrtrZ = centered average Secchi depth minus water depth  
cptTOC = centered sediment percent total organic carbon 
fZgtMXZav = indicator of depth greater than average wave mixing 

depth (1/0) 
cCG046avkm2 = centered Canada goose density/square kilometer 
cDstoMarin = centered distance to nearest marina 
fISOLATED = indicator of isolated shoreline (1/0) 
fSED4 = sediment particle-size class 

SED4_5 = Sand 
SED4_7 = Silty sand 
SED4_81011 = Silty, Sandy silt, Clay-Silt 
SED4_6 = Gravelly sand 
SED4_124 = Gravel, Sandy gravel, Gravel-sand-silt 

PResid14fa = Focal average of Pearson residual over zone of 1300 m 
shoreline length x 200 m offshore distance 

We calculated the residual autocorrelation term as the focal average of Pearson residuals 
over a zone of 1300 meters (along shoreline direction) by 200 meters (offshore direction).  
After incorporation of the residual autocorrelation term, the final model showed minimal 
spatial autocorrelation (Figure 6a) and much reduced heterogeneity of variance (Figure 
6b).  Area under the ROC curve based on ten-fold cross-validation was 0.7144 (Figure 7).  
The model showed a small tendency to underpredict seagrass presence, with a mean 
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residual of -0.1285, and a median value of -0.001545 (interquartile range = -0.0739 to -
0.000043).  The root mean squared error was 0.34. 

Colonization rates vary dramatically among shorelines (Table 4), with exponentiated 
coefficients (the associated odds ratio) ranging over nine orders of magnitude from 6.1 E-5 
(Shoreline 2) to 93091 (Shoreline 17).  The exponentiated intercept for the fixed effects 
portion of the mixed model is the odds ratio when all continuous variables are at mean 
values (centered value = 0), fZgtMXZav = 0 (depth is less than average wave mixing depth), 
fISOLATED = 0 (main shorelines), and the reference sediment class (5 = sand) is 1 (true) 
(Table 5). The corresponding probability is 0.22.  The odds ratio for average conditions of 
seagrass on sand substrate for isolated shorelines is 0.279 + 0.004 = 0.283.  The odds ratio 
increases by 1.43 (43%) for water depths greater than the wave mixing depth.  The odds 
ratio for sediment types 8 and 10 combined (silty and sandy silt) is not significantly 
different than for the sand class, but is relatively lower for classes 6 (gravelly sand) or 12 
(sand-silt-clay) and higher for classes 7 (silty sand) or 1+2+4 (gravel, sandy gravel, and 
gravel-sand-silt), respectively.  The conditional odds ratio is 6.65 (or 565% greater) for the 
combined gravel classes.  Predicted effects for unsewered residential density on high 
infiltration soils, Canada goose density, and distance to nearest marina are all opposite in 
direction to those expected but the magnitudes of predicted influences are negligible.  The 
probability of seagrass presence increases at an accelerated rate as salinity increases.   

Table 4. Random effects associated with shorelines for  GLMM model 1 predicting seagrass presence/absence by grid cell.  
See Figure 3 for map of shoreline codes. 
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Shoreline Random effect Exp(R.E.) 
-99 2.78 16.2 

2 -9.70 6.1E-05 
3 -5.67 0.003 
6 -9.62 6.66E-05 
7 -6.22 0.002 
8 -4.14 0.016 
9 0.42 1.5 

10 3.00 20 
11 -2.64 0.07 
12 1.46 4.3 
13 -4.33 0.01 
14 0.28 1.3 
15 6.65 771 
16 9.70 16398 
17 11.44 93091 

The odds ratio for seagrass presence is negligible for water depths less than the Secchi 
depth, increases above 1.0 when Secchi depth exceeds water depth by one meter, and is 
predicted to peak at Secchi depths about 2.5 meters greater than water depth (Figure 8; 
note that these odds ratios must be adjusted for the shoreline of interest).
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Table 5. Fixed effects for model 1 predicting seagrass presence/absence by grid cell. 

Coeff 
Std. 
Error DF Exp(Coeff) t-value p-value 

(Intercept) 0.42 1.66 518856 1.52 0.25 0.8001 

cSDavgrtrZ 2.61 0.05 518856 13.63 48.69 <0.0001 

cSDavgrtrZ2 -0.23 0.03 518856 0.79 -7.11 <0.0001 

cSDavgrtrZ3 -0.06 0.010 518856 0.95 -5.86 <0.0001 

cSAL 1.43 0.19 518856 4.20 7.60 <0.0001 

cSAL2 -0.57 0.16 518856 0.57 -3.65 0.0003 

cptTOC -2.44 0.09 518856 0.09 -28.45 <0.0001 

cptTOC2 1.32 0.07 518856 3.73 18.60 <0.0001 

cptTOC3 -0.32 0.05 518856 0.73 -5.78 <0.0001 

cCG046avkm 0.01 0.004 518856 1.01 2.93 0.0034 

cDstoMarin -0.001 0.0001 518856 1.00 -27.87 <0.0001 

fSED4124 3.66 0.33 518856 38.77 10.93 <0.0001 

fSED47 0.63 0.07 518856 1.88 8.76 <0.0001 

fSED4810 -0.38 0.15 518856 0.69 -2.51 0.0119 

fSED412 -0.83 0.15 518856 0.43 -5.50 <0.0001 

fSED46 -1.12 0.21 518856 0.33 -5.25 <0.0001 

fZgtMXZav 0.53 0.14 518856 1.71 3.74 0.0002 

fISOLATED1 -10.67 1.06 518856 0.00 -10.06 <0.0001 

PResid14fa 3.17 0.06 518856 23.88 56.60 <0.0001 



24 

Figure 6. Diagnostic plots for model 1 predicting seagrass grid occupancy. Spatial autocorrelation of residuals is virtually 
eliminated. Heterogeneity of variance is greatly reduced.  a) Spline correlogram of Pearson residuals for Shoreline 14. b) Plot 
of Pearson residuals versus predicted value. 

Figure 7. ROC curve for model 1 based on a) initial fit (area under curve = 0.9767) and b) 10-fold cross-validation (area under 
the curve is 0.7144). 
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Figure 8.  Nonlinear effects of a) centered Salinity (PSU), b) centered average Secchi depth – water depth (m), and c) centered 
sediment percent total organic carbon on odds ratio for seagrass occurrence in grid cell.  Values are calculated assuming 
average values for all co-variables not represented in plot and across all shorelines with the reference sediment type for 
model 1. 
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3.1.2 Predictive models for shoreline segment P/A and minimum or maximum depth for 
seagrass 

3.1.2.1 Shoreline segment P/A models without Serial Autocorrelation 
The form of the final model for predicting seagrass presence/absence by shoreline distance 
was: 

fsavcodeMaxi = csalAvi + csecchimini * cpttocMin + fZgtMXZavMi + 
(2) cCG046avkmi + cDistToHdSi + cDstoMarini + cwindMini * fSED8i + 

PR4wFA1370i, 

where i = shoreline event measure 
fsavcodeMaxi = Maximum seagrass presence/absence code (0/1) 

associated with shoreline event measure i 
csalAvi = Average of centered average salinity at i 
csecchimini = Minimum of centered Secchi depth at i 
cpttocMini = Minimum of centered percent total organic carbon at i 
fZgtMXZavMi = Maximum of 0/1 indicator of depths greater than 

average wave mixing depth at i 
cCG046avkm2i = Minimum of centered Canada goose density 

(No./km2) at i 
cDistToHdSi =  Maximum of centered distance to hardened shoreline 

at i 
cDstoMarini = Maximum of centered distance to nearest marina at i 
cwindMini = Minimum of centered wind relative energy at i 

fSED8i = Majority sediment class at i, including 
fSED8_6 = Gravelly-sand 
fSED8_7 = Silty sand 
fSED8_124 = Gravel, Sandy Gravel, and Gravel-Sand-Silt 
fSED8_512 = Sand and Sand-Silt-Clay 
fSED8_8101113 = Silty, Sandy Silt, Clay-Silt, and Gravel-Silt-

Clay 
PR4wFA1370i = Focal average over 1370 meters distance of Pearson 

residual for model fit 

The dummy variable for “isolated” shorelines, corresponding to small islands, was no 
longer significant after spatial autocorrelation was accounted for, and some of the sediment 
classes had to be collapsed from the original model to retain significance.  After residual 
autocorrelation was incorporated into the model, heterogeneity of variance decreased 
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substantially (Figure 9a-c).  The original model Area-Under-The-Curve (AUC) value for the 
Receiver Operating Characteristic Curve (ROC) was 0.95.  Performance of the predictive 
model for seagrass shoreline presence was much more robust than performance of the 
model predicting seagrass presence at the grid cell scale.  Ten-fold cross-validation of the 
model yielded a mean residual of -0.111, a Root Mean Squared Error (RMSE) of 0.29 
(interquartile range = 0.014 – 0.155), and an ROC value of 0.9547 (see Figure 10).   Again, 
the odds ratio varied by several orders of magnitude across different shorelines (Table 6).  
Higher order effects were not retained in the best GLMM model predicting shoreline 
presence.  In this case, the odds ratio was greatest for the reference sediment class (6 = 
gravelly sand) and least for sediment classes 1 + 2 + 4 (gravel-dominated).    There was an 
additional interaction term involving Secchi depth and sediment percent total organic 
carbon, which tends to decrease the positive effects of transparency at high sediment 
organic carbon levels (Table 7). 



28 

Figure 9.  Diagnostic plots for model 2 predicting seagrass presence/absence by shoreline segment. a) Pearson residual 
versus predicted value, b) Pearson residual by sediment class, and c) Pearson residual versus centered percent total organic 
carbon. 
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Table 6. Random effects for GLMM model 2 predicting shoreline presence/absence for 
seagrass, not accounting for historic seagrass presence. 

Shoreline (Intercept) exp(coeff) 
-99 -4.30 0.01 
10 6.55 698.81 
12 4.91 136.15 
17 3.34 28.33 

9 2.78 16.14 
14 2.47 11.78 
13 1.58 4.85 
16 1.37 3.94 
18 0.67 1.95 
15 0.21 1.24 

8 -0.47 0.63 
3 -2.11 0.12 
2 -3.42 0.03 
6 -3.47 0.03 
7 -4.32 0.01 

11 -5.79 0.00 

Table 7. Fixed effects for GLMM model 2 predicting shoreline presence/absence for seagrass, not accounting for historic 
seagrass presence. 

Parameter Coefficient Std.Error exp(Coeff) DF t-value p-value 
(Intercept) -1.16 0.99 0.3 19174 -1.17 0.2431 
csalAv 1.57 0.09 4.8 19174 17.49 0 
fZgtMXZav 1.55 0.32 4.7 19174 4.79 0 
csecchimin 0.31 0.08 1.4 19174 3.68 0.0002 
cCG046avkm 0.033 0.004 1.0 19174 8.80 0 
cDistToHdS -6.55E-04 7.56E-05 1.0 19174 -8.66 0 
cDstoMarin -2.55E-04 5.10E-05 1.0 19174 -4.99 0 
cwindMin -1.50E-05 2.70E-06 1.0 19174 -5.57 0 
cpttocMin -1.06 0.06 0.3 19174 -17.47 0 
fSED87 -0.56 0.21 0.6 19174 -2.70 0.0069 
fSED8124 -3.55 0.48 0.03 19174 -7.47 0 
fSED8512 -0.79 0.22 0.5 19174 -3.65 0.0003 
fSED88101113 -0.78 0.23 0.5 19174 -3.48 0.0005 
PR9wFA1370 3.62 0.06 37.5 19174 57.62 0 
Csecchimin x 
cpttocMin 0.27 0.10 1.3 19174 2.78 0.0054 
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3.1.2.2 Shoreline P/A models with Serial Autocorrelation 
We created an alternative model to predict shoreline presence/absence using historic 
seagrass presence/absence as a predictor.  The final model form was (Table 8): 

fsavcodeMax i = fEGPA99Max i + cAREAMax + cDistToEG99Min i + csalAv i + 
(3) csecchiminMax i * cpttocMin i + fZgtMXZavMax i + cCG046avkm2Min i +  

cDstoMarinaMax i + cwindMin i * fSED6 I + PR6dwFA700, 

where terms are defined as above (Table 3) with the addition of: 

fSED6i   = Majority sediment class at i, including 
fSED6_6 = Gravelly-sand 
fSED6_124571213 = Gravel, Sandy Gravel, Gravel-Sand-Silt, Sand, Sand- 

Silt-Clay, and Silty-Sand 
fSED6_81011 = Silty, Sandy Silt, Clay-Silt, and Gravel-Silt-Clay 

PR6dwFA700i = Focal average over 700 meters distance of Pearson residual for 
model fit 

Table 8. Fixed effects model 3 components predicting shoreline presence and including historic 1999 seagrass predictors. 

Parameter Value exp(coeff) Std.Error DF t-value p-value 
(Intercept) -2.09 0.12 1.09 19172 -1.9 0.0556 
csalAv 0.83 2.28 0.13 19172 6.2 0 
csecchiminMax 0.09 1.09 0.14 19172 0.6 0.5475 
cCG046avkm2Min -0.04 0.96 0.007092 19172 -5.9 0 
cAREAMax 0.000006 1.00 2.4E-06 19172 2.6 0.0092 
cDistToEG99Min -0.00199 1.00 0.00011 19172 -18.1 0 
cDstoMarinaMax -0.00024 1.00 0.000088 19172 -2.8 0.0057 
cwindMin 0.00015 1.00 3.53E-05 19172 4.3 0 
cpttocMin -0.43 0.65 0.11 19172 -3.9 0.0001 
fEGPA99Max 1.84 6.32 0.37 19172 5.1 0 
fZgtMXZavMax 1.49 4.44 0.50 19172 3.0 0.0028 
fSED6124571213 -1.09 0.34 0.50 19172 -2.2 0.029 
fSED681011 -1.93 0.15 0.54 19172 -3.6 0.0003 
PR6dwFA700 3.57 35.39 0.10 19172 35.4 0 
csecchiminMax x 
cpttocMin 0.75 2.12 0.18 19172 4.1 0 
cwindMin x fSED681011 -0.0002 1.00 4.83E-05 19172 -4.2 0 
cwindMin x 
fSED6124571213 -0.00016 1.00 3.55E-05 19172 -4.6 0 
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Model predictions based on the original fit were slightly better than the prior model which 
did not include historic eelgrass presence/absence, with a ROC value of 0.9753. 

Figure 10.  Receiver operating characteristic (ROC) curve for final model predicting shoreline presence/absence of seagrass 
based on a) original model 2 fit with full data set (ROC = 0.9546), b) same model with ten-fold model cross-validation (ROC = 
0.9547), and c)  original model 3 fit for model with full data set incorporating historic 1999 eelgrass presence/absence (ROC = 
0.9753).
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3.1.2.3 Shoreline Segment Relative Frequency Models without Serial Correlation 
The final model predicting shoreline relative frequency (average shoreline seagrass 
occupancy along offshore transect) after incorporating residual autocorrelation was: 

savcodeAv = csalAv + csalAv2 + csecchiminAv + csecchiminAv2 + cpttocAv +  (4) 
cpttocAv2 + cZgtMXZavAv + cZgtMXZavAv2 + cDistToHdShAv + cDstoMarinaAv 
+ cUSRMARIkm2Av + fISOLATED + cwindAv * fSED5 + PR3xFA460, 

where terms are defined as above with the addition of 

PR3xFA460 = focal average of Pearson residuals with zone length of 460 
meters 

After residual autocorrelation was incorporated into the model, the magnitude of the 
random effect term was very small compared to residual error, so the random shoreline 
effects were dropped and a simpler general linear model was run.  Similar to the grid-cell 
occupancy model, several higher order effects were retained, but this time an additional 
second-order term for depth greater than average wave mixing depth was included.  In this 
case the direction of effects for distance to nearest marina (positive influence) and 
unsewered residential density (negative influence) was as expected, but the magnitude of 
these effects was relatively small (Table 9).  Diagnostics plots showed improvements over 
fits without the residual SAC term (Figures 11a-d).  However, 3 outliers were apparent.  
The model was fit after removing the three outliers and the same terms were retained.  
Figure 12 illustrates the interaction between sediment class and wind-derived wave 
energy, with wave energy effects greatest for silt-dominated classes, as compared to sand 
or gravel-dominated classes.  Performance of the model predicting average shoreline 
occupancy by seagrass was slightly lower than predictions of presence/absence, but still 
much more robust than model predictions at the grid cell scale.  The area under the ROC 
curve was 0.889 for model 4, and slightly less (0.8377) for the model 4 fit without 3 
outliers (Figure 13). 
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Figure 11. Diagnostic plots for model 4 predicting average shoreline occupancy. a) Pearson residuals vs predicted values, with 
loess curve superimposed showing no trend, b) Q-Q plot (standardized deviance residuals versus theoretical quantiles), c) 
Scale-Location plot (square root of standardized deviance residuals versus predicted values), and d) Residuals vs Leverage 
with three labeled outliers.
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Table 9. Fixed effects in model 4 predicting average seagrass occurrence along transects perpendicular to shoreline, not incorporating historic seagrass presence. 

Model with full data set Model without 3 outliers 

Coefficients: Estimate Std. Error 
z 
value Pr(>|z|) Estimate 

Std. 
Error 

z 

-3.52 0.03 -103.6 < 2.00E-16 *** -3.30 

value Pr(>|z|) 

0.03 -107.3 <2e-16 *** 

1.71 0.07 24.5 < 2.00E-16 *** 1.45 0.06 22.6 <2e-16 *** 

0.65 0.05 12.0 < 2.00E-16 *** 0.72 0.05 14.9 <2e-16 *** 

-1.20 0.05 -1.04 0.05 

1.07 0.03 

-23.9 < 2.00E-16 *** 

39.8 < 2.00E-16 *** 1.00 0.02 

-22.7 <2e-16 *** 

40.0 <2e-16 *** 

3.89E-04 1.56E-05 < 2.00E-1625.0  *** 3.38E-04 1.45E-05 23.3 <2e-16 *** 

-6.53E-06 1.11E-06 -5.9 3.51E-09 *** 

-4.83E-04 3.11E-05 2.00E-16-15.5 <  *** 

-2.65E-06 1.22E-06 

-4.88E-04 2.73E-05 

-0.013 0.000 -35.5 < 2.00E-16 *** -0.011 0.000 

-2.2 0.0303 * 

-17.9 <2e-16 *** 

-30.5 <2e-16 *** 

-0.14 0.02 -6.8 8.62E-12 *** 0.02 -24.6 <2e-16 *** 

-0.58 0.03 -23.0 < 2.00E-16 *** 0.02 -9.0 <2e-16 *** 

-0.73 0.01 0.01 

-0.70 0.01 

-51.4 < 2.00E-16 *** 

-51.1 < 2.00E-16 *** 

-0.43 

-0.17 

-0.57 

-0.53 0.01 

-47.3 <2e-16 *** 

-47.6 <2e-16 *** 

1.46 0.04 37.0 < 2.00E-16 *** 1.28 0.04 34.7 <2e-16 *** 

0.30 0.05 6.3 2.35E-10 *** -0.007 0.046 

-0.27 0.02 -11.4 < 2.00E-16 *** -0.47 0.02 

-0.2 0.8738   

-21.4 <2e-16 *** 

3.444E-01 2.954E-03 116.6 < 2.00E-16 *** 

-2.81E-05 1.97E-06 

(Intercept) 

csalAv 

csalAv2 

csecchiminAv 

csecchiminAv2 

cDstoMarinaAv 

cwindAv 

cDistToHdShAv 

cUSRMARIkm2Av 

cpttocAv 

cpttocAv2 

cZgtMXZavAv 

cZgtMXZavAv2 

fISOLATED 

fSED581011 

fSED5124561213 

PR3xFA460 

cwindAv x 
fSED5124561213 

cwindAv x fSED581011 -7.40E-05 5.02E-06 

-14.3 < 2.00E-16 *** 

-14.7 < 2.00E-16 *** 

-3.63E-05 1.87E-06 

-9.11E-05 5.27E-06 

-19.4 <2e-16 *** 

-17.3 <2e-16 *** 
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Figure 12. Interaction plots showing effect of shoreline wind-derived wave energy by sediment class for models 4 and 5 
predicting average shoreline occupancy a) without (4) and b) with historic seagrass presence (5) as predictors. 124561213 = 
Gravel, Sandy gravel, Gravel-sand-silt, Sand, Gravelly sand, Sand-silt-clay, and Gravel-silt-clay, 7 = Silty sand, and 81011 = 
Silty, Sandy silt, and Clay silt. 
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Figure 13. ROC curve showing fit of model 4 prediction of average shoreline occupancy after removal of three outliers 

3.1.2.4 Shoreline Segment Relative Frequency Models with Serial Correlation 
With the effect of historic 1999 occupancy incorporated, the final model predicting average 
shoreline occupancy was: 

 (5) savcodeAv ~ cEGPA99Av + cAREAAv + cDistToEG99Av + csalAv + csalAv2 + 
csecchiminAv + csecchiminAv2 + cpttocAv   + cZgtMXZavAv + cZgtMXZavAv2 + 
cDistToHdShAv + cDstoMarinaAv + cUSRMARIkm2Av + cwindAv * fSED5 +       
PR4gFA460,  

where terms are defined as above with the addition of 

cEGPA99Av = centered average shoreline occupancy in 1999 

cAREAAv = centered average 1999 eelgrass patch size by shoreline 
index i 

cDistToEG99Av = centered shoreline average distance to edge of 
nearest 1999 eelgrass patch, and 

PR4gFA460 = zonal average over 460 meters of Pearson residual for 
model 4h 

Relative seagrass presence increased in areas of historic 1999 seagrass, more so as historic 
patch size increased and less so with distance from historic patch edge (Table 10).  As 
above, diagnostic plots showed the presence of three outliers (Figure 14), but re-analysis of 
model 4h without these outliers yielded the same set of predictors.  Performance and 
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Full data set Data set minus three outliers 

Coefficients Estimate Std. Error z value  Pr(>|z|) Estimate Std. Error z value  Pr(>|z|) 

(Intercept) -5.10 0.05 -111 < 2.00E-16 *** -6.70 0.06 -112 < 2.00E-16 *** 

csalAv 2.48 0.08 31.9 < 2.00E-16 *** 3.47 0.08 41.7 < 2.00E-16 *** 

csalAv2 1.34 0.06 23.0 < 2.00E-16 *** 2.04 0.06 32.4 < 2.00E-16 *** 

cEGPA99Av 1.69 0.16 10.8 < 2.00E-16 *** 0.98 0.16 6.2 5.03E-10 *** 

cpttocAv 0.16 0.02 7.8 6.31E-15 *** 0.16 0.02 7.3 2.75E-13 *** 

cAREAAv 7.32E-06 6.68E-07 11.0 < 2.00E-16 *** 1.02E-05 6.68E-07 15.2 < 2.00E-16 *** 

cwindAv -3.18E-06 9.98E-07 -3.2 0.00144 ** -5.74E-06 1.01E-06 -5.7  1.34E-08 *** 

cDstoMarinaAv -1.79E-04 1.76E-05 -10.2 < 2.00E-16 *** -2.71E-04 1.82E-05 -14.9 < 2.00E-16 *** 

cDistToHdShAv -3.50E-04 3.36E-05 -10.4 < 2.00E-16 *** -2.67E-04 3.62E-05 -7.4  1.55E-13 *** 

cUSRMARIkm2Av -8.40E-03 2.89E-04 -29.0 < 2.00E-16 *** -8.00E-03 2.91E-04 -27.5 < 2.00E-16 *** 

cDistToEG99Av -1.03E-03 1.42E-05 -72.8 < 2.00E-16 *** -1.52E-03 1.86E-05 -81.7 < 2.00E-16 *** 

cZgtMXZavAv -0.54 0.01 -37.1 < 2.00E-16 *** -0.47 0.01 -32.9 < 2.00E-16 *** 

cZgtMXZavAv2 -0.56 0.01 -40.9 < 2.00E-16 *** -0.34 0.01 -27.7 < 2.00E-16 *** 

csecchiminAv -1.38 0.05 -28.6 < 2.00E-16 *** -1.60 0.05 -31.2 < 2.00E-16 *** 

csecchiminAv2 0.90 0.03 34.3 < 2.00E-16 *** 0.95 0.03 34.8 < 2.00E-16 *** 

fSED581011 0.20 0.05 4.1 4.93E-05 *** 0.29 0.05 5.8 6.23E-09 *** 

fSED5124561213 -0.03 0.03 -1.1 0.27671 0.23 0.03 7.8 4.56E-15 *** 

PR4gFA460 0.457 0.004 114.2 < 2.00E-16 *** 0.61 0.01 117.9 < 2.00E-16 *** 

cwindAv x fSED581011 -1.29E-06 5.58E-06 -0.2 0.81674 1.66E-05 5.28E-06 3.1 0.00167 ** 

cwindAv x fSED5124561213 -1.50E-05 2.20E-06 -6.8 8.90E-12 *** -2.64E-05 2.53E-06 -10.4 < 2.00E-16 *** 

Table 10. Fixed effects for model 5 predicting average seagrass presence/absence along transects perpendicular to shoreline, including effects of historic seagrass presence.  Model coefficients 
are compared for model fit with full data set and with data set minus three outliers. 
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robustness of the model were actually degraded by including historic seagrass presence as 
a predictor.  The area under the ROC curve was 0.615 for model 4h but only 0.4887 for the 
same model with three outliers removed (Figure 15).   

Figure 14. Diagnostic plots for model 5 predicting average shoreline occupancy including historic 1999 eelgrass predictors.  a) 
Residuals vs predicted with loess plot overlaid. b) Normal Q-Q plot, and c) Scale-Location plot.  Note the presence of three 
outliers. 
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Figure 15. ROC curve for model 5 a) before and b) after removal of three outliers. 

3.1.2.5 Shoreline Segment Minimum Depth of Occurrence 
Based on a comparison of AIC values, the final GLM model for predicting minimum depth of 
seagrass occurrence is: 

 (6) 
bathymmin = fSED4 * halflen0708gsmMax, 

where bathymmin = minimum depth of seagrass occurrence (m) 

fSED4 = sediment class 

halflen0708gsmMax = maximum wave mixing depth over growing 

season 

Maximum wave mixing depth proved to be a better predictor of minimum seagrass depth 
of occurrence than the average value or average + 2SD (Table 11).  Seagrass occurring on 
sediments of class 12 (sand-silt-clay) were most sensitive to wave mixing depth (Figure 
16).  Residuals showed no evidence of nonlinearities, a slight tendency for increasing 
variance with the mean, and were close to a normal distribution but with three outliers 
identified (Figure 17). 
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Table 11. Fixed effects for model 6 predicting seagrass minimum depth of occurrence by shoreline distance. 

Coefficients: Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.30 0.09 3.4 8.07E-04 *** 

halflen0708gsmMax 0.03 0.01 4.7 2.89E-06 *** 

fSED412 5.53 1.30 4.3 2.34E-05 *** 

fSED47 0.74 0.11 6.5 1.50E-10 *** 

fSED4810 0.25 0.25 1.0 0.32 

fSED4810 x 
halflen0708gsmMax 0.004 0.019 0.2 0.82 

fSED47 x halflen0708gsmMax -0.04 0.01 -4.3 1.65E-05 *** 

fSED412 x 
halflen0708gsmMax -0.37 0.10 -3.8 0.000158 *** 

Figure 16. Interaction of sediment class and maximum wave mixing depth on minimum depth of seagrass occurrence (model 
6).  SED4 class definitions are: 12 = sand-slit-clay; 810 = silty and sandy-silt; 5 = sand; 7 = silty sand. 
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Figure 17. Diagnostic plots for model predicting minimum seagrass depth of occurrence (model 6) a) Residuals versus 
predicted values, b) Q-Q plot of residuals(dashed line shows expectation for normal distribution), and c) residuals versus 
leverage, highlighting presence of three outliers (labelled). 
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3.1.2.6 Shoreline Segment Maximum Depth of Occurrence 
Based on a comparison of AIC values, a GAM model provided a superior fit over GLM 
models in predicting maximum depth of seagrass occurrence (Figure 18): 

(7) bathymmax = s(cL10secchiavMax) + s(cL10pttocMax) + 
s(cL10USRMARIkm2Max) r2adj= 0.2 

where s = smoothing function 

cL10secchiavMax = centered log10 maximum of seasonal average 
Secchi depth (m) 

cL10pttocMax = centered log10 maximum of sediment total organic 
carbon (%), and 

cL10USRMARIkm2Max = centered log10 maximum of unsewered 
residential units on high infiltration soils/km2 

Although the GAM model provided the best fit from a statistical viewpoint (lower AIC value 
of 6838.7 as compared to 7110.6), the best GLM model may provide a more practical and 
realistic option, i.e., without overfitting the data.  Therefore, we are presenting the best 
GLM model fit as well, determined using the step option in GLM, which had an AIC of 
7110.6 as compared to the next best model with an AIC of 7112.2: 

bathymmax = csecchiminMax + cpttocMax + cUSRMARIkm2Max + 
csecchiminMax:cpttocMax + csecchiminMax:cUSRMARIkm2Max + (8) 
cpttocMax:cUSRMARIkm2Max,  

where bathymmax = maximum depth of seagrass occurrence at shoreline 
index i 

csecchiminMax = centered maximum of Secchi depth seasonal 
minimum at shoreline index I, and 

cpttocMax = centered maximum of sediment percent total organic 
carbon at shoreline index i 

Although main effects for minimum Secchi depth and density of unsewered residences on 
high infiltration soils were not significant, they were retained in the model because these 
terms were included in significant interaction terms.  Maximum depth of seagrass 
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Figure 18. Smoothing functions in generalized additive model 7 to predict maximum depth of seagrass occurrence by 
shoreline position. a) Centered log10 shoreline maximum average Secchi depth (m), b) Centered log10 shoreline maximum 
unsewered residences on high infiltration soils/km2, and c) Centered log10 shoreline maximum sediment total organic  
carbon (%). 
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occurrence tended to increase with sediment total organic carbon at high Secchi depths but 
decrease with TOC at low Secchi depths (Figure 19).  Interaction effects involving density of 
unsewered residences were significant but weak (Table 12).

Table 12. Fixed effects in generalized linear model 8 predicting maximum depth of occurrence for seagrass at shoreline 
index i. 

Coefficients: Estimate 
Std. 
Error t-value Pr(>|t|) 

(Intercept) 1.43 0.02 79.3 < 2.00E-16 *** 
cUSRMARIkm2Max 0.0003 0.0008 0.4 0.72197 
csecchiminMax -0.02 0.03 -0.6 0.53662 
cpttocMax -0.26 0.03 -8.7 < 2.00E-16 *** 
csecchiminMax x cpttocMax 0.63 0.05 13.7 < 2.00E-16 *** 
csecchiminMax x 
cUSRMARIkm2Max 0.004 0.001 3.1 0.00166 ** 
cpttocMax x cUSRMARIkm2Max 0.003 0.001 1.9 0.05699 . 
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Figure 19. Interactive effects of centered sediment total organic carbon and shoreline maximum of seasonal minimum Secchi 
depth on maximum seagrass depth at shoreline index I (model 8).  Sediment TOC has a stimulatory effect at high Secchi 
depths but an inhibitory effect at low Secchi depths.  Secchi depth for each plot is indicated by brown vertical line in each tan 
horizontal header.



Chapter 4. Discussion 

4.1 Data and modeling challenges and constraints for statistical predictive 
seagrass models 
Development of predictive statistical models for seagrass occurrence is inherently 
challenging, but the problems can be addressed through application of a framework to 
describe spatial autocorrelation of seagrass patches, new techniques for incorporating SAC 
terms into predictive models, and careful selection of independent variables to avoid cross-
correlations.  Problems to be solved include the need to predict at fine spatial resolutions 
over large areas with associated memory constraints, spatial autocorrelation of model 
residuals with anisotropy, serial correlations in time series, and potential cross-correlation 
of predictive variables that co-vary with water depth or with salinity gradients from head-
of-tide to estuarine mouth.  We successfully applied strategies to limit difficulties with 
parameter cross-correlations: using centered variables, carefully selecting the reference 
sediment class against which to compare other sediment factors, choosing alternative 
strategies to relate transparency and mixing depth to water depth as a difference versus 
binary variable, and dropping correlated variables (e.g., temperature) of lesser interest.  
After quantifying the actual range of SAC both parallel and perpendicular to the shoreline, 
we were successful in incorporating terms for spatial autocorrelation into models using a 
modified version of the Crase et al. (2012) approach.  Although memory constraints limited 
the number of R packages available for analysis, we were successful in applying the 
glmmPQL package. 

Our modelling approach and national data sources should be applicable to other estuaries, 
with substitution of localized data sources for finer resolution data or more site-specific 
information on seagrass disturbances where appropriate. With some exceptions, the 
significant components of the predictive models developed here for seagrass presence are 
available for estuaries across the United States: bathymetry, salinity, grain size, wave 
mixing depth (derived from bathymetry and wind speed and direction), sediment percent 
total organic carbon, density of unsewered residences on high infiltration soils, and historic 
seagrass extent.  For some variables, we used more localized sources of data because of 
their improved spatial resolution, e.g., sediment grain size.  While satellite imagery is 
available to predict optical properties of seawater, most algorithms developed to date are 
not appropriate for coastal waters (< 30 meters depth) and so we used local monitoring 
data for Secchi depth.  As coastal algorithms for optical parameters are improved, 
appropriate satellite data will become more readily available (Keith et al. 2014).  We were 
able to use NOAA’s WEMo model to predict wave energy (Fonseca and Malhotra 2010); 
however, this model has not been updated for versions of ArcMap beyond 9.3 so will not be 
readily available to other users.  It is possible that coarser estimates of relative wave 
energy such as metrics within the USGS Coastal Vulnerability Index (Hammar-Klose and 
Thieler, 2001) could serve as a proxy for WEMo model values; that option has not been 
tested here.  Other researchers will have access to an updated version of the USGS WAVES 
extension for ArcMap, which provides estimates of wave mixing depth.  We relied on some 
local maps of disturbance indicators (distance to hardened shoreline and marinas, Canada 
goose density) but these effects were marginal in models.   
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It is possible to incorporate spatial autocorrelation in predictive models for seagrass, 
rather than avoiding it by sampling at coarser scales to avoid SAC, and ignoring the 
inherent patchiness of seagrass distributions.  Seagrass currently occurs in narrow linear 
patches within Narragansett Bay and thus we modeled seagrass occurrence at a fine spatial 
scale (10 meter grid cells).  Even after restricting model boundaries to the zero to five 
meter depth zone and to the parameter space within which seagrass is currently found in 
Narragansett Bay, we were still faced with the challenge of developing models with a very 
large data set (518856 10 x 10 meter grid cells or 19172 10-meter length shoreline 
locations).  The magnitude of our data set restricted the statistical packages and 
approaches we could use for binomial GLMMs and GAMMs due to memory and processing 
time constraints.  However, incorporation of a residual autocorrelation term in models 
allowed us to account for spatial autocorrelation in models in a less memory-intensive 
manner than would have been required by simultaneous fitting of spatial autocorrelation 
model distributions (with anisotropy).  We were able to create realistic representations of 
spatial patterns (patchiness) in seagrass distribution by 1) incorporating shorelines as a 
random “founder” effect, 2) defining spatial coordinates relative to longshore and offshore 
distance, and 3) calculating moving averages of residual autocorrelation based on zones 
reflecting different ranges of spatial autocorrelation in longshore versus offshore 
directions. 

Unexplained variation in our models could have been related to factors we did not include 
in predictive models due to lack of available data, including: biotic effects 
(epiphyte/grazing interactions, macroalgae competition, bioturbation and bioirrigation 
effects by fauna [Nelson 2009]), sediment sulfide/redox (Goodman et al. 1995), tidal range 
effects on minimum depth potentially interacting with light availability (Koch et al. 2001), 
wave energy associated with winter storms (Kelly et al. 2001), historic hurricanes or 
tropical storms, tidal currents, anthropogenic disturbance (shellfish dredges or rakes, 
anchor beds, propeller scars; see Neckles et al. 2005, Oakley et al. 2013), and restoration 
activity.  We also failed to include all potential interaction terms in the models due to 
problems with variance inflation factors. Any of these factors could have contributed to 
unexplained variation; yet, despite this and the other challenges inherent in predicting 
seagrass distributions, our prediction of seagrass absolute or average presence/absence at 
shoreline locations was very robust, with area-under-the-curve (AUC) values associated 
with Receiver Operating Characteristic (ROC) curves of 0.95 – 0.98 

4.2 Comparative performance of alternative modeling approaches 
This was the first study to explicitly address spatial autocorrelation in eelgrass models 
using mixed models. Failure to account for spatial autocorrelation in species distribution 
models can inflate the significance of explanatory variables (Crase et al. 2012).  Most 
researchers developing predictive models for eelgrass habitat have either ignored the 
potential for spatial autocorrelation and effects on variable selection (e.g., Krause-Jensen et 
al. 2003, Grech and Coles 2010) or have selected sample points at a minimum distance 
apart to avoid spatial autocorrelation (Downie et al. 2013).  Although the latter strategy 
takes care of the issue from a statistical standpoint, it fails to acknowledge the positive 
feedback effects of seagrass on sediment stability and the light environment, and cannot 
successfully predict the patchy nature of seagrass distribution. However, patch dynamics or 
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cellular automata models (Wortman et al. 1997, Fonseca et al. 2000b, Fonseca et al. 2004, 
Schonert and Milbradt 2005) do predict this patchiness.  Incorporation of a term for spatial 
autocorrelation allowed us to avoid overestimation of percent variance explained and to 
reduce the number of significant predictors in our final regression models to an 
appropriate number.  Examples of terms dropped following addition of SAC error terms 
include the shoreline isolation term in some models and the number of sediment classes 
among which we could detect differences in either main effects or interactions with wind 
energy or wave mixing depth.   

Models predicting seagrass presence were more robust at the shoreline scale than at the 
individual grid cell (Table 13).  Between original tests and 10-fold cross validation results, 
model performance measurements declined considerably based on 10-fold cross-validation 
at the grid-cell scale but stayed constant at the shoreline scale.  Model performance was 
slightly better for prediction of presence/absence as compared to average 
presence/absence at the shoreline segment.  Model performance for prediction of average 
shoreline presence/absence was significantly degraded after information on historic 
eelgrass presence/absence was included in models. 

Table 13. Summary of model performance at different scales, based on resubstitution or 10-fold cross-validation and with or 
without incorporation of data on historic seagrass coverage. 

Dependent 
variable 

Historic 
P/A 
included? 

Resubstitution 
or 10-fold cv? 

AUC 

Grid cell P/A No R 0.98 
Grid cell P/A No 10xcv 0.71 
Shoreline max P/A No R 0.95 
Shoreline max P/A No 10xcv 0.95 
Shoreline max P/A Yes R 0.98 
Shoreline max P/A Yes 10xcv 0.98 
Shoreline avg P/A No R 0.89 
Shoreline avg P/A No 10xcv 0.72 
Shoreline avg P/A Yes R 0.62 
Shoreline avg P/A Yes 10xcv 0.62 

We have chosen the AUC statistic to compare performance across our models and between 
our models and those of others because it is insensitive to the probability of occurrence of 
the species of interest, unlike overall prediction accuracy and some other measures 
(Fielding and Bell 1997).  Some researchers present only an overall prediction accuracy, so 
we are unable to compare their results with ours.  The AUC statistic represents the area 
under a ROC curve, and varies between 0 and 1, with a value of 0 representing zero 
predictive power, 0.5 representing predictions no better than chance, and 1 representing 
perfect predictions.  The ROC curve is a plot that demonstrates the performance of a model 
predicting a binary variable.  It is created by plotting the true positive rate (sensitivity) 
against the false positive rate (1 – specificity) as the discrimination threshold is varied. 



Our models predicting seagrass P/A at the 10 x 10 meter grid cell scale did not perform as 
well as some existing models predicting P/A at 25 x 25 meter or 50 x 50 meter grid cell 
scales, but our model performance for predicting shoreline occurrence exceeded earlier 
reported AUC statistics. Valle et al. (2013) calculated AUC values with 5-fold cross-
validation to compare regression approaches (GLM, ANN, MARS, GAM) with machine 
learning methods (BRT, RF) to predict seagrass presence/absence at the (50m x 50m) grid 
cell scale.   At a grid-cell scale 25 times coarser than our model predictions, their best GLM 
model performance had a mean AUC of 0.84, while their best models based on boosted 
regression tree methods yielded a mean AUC of 0.94.  Using an independent test set 
comprised of 30% of available data, Downie et al. (2013) compared the model performance 
using GAM and maximum entropy modeling (Maxent) and found model AUC values of 0.84 
(GAM) and 0.80 (Maxent) at a grid cell scale of 25 x 25 meters.  It is possible that our model 
performance at the grid cell scale is lower than that obtained by other researchers because 
of the finer scale of our grid cells, or because of differences in study area characteristics and 
the predominant form of Z. marina (intertidal annual versus subtidal perennial) found in 
each setting. Our models predicting shoreline presence were robust and yielded predictive 
accuracy (AUC values) equal to or better than the results of Downing et al. (2013) or Valle 
et al. (2013).  It is important to note, however, that our models incorporated a random 
shoreline effect which explained much of the background variability within the estuary 
(see discussion below). 

Although GAM models can perform better than GLM models based on AIC and  
AUC values, they may overfit the data and can be replaced with GLM models incorporating 
higher-order terms to capture nonlinearities.  In the one case where we could derive a GAM 
model for comparison with a GLM to predict maximum depth of eelgrass occurrence, the 
statistical fit of the GAM model was better based on AIC values.  Likewise, Valle et al. (2013) 
found better performance for GAM models (mean AUC = 0.93) as compared to GLM models 
(mean AUC = 0.84) in predicting eelgrass presence/absence.  However, the multiple peaks 
we observed in response curves had no mechanistic basis, suggesting that GAM models 
were probably overfitting the data.  It is likely that higher order terms in GLM models are 
sufficient to capture nonlinear responses in logistic models.  Addition of a second order 
term can yield an S-shaped probability plot, while addition of a third-order term can 
describe a unimodal response to an environmental gradient. 

4.3 Relative importance of different factors in predicting seagrass P/A 

4.3.1 Seagrass sensitivity to different environmental variables in Narragansett Bay 
We can compare the sensitivity of seagrass survival and persistence to different 
environmental variables by comparing the potential change in ln(odds ratio) over the 
range of each predictor in the Narragansett Bay area of interest.  For predictors involving 
higher order terms, we can predict minimum and maximum potential contributions.  For 
interaction terms, we can examine sensitivity at high and low ends of modifying factors 
(Table 14).  For the model predicting seagrass presence/absence at the grid cell scale, the 
most influential predictor was Secchi depth, followed by, in order: shoreline isolation, 
sediment percent total organic carbon, sediment type, and salinity.  The least influential 
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variable was water depth greater than average wave mixing depth.  For the model 
predicting presence of seagrass at shoreline locations, the most influential predictor is 
sediment type, followed by percent total organic carbon (at low Secchi depth), then salinity. 

4.3.2 Seagrass sensitivity to different environmental variables in other regions 
Managers need to consider the energy environment of different regions and estuarine 
hydrogeomorphic types and different growth forms in comparing the predictions of 
seagrass models and the relative influence of different predictor variables. Most of the 
regression or machine-learning models developed for predicting presence/absence of 
Zostera marina are based on analyses of western Europe datasets, e.g., the Baltic Sea and 
Wadden Sea (Krause-Jensen et al. 2003, van der Heide et al. 2009, Downie et al. 2013, Valle 
et al. 2013,) or of the Great Barrier Reef (Grech and Coles 2010).  In many of these cases, 
the energy regime (relative wave exposure, current velocity) and/or substrate are the 
predominant variables predicting eelgrass presence (Grech and Coles 2010, Downie et al. 
2013, Valle et al. 2013).  However, investigators predicting eelgrass presence over larger 
regions have found that light availability (Krause-Jensen et al. 2003, van der Heide et al. 
2009), total N in surface water (van der Heide et al. 2009), and, to a lesser extent, salinity 
(Krause-Jensen et al. 2003) are the driving factors predicting eelgrass presence. 

Results from the models developed for western European regions may not be comparable 
to our results for Narragansett Bay because they focus on higher energy environments (or 
those with more extreme physico-chemical gradients).  In addition, Zostera marina 
populations in the Wadden Sea are comprised of annual forms which occur in intertidal 
zones dominated by frequent disturbance and less subject to light limitation.  Both the 
robust perennial form of Z. marina and the more flexible annual form occurred in the 
Wadden Sea prior to the incidence of wasting disease in the 1930s, but the perennial form 
never recovered (van Katwijk et al. 2009).  Narragansett Bay populations of Z. marina are 
currently subtidal and are presumably composed of the perennial form.  Most studies of the 
factors affecting eelgrass presence/absence have ignored the distinction between annual 
and perennial forms of Z marina.  The annual form of Z. marina has been reported in Nova 
Scotia and Maine estuaries (Keddy and Patriquin 1978) and in Ninigret Pond, RI (Thorne-
Miller et al. 1983) but may be present in other New England estuaries where eelgrass 
occurs in intertidal zones (e.g., Great Bay). 
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Table 14. Potential effect of independent variables across range of predictors. For sediment types, the range of coefficients is 
given.  Effects are expressed in terms of ln(odds ratio). Maximum effect for Secchi depth is at an intermediate value of the 
predictor, not the maximum. 

Model Predictor Min Max Coeff Min 
effect 

Max 
effect 

Effect 
range 

Rank 

7 cSDavgrtrZ, cSDavgrtrZ2, 
cSDavgrtrZ3 

-3.00 4.23 1.65, -0.149, -0.053 -6.14 1.09 7.23 1 

7 fISOLATED1 0 1 -5.42 0.00 -5.42 -5.42 2 

7 cptTOC, cptTOC2, cptTOC3 -1.26 2.24 -0.91, 0.65, -0.33 -3.76 1.56 5.33 3 

7 fSED4 0 1 -1.28 to 1.89 -1.28 1.89 3.17 4 

7 cSAL, cSAL2 -1.62 0.48 1.56, 0.18 -3.33 -0.49 2.84 5 

7 cUSRMARIkm -31.02 285.18 0.004 -0.12 1.14 1.26 6 

7 cDstoMarin -2242.6 252.71 -0.0005 1.12 -0.13 -1.25 7 

7 cCG046avkm -3.60 28.60 0.013 -0.05 0.37 0.42 8 

7 fZgtMXZavT1 0 1 0.35 0.00 0.35 0.35 9 

8 fSED8 0 1 -3.55 to 3.62 -3.55 3.62 7.17 1 
8 cpttocMin at min 

csecchimin 1.46 -3.05 
-4.51 2 

8 csalAv -1.72 0.38 1.57 -2.70 0.60 3.30 3 
8 cpttocMin at max 

csecchimin 0.54 -1.13 
-1.67 4 

8 cDistToHdS -537 1965 -6.55E-04 0.35 -1.29 -1.64 5 
8 fZgtMXZavMTRUE 0 1 1.55 0.00 1.55 1.55 6 
8 cwindMin -8572 73428 -1.50E-05 0.13 -1.10 -1.23 7 
8 cCG046avkm -3.9 28.3 0.033 -0.13 0.93 1.06 8 
8 cDstoMarin -328 2174 -2.55E-04 0.08 -0.55 -0.64 9 
8 csecchimin at max 

cpttocMin -0.801 -0.055 
0.75 9 

8 csecchimin at min 
cpttocMin -0.004 0.010 

0.01 10 
8 csecchimin -0.84 2.16 0.31 
8 cpttocMin -1.13 2.37 -1.06 
8 csecchimin:cpttocMin 0.27 

4.3.3 Limitations to existing regression models to predict seagrass in U.S. estuaries 
In contrast to our approach, most regression models predicting eelgrass presence and/or 
cover in U.S. estuaries include a smaller subset of variables at a time, generally focusing 
either on nutrients and/or light availability (Duarte 1991, Latimer and Rego 2010, Benson 
et al. 2013, Kenworthy et al. 2014) or on the energy regime (Kelly et al. 2001) but not 
considering additive or interaction effects (Koch 2001).  Developers of habitat or 
transplant suitability indices for eelgrass have considered a combination of eelgrass 
colonization sources, substrate characteristics, wave exposure, and water quality/light 



environment based on data from empirical or experimental studies but tend to give these 
factors equal weight and do not consider potential factor interactions.  In more focused 
studies, researchers have provided empirical and/or experimental evidence for interactive 
effects of light availability with sediment organic matter content (Wicks et al. 2009, 
Kenworthy et al. 2014) or of salinity with nutrients (van Katwijk et al. 1999). 

4.3.4 Comparison of estimates for light compensation depth and optimum light levels 
Interpretation of predictions of light compensation points (maximum depth occurrence) 
and optimum light levels depends on the vertical datum of the merged topobathymetric 
grid used to estimate water depth.  We used NOAA’s Coastal Relief Model (CRM), in which 
source bathymetric data retained their original vertical datum of either mean lower low 
water (MLLW) or mean low water (MLW), while source topographic data remained in 
either North American Vertical Datum (NAVD) 88 or National Geodetic Vertical Datum 
(NGVD) 29 prior to merger.  Given the semi-diurnal nature of tides in Narragansett Bay, the 
MLLW value is the tidal datum of interest.  Mean tidal range between MLLW and Mean 
Higher High Water (MHHW) varies from 0.876 to 1.55 meters at NOAA tidal stations in 
Narragansett Bay having a recorded datum 
(http://tidesandcurrents.noaa.gov/stations.html?type=Datums), with an average value of 
1.27 meters. 

Our model for seagrass presence/absence at the grid cell scale yields comparable 
information on effects of light availability on seagrass maximum depths to values in the 
literature.  Our model for seagrass presence at the grid scale predicts a maximum 
probability of occurrence at a centered Secchi depth (average Secchi depth – water depth) 
value of 2.4 meters, which corresponds to a precentered value of 2.4 + (-0.433) = 1.97 
meters.  Our model also predicts an odds ratio of 1 (p = 0.5) at a centered difference value 
of 0.985 meters, corresponding to a pre-centered value of 0.985 - 0.433 = 0.552 meters.    If 
we make the assumption that eelgrass light limitation depends on the mean tidal level, then 
the model-predicted compensation depth would be 0.552 - (1.27/2) = -0.083 meters 
greater (0.083 meters less) than the Secchi depth, or (2.44-0.083)/2.44 = 0.96 times 
average Secchi depth.  Duarte’s compilation of compensation points for Z. marina from the 
literature yields a prediction of Zc = 1.86/K, as compared to Dennison’s (1987) value of 
1.62/K for  northeastern U.S. estuaries, and Nielsen and colleague’s (1989) value of 1.53/K.  
Using Poole and Atkin’s (1929) relationship between the light attenuation coefficient, K, 
and Secchi depth (K = 1.7/S.D.), these correspond to a range of 0.9 – 1.11S.D. for Zc.  Our 
estimate of 0.96 times average Secchi depth at an odds ratio of 1 (probability of 0.5) falls 
well within the range of values reported by Duarte (1991) for the light compensation 
depth. 

Although our model predicted an optimum light level for seagrass growth, the shoreward 
limits to seagrass are more likely related to physical disturbance.  Most researchers have 
only evaluated maximum depth limits for eelgrass related to light limitation, with no 
estimation of optimum light levels.  Krause-Jensen et al. (2003) found that the probability 
of eelgrass occurrence in Danish coastal waters increased up to 60% of surface irradiance 
(at about 4 meters depth), and then cover declined at higher values.  Although Krause-
Jensen suggested that although this could have been related to photoinhibition at higher 
levels, our models suggest it was more likely related to the increased probability of 
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physical disturbance at shallower depths. Optimum light values for eelgrass in our model 7 
occurred at depths of 1.97 meters less than average Secchi depth, or approximately 2.44 – 
1.97 + (1.27/2) = 1.105 meters depth relative to Mean Tidal Level (MTL) for average 
Secchi.  A Secchi depth of 2.44 meters corresponds to a Kd of 0.70, which would yield a light 
intensity of 1% incident light at 6.6 meters depth.   

Our model for seagrass shoreline occupancy incorporated an interaction term between 
water depth relative to Secchi depth and sediment percent total organic carbon which is 
consistent with the literature.  This interaction has also been observed by Kenworthy et al. 
(2014) for southeastern MA embayments, with a decrease in eelgrass compensation depth 
as sediment organic matter increases.  This is likely due to the increase in sulfide content of 
sediments with increased organic matter content and associated toxicity (Goodman et al. 
1995, Holmer and Bondgaard 2001). 

4.3.5 Seagrass sensitivity to factors other than transparency 
Our models showed mixed evidence for the effect of unsewered residences on high 
infiltration soils, an indicator of potential groundwater N inputs.  In two cases, model 
coefficients were negative, in one case positive, and in one case the variable showed weak 
interaction effects with other nutrient-related variables.  Valiella’s model incorporates the 
potential effect of unsewered residences on nitrogen loads (Valiella et al. 2004), but 
applications of his model to predict load effects on seagrass have not attempted to separate 
the effects of reduced transparency related to phytoplankton biomass with other effects 
related to groundwater inputs (Latimer and Rego 2010).  It is possible that groundwater 
DIN inputs could favor the growth of macroalgae and/or periphyton at the expense of Z. 
marina (Harlin and Thornemiller 1981, Costa 1988, Teichberg et al. 2010).  Unsewered 
residence density might have shown a stronger and more consistent effect in our models if 
we had accounted for variability in residence time in various subembayments within 
Narragansett Bay as was done by Latimer and Rego (2010).   

The range of salinity values encompassed by effects predicted by our model (26.6 – 28.7) is 
well within the tolerance ranges reported for Zostera marina populations in the literature: 
5 to 35 Practical Salinity Units (PSU) in the northern hemisphere (den Hartog 1970) but 
slightly greater than ranges of 14 to 22 PSU reported for the Chesapeake Bay (Wetzel and 
Penhale 1983).  Salinity effects predicted by our models could have been related to either 
direct negative effects of salinity and energetic costs of osmoregulation, the interactive 
effects of salinity and DIN, or the correlation of the salinity gradient with the gradient of 
dissolved inorganic nitrogen (DIN) and total nitrogen (TN) in Narragansett Bay (Krumholz 
2012).  Salinity and nitrate can have synergistic interactions, possibly related to the 
tendency to incorporate low C (high N) amino acids as tissue nitrogen levels increase in 
contrast to the need to generate the high C/low N amino acid proline involved in 
osmoregulation (van Katwijk et al. 1999).  Van Katwijk et al. (1999) observed a decreased 
tolerance of Z. marina to eutrophication at salinity levels of 26–30 ppt.  It is likely that the 
negative coefficient for salinity in our models reflects the negative impacts of water column 
TN, and possibly an interaction between salinity and TN effects. 

We found a strong interactive effect between wave mixing depth and sediment type on 
minimum depth of seagrass occurrence, with the effect strongest on gravel and sandy 
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gravel sediments, which probably also represent high energy environments.  However, 
wave mixing depth was the least influential predictor in our eelgrass model predicting 
seagrass presence at the grid cell scale.  Numerous researchers have reported a negative 
effect of relative wave energy on seagrass presence, both in western Europe systems 
(Downie et al. 2013, Valle et al. 2013) and in the United States (Kelly et al. 2001), but these 
cases represent systems with more extreme energy gradients.  Fewer researchers have 
tried to test the relationship of wave mixing depth with minimum depth extent of eelgrass.  
Chiscano (2000 in Koch 2001) found a poor relationship between minimum depth of 
occurrence and wave mixing depth in shallow portions of the Chesapeake Bay with gentle 
slopes.  Our models indicated that wave mixing depth in combination with sediment 
particle size was a significant factor determining minimum depth of seagrass occurrence. 

The effects of sediment characteristics on habitat suitability for eelgrass have historically 
been examined in isolation.  Most evaluations of particle size effects have been correlative 
in nature (Nelson 2009), but two studies did demonstrate greater growth rates on finer 
sediments than on coarse sand or sand plus gravel, possibly related to nutrient availability 
(Short 1987, Thom et al. 2001).  Earlier evaluations of the effect of sediment organic matter 
on eelgrass presence tended to be correlative as well, but more recent studies have 
elucidated the same interaction between light compensation point (maximum depth of 
occurrence) and percent organic matter in sediment types that we observed (Kenworthy et 
al. 2014). 

Somewhat surprisingly, our shoreline model for seagrass relative abundance was not as 
robust after we incorporated historic seagrass presence, distance, and patch size as 
predictors in the model, suggesting that seagrass patch distribution may represent a 
dynamic equilibrium with significant transition probabilities.  In examining a 14-year time 
series of intertidal eelgrass distributions in the Ems estuary in the Netherlands, Valle et al. 
(2013) found transition probabilities of 12.7% for colonized areas and 12.9% for areas that 
had disappeared, suggesting that patches are relatively mobile in this system even though 
total area is relatively stable.  Valle et al. (2013) characterize these intertidal populations as 
r-selected in response to the high disturbance environment they are found in.  Likewise, 
Kelly et al. (2001) predicted that 16% of the seagrass area in their system was highly 
susceptible to acute storm events.  These studies suggest that predictive models will have 
an inherent error rate and possibly a tendency to overpredict seagrass presence, i.e., a 
significant proportion of suitable habitat may be unoccupied during any given year.  
Moreover, recolonization rates may be slower in the Northeast, leading to less patch 
predictability from year to year.  Based on observed trajectories, Neckles et al. (2005) 
projected recovery times of over 10 years for dragged eelgrass patches in Casco Bay, Maine.  
Recovery rates may also depend on the availability of seed sources and the presence of 
annual versus perennial forms of Z. marina (Jarvis and Moore 2010) which will determine 
the rate of vegetative spread versus sexual reproduction.  The poor contribution of location 
of historic seagrass patches to prediction of current seagrass patch locations suggests that 
Narragansett Bay is not in a state of equilibrium and that patch locations may vary from 
year to year, perhaps due to lags in recovery from disturbance. 
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Random effects of shoreline code showed extreme differences in probability of seagrass 
colonization, possibly due to hysteresis effects.  This was surprising, given the widespread 
historic occurrence of seagrass in Narragansett Bay prior to the incidence of wasting 
disease in the 1930’s (Figure 20).  It is possible that this discrepancy in historic and current 
habitat extent is due, in part, to effects of hysteresis related to positive feedbacks of 
seagrass on sediment stabilization (van derHeide et al. 2007).  Van derHeide et al. (2007) 
used a simple model relating Z. marina growth rates in the Wadden Sea to light availability 
which was affected by background levels of suspended solids (SS) in the water column, an 
increase in SS towards the sediment surface reflecting resuspension, and the reduction in 
resuspension of SS as Z. marina biomass increases and dampens tidal currents and wave 
action.  This simple model predicts that seagrass and bare sediment represent alternative 
stable states in coastal waters.  Seagrass can persist until dramatic reductions due to a 
disturbance or disease, after which recovery may be unlikely or impossible in some zones 
because of the resuspension of fine sediments in the shallow nearshore zone which reduce 
light availability. 

Tidal currents estimated for Narragansett Bay are sufficiently strong to resuspend fine 
sediments and reduce the probabilities of eelgrass re-establishment following disturbance, 
but not strong enough to damage existing eelgrass beds.  Oviatt and Nixon (1975) 
measured sediment resuspension rates in Narragansett Bay 8–20 times greater than 
sediment deposition rates, with resuspension rates greatest 1 meter above the sediment 
and decreasing towards the water surface.   Likewise, Collins (1976) found an increase in 
transparency in upper waters of the Bay from north to south, but a corresponding increase 
in a bottom turbidity plume which extended 1 meter above the sediment in shallower 
stations to up to 4 meters above the sediments at deeper stations.  Tidal currents or 
maximum orbital velocities associated with wave action greater than 15 to 30 cm/sec are 
sufficient to resuspend the fine sediments (clay, silt and find sand) predominant in much of 
Narragansett Bay (Oviatt and Nixon 1975).  Maximum tidal currents during ebb flow in 
Narragansett Bay are typically above the 15-30 cm/s range in the mid to lower Bay, except 
for selected protected areas (Figure 21).  Note that most thresholds for physical damage to 
mature eelgrass by currents are somewhat higher than those required for fine sediment 
resuspension, in the range of 40 – 180 cm/sec, beyond the maximum tidal currents 
predicted for the bay (Nelson 2009).  Therefore, once established, eelgrass would be 
expected to survive throughout much of the bay given adequate light, sediment quality and 
protection from wave energy.   Maximum wave orbital velocities calculated for the 2009 
growing season were much lower, with areas of potential resuspension very close to the 
shore and average probability of suspension for fine sand equal to 6.5 % for those areas 
(Figure 22). 
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Figure 20. Historic occurrences of seagrass in Narragansett Bay compiled by Kopp (1995). 
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Figure 21. Predicted 2010 maximum tidal currents (m/sec) during ebb tides (from NOAA tidal currents web site:  
http://tidesandcurrents.noaa.gov/curr_pred.html).  Points represent predicted values at tidal stations.  Shaded areas were 
nterpolated within the 0-5 meter depth zone by inverse distance weighting (2 point interpolation with shorelines as barriers 
to interpolation). 

http://tidesandcurrents.noaa.gov/curr_pred.html


Figure 22.  Probability of fine sediment resuspension based on USGS WAVES model for growing season.  Average probability 
of resuspension for limited nearshore areas where the average probability greater than zero is 4.9%. 

4.4 Model application for assessing management scenarios 
Here we demonstrate an application of our model to support adaptive management, with 
prediction of the effects of planned reductions in total nitrogen loadings from wastewater 
treatment plants (WWTPs) and from atmospheric deposition.  Our predictive models 
contain four terms related to direct or indirect nitrogen effects on seagrass presence: 
density of unsewered residences on high infiltration soils (indicator of groundwater N 
inputs), salinity (indicator of N gradient), Secchi depth, and sediment percent total organic 
carbon.  The density of unsewered residences on high infiltration soils is likely correlated 
with groundwater N concentrations (IEC 2012), although there may be a lag in response 
due to groundwater travel time.  The range of salinity values encompassed by this model is 
well within the tolerance ranges reported for Zostera marina populations: 5 to 35 PSU in 
the northern hemisphere (den Hartog 1970) and historically, seagrass was found in 
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Narragansett Bay from the lower Providence River south to the mouth of the estuary 
(Figure 20).  Thus, it is probable that the modeled positive response to salinity over the 
range of 26 to 28.5 PSU in Narragansett Bay represents a response to the inversely 
correlated gradient in surface water nitrogen concentrations from head-of-tide to the 
mouth of the estuary (Krumholz 2012).  Nitrogen can exert negative effects on seagrass 
independent of light reductions from phytoplankton shading, e.g., through stimulatory 
effects on epiphytes (Costa 1988) and macroalgae (Teichberg et al 2010) which reduce 
light availability and increase anoxia in the sediments.  Costa estimated that the depth of 
eelgrass growth in Buttermilk Bay (a well-flushed sub embayment within Buzzards Bay) 
decreased by 9 cm for every 1 µM increase in dissolved inorganic nitrogen due to increased 
shading by periphyton growth (not phytoplankton).  In Narragansett Bay, an increase in 
salinity from 26 to 28.5 ppt corresponds to a reduction in TN from 0.508 to 0.419 mg N/L.   
If Costa’s relationship for a well-flushed estuary holds in Narragansett Bay, this change in 
TN would yield an estimated increase in maximum depth of seagrass of 1.2 meters in 
response to reduced periphyton shading. 

Model coefficients for Secchi depth capture the response of seagrass to increased light 
availability.  Following improvements in wastewater treatment in the 1970’s, the 
transparency of Narragansett Bay improved as TSS loadings from wastewater treatment 
plants (WWTPs) decreased (Borkman and Smayda 1988).  Turbidity values are now 
uniformly low along the main axis of the bay (Nu Shuttle data; 
http://www.narrbay.org/d_projects/nushuttle/shuttletree.htm).  It is likely that most of 
the downstream gradient in transparency in the upper water column is related to changes 
in chlorophyll a concentration.   

Assuming that salinity is an indicator of nitrogen loading gradients related to tidal flushing, 
we can also estimate the effect of N load reductions indirectly by converting the salinity 
gradient in the study area to the corresponding gradient in total N.   Based on an overlay of 
nutrient sampling stations from Krumholz (2012) with our salinity grid, we calculated the 
relationship between the estuarine gradients in salinity and total N: 

TNanavg = 1.461 - 0.0417 Sal (r2 = 0.86) 

TNsmravg = 1.431 – 0.0355 Sal (r2 = 0.79) 

where TNanavg = annual average total N (mg N/L) for 2006 – 2010 surveys 

TNsmravg = summer average total N (mg N/L) for 2006-2010 surveys 

Sal = salinity (PSU) 

We can estimate the potential effect of N concentration reductions on transparency using a 
regional model relating chlorophyll a to the diffuse attenuation coefficient, derived from 
data for 48 estuarine sites in southeastern Massachusetts (Bensen et al. 2013): 

Chl a = 5.70 ln[TN] + 10.53 

POC = 0.11 [Chl a] + 0.12 
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K = 1.06 [POC] + 0.22, 

where 

Chl a = chlorophyll a (mg/L) 

TN = total nitrogen (mg N/L) 

POC = particulate organic carbon (mg/L) 

K = attenuation coefficient (m-1) 

and the relationship between the light attenuation coefficient and Secchi depth (Poole and 
Atkin 1929): 

Kd = 1.7/Secchi depth 

Combining these yields the following equation: 

Secchi depth = 1/(0.926 + 0.388 ln[TN]) 

The apparent light compensation point for seagrass varies with sediment percent TOC 
(Kenworthy et al. 2014), so estimates of potential seagrass recovery must factor in a lag 
time for reductions in sediment TOC.  We can estimate a short-term response to increased 
light availability by holding sediment TOC constant, and a potential long-term response 
assuming reductions in TOC content down to reference levels expected based on percent 
silt + clay.  We downloaded the raw data from McMaster’s (1960) sediment collections in 
Narragansett Bay (Poppe et al. 2003),  calculated the average percent (silt + clay) for each 
of Shepard’s sediment classes in the data set (Table 15), and then calculated an expected 
reference level of sediment total organic carbon based on Pelletier et al (2011):  

√TOC = 0.11 % silt-clay + 0.556

To simulate potential short-term effects of N load reductions we estimated a projected 
change in Secchi depth and a change in salinity “equivalents”, the latter to evaluate 
potential effects of nutrient reductions beyond transparency effects.  We kept sediment 
organic carbon levels constant, assuming that these might take some time to recover.  To 
simulate potential recovery in the long-term, we also applied the model after reducing 
sediment organic carbon levels back to reference levels based on sediment particle-size 
class. 



Table 15. Average % silt + clay in McMaster surficial sediment samples from Narragansett Bay by Shepard's sediment class 
and estimated reference level of sediment total organic carbon based on Pelletier et al. (2011). 

Shepard_class 
Avg 
%siltclay Ref %TOC 

Gravel 7.06 0.40 
Sand 9.78 0.44 
Gravelly sediment 31.35 0.81 
Silty sand 40.78 1.01 
Sandy silt 68.95 1.73 
Sand silt clay 72.92 1.84 
Clayey silt 90.32 2.40 
Silt 96.20 2.61 

We estimated potential reductions in total N loading to Narragansett Bay based on 
projected mandated changes in loadings from sewage treatment plants (Krumholz 2012), 
urban runoff (as a function of reduced atmospheric loads to impervious surfaces in the 
watershed), and reductions in direct atmospheric loadings to the water surface related to 
implementation of the Clean Air Act.  Atmospheric load reductions were based on the 
projected difference in annual loads for the open waters of the estuary between 2006 and 
2020, based on results from CMAQ model runs (downloaded from www.epa.gov/edm).   In 
2005, RIDEM mandated load reductions from sewage treatment plants at the head of 
Narragansett Bay to reduce wastewater N loading to the bay by 50% by 2014 (Krumholz 
2012).  After scheduled load reductions from WWTP beyond 2006 and projected decreases 
in atmospheric deposition, TN loads could be reduced further by ~40%.  However, actual 
reductions might be lower than planned if sediment denitrification rates continue to 
decrease (Krumholz 2012).  Based on the equations above, we would expect a 40% 
reduction in TN concentrations to result in a 2.2 meter increase of an initial Secchi depth of 
2.4 meters to 4.6 meters.  (Specific increases will vary by initial Secchi depth because of the 
inverse relationship.)  A reduction in TN concentrations would be equivalent to an increase 
in salinity of 16.6 to 19 percent in our model; we used a conservative estimate of 16.6%. 

Prediction of seagrass presence requires that we choose a threshold probability level.  
Many modelers choose a default level of 50% (odds ratio of 1) as an indicator of the 
minimum level at which seagrass is expected to exist.  Depending on the relative cost of 
false positive versus false negative errors, users may choose alternative thresholds 
(Fielding and Bell 1997).  Van derHeide et al. (2007) estimated the minimum density of 
seagrass required for positive feedback effects promoting sediment stability.  For the 
Wadden Sea this corresponded to a threshold value of 30% maximum biomass.  We 
present estimated changes in seagrass coverage based on a range of alternative thresholds.  

4.5 Model predictions of seagrass increase with decreased nitrogen loading 
There are physical constraints in the amount of potential seagrass habitat in Narragansett 
Bay.  Based on the current model, the colonized area for all shorelines combined following 
a 40% reduction in TN loads (and concentration) would increase from 12% of area in the 0 
to 5 meter depth zone to about 63% of area in the short term and slightly more in the long 
term (as sediment organic carbon levels recovered) (Figure 23a).  Given a threshold for 
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presence/absence of 0.5, we predict recovery potential in the short term to differ 
substantially among shorelines (Figure 23b).  Long term recovery (assuming return of 
sediment organic carbon to reference levels) is estimated to be virtually complete for the 
majority of the most favorable shorelines, but negligible for Shoreline 17 (yellow lines, 
Figure 23c).   These sensitivity analyses are approximate given that background 
disturbance levels might change over time and that we haven’t factored in the positive 
feedbacks in sediment stabilization due to seagrass growth.  It is possible that specific 
restoration measures such as co-restoration of shellfish beds (to reduce suspended 
sediments and effects of tidal currents and wave action) or use of existing or constructed 
coastal barriers to limit effects of wave action and tides would improve probabilities of 
initial colonization success and the initiation of positive feedback effects (Bos and van 
Katwijk 2007).  Thus, we can use our model to project ecologically significant increases in 
seagrass coverage following planned reductions in total N loading based on effects of 
nitrogen on light availability mediated by phytoplankton and periphyton growth. 

4.6 Future improvements 
Although our prediction of seagrass absolute or average presence/absence at shoreline 
locations was very robust based on our current model, our models could be improved in 
the future with the incorporation of finer resolution data and/or more sophisticated 
modeling approaches.  Accuracy of depth limits could probably be improved with better 
resolution of digital elevation models (DEMs).  NOAA's National Geophysical Data Center 
(NGDC) is building high-resolution Tsunami Inundation DEMs of select U.S. coastal regions.  
These DEMs are referenced to a vertical tidal datum of NAVD 88 or Mean High Water 
(MHW) and horizontal datum of World Geodetic System of 1984 (WGS 84). Cell sizes will 
range from 1/3 arc-second (~10 meters) to 36 arc-seconds (~1 km) 
(http://www.ngdc.noaa.gov/mgg/inundation/tsunami/inundation.html).  Although not an 
issue for Narragansett Bay, the improved resolution between the shoreline (mean sea level, 
MSL) and MLLW (currently set to zero in merged topobathymetry grids) will be 
particularly important for predicting distributions of intertidal populations.  In the near 
future, we will have access to maps of predicted tidal currents throughout Narragansett 
Bay as part of a recently developed hydrodynamic model (Abdelrhman 2015).  An 
accompanying water quality model will also include finer scale predictions of nitrogen 
concentrations throughout the estuary, so that we will not have to rely on salinity as an 
indicator of total nitrogen gradients (US EPA 2015). 
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Figure 23. Projected change in cumulative distribution function for probability of occurrence (x) following 40% reduction in 
total N without (simulation 1) and with (simulation 2) sediment recovery.  a) All shorelines combined, b) Projected short-
term effect of 40% TN reduction for 8 most favorable shorelines (favorability in order of red – orange – yellow – light green – 
dark green – light blue – dark blue – indigo) with solid lines indicating condition before TN reductions and dashed lines 
indicating projected condition after TN reductions, c) Long term recovery following 40% reduction in total N for 8 most 
favorable shorelines assuming recovery of sediment percent organic carbon to reference levels. 

A bio-optical model is also under development for Narragansett Bay (US EPA 2015), which 
could improve model inputs describing light availability.  However, the biggest limitation to 
model predictions of light availability to seagrass is the lack of information on the 
resuspension and transport of fine particulates in the nearshore zone.  Most measurements 
of light attenuation (either profiles or Secchi depth measurements) have been made in 
deeper waters along the main axis of the estuary.   Given that the Secchi depth is less than 
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the depth of highest turbidity associated with resuspended sediments near the seabed4, 
S.D. values will represent only background light attenuation and may be of limited use for 
predicting light availability in seagrass beds or within potential seagrass habitat prior to 
recovery.  Time series of light measurements from underwater HOBOs in areas of potential 
seagrass habitat both inside and outside of existing seagrass beds are needed, similar to 
recordings made for Massachusetts coastal bays (Kenworthy et al. 2014). 

We would have had access to more methods for incorporating spatial autocorrelation into 
predictive models if we were not constrained by memory requirements.  It is possible that 
use of parallel computing methods (e.g., simultaneous use of multiple CPUs in an existing 
quad core processor) through application of R packages such as snow (Tierney et al. 2014) 
would alleviate this issue.  However, we would still have to deal with the limitation of 
existing packages for methods such as regression kriging in handling anisotropy in spatial 
autocorrelation.   

We could not include all potential interaction terms in our models because of the high 
variance inflation factors generated.  Boosted regression trees (BRTs) are a robust 
approach for handling models with nonlinear effects and multiple interactions.  Of all those 
approaches tested, Valle et al. (2013) found the best performance for BRT models.  
Bayesian modeling approaches also could be useful in the future to facilitate adaptive 
management of habitat (March et al. 2013).  Ultimately, managers may need to develop 
coupled hydrodynamic/water quality/sediment diagenesis models with feedback effects to 
capture the hysteresis and lags inherent in eelgrass decline and recovery (Eldridge and 
Morse 2000, van derHeide et al. 2007, delBarrio et al. 2014, Kenworthy et al. 2014). 

Our model, like any model, could potentially be improved with additional data or enhanced 
analyses.  Nonetheless, we believe that our predictions are sufficiently robust to support 
decision-making in an adaptive management framework.  Potential applications of our 
model include identification of ALU zones for setting nutrient criteria for areas of potential 
seagrass habitat, prioritization of areas and strategies for seagrass restoration, and 
projection of potential benefits of management actions.  Even with the potential for model 
improvements discussed above, our model represents a significant advancement over 
existing models which focus on a limited set of factors influencing seagrass growth, fail to 
incorporate and correct for spatial autocorrelation, and which fail to incorporate 
interaction of environmental variables or nonlinear effects.

4 This turbidity maximum is based on depth profiles, and should not be confused with the “turbidity maximum” 
that occurs in the upper estuary reaches of some estuaries. 
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Chapter 5. Conclusions 

Our pilot project addressed the multiple challenges associated with development of species 
distribution models for seagrass: the fine-scale patchiness of seagrass distributions with 
attendant problems of spatial autocorrelation, the large areas of interest for model 
development and application entailing significant memory demands for modeling, and the 
potential co-variance of multiple interacting factors affecting seagrass.   The fine-scale of 
data necessary to describe the patchy nature of seagrass distributions coupled with the 
large model application area for management decisions create significant memory 
demands which can limit the number and type of R packages that can be applied in 
practice.  However, we found that addition of a residual autocorrelation term in logistic 
regression models, as suggested by Crase et al. (2013) virtually eliminated the presence of 
spatial autocorrelation in model residuals.  While Crase et al. limited their residual 
autocorrelation term to zonal averages calculated among adjacent grid cells, we expanded 
the focal average to cover the range of spatial autocorrelation evident from correlograms.  
The use of a rectangular zonal average allowed us to account for anisotropy in spatial 
errors, with a range of up to 1320 meters in the axis parallel to the shoreline but only 200 
meters in the offshore direction.  As predicted, incorporation of a spatial autocorrelation 
term in regression models reduced the number of significant variables included, generally 
reducing the number of distinct sediment type responses and/or interactions detected. 

We were able to deal with most but not all of the issues related to cross-correlation of 
potential explanatory variables.  Centering variables prior to incorporating them into 
models not only kept variance inflation factors values low but also aided in interpretation 
of model coefficients.  Both light availability and wave energy co-vary with depth, and both 
were significant explanatory variables.  We were able to include both types of variables in 
our models by expressing light availability effects based on the difference between Secchi 
depth and seagrass bed depth and representing the effect of wave mixing depth as a binary 
variable (depth > wave mixing depth).  Gradients that co-vary with salinity along the main 
axis of the estuary are more problematical.  Although temperature is potentially important 
in affecting seagrass populations, we excluded it because the populations we were dealing 
with were subtidal and the range of temperatures measured in our well-flushed system 
was lower than those at which effects had been observed.  We did include salinity which 
covaries with nutrient concentrations along the axis of the estuary, but given the low range 
of values, it is probably serving as a proxy for nutrient concentration effects not captured 
by changes in transparency related to phytoplankton biomass.  However, the co-varying 
gradients of salinity and nutrients would make it difficult to model interactions of nutrients 
and salinity, although these have been demonstrated experimentally (van Katwijk et al. 
1999). 

We predicted seagrass distribution at the scale of 10 x 10-meter grid cells, as 
presence/absence or average presence/absence associated with shoreline locations spaced 
at 10-meter intervals, and minimum or maximum depth of distributions at those locations.  
Prediction of seagrass absolute or average presence/absence at shoreline locations was 
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very robust, with area-under-the-curve (AUC) values associated with Receiver Operating 
Characteristic (ROC) curves of 0.95 – 0.98 following 10-fold cross-validation of models.  
Although the model predicting shoreline presence was the most robust of those tested 
across different scales in Narragansett Bay, other scales of resolution might work better for 
other types of estuaries.  In Narragansett Bay, random shoreline effects varied over several 
orders of magnitude, probably tied to the distribution of tidal currents which are weak 
enough to allow persistence of existing seagrass beds, but strong enough to resuspend fine 
sediments that interfere with successful recolonization. For the model predicting seagrass 
presence/absence at the grid cell scale, the most influential predictor of fixed effects is 
Secchi depth, followed by, in order: shoreline isolation, sediment percent total organic 
carbon, sediment type, and salinity.  The least influential variable is water depth greater 
than average wave mixing depth.  For the model predicting presence of seagrass at 
shoreline locations, the most influential predictor is sediment type, followed by sediment 
percent total organic carbon (at low Secchi depth), then salinity (as a proxy for water 
column total nitrogen).  

Multiple modes of action for nutrients can be simultaneously incorporated into empirical 
models for seagrass distribution.  We were able to capture the effects of nutrients on light 
availability, other nutrient impacts potentially related to stimulation of periphyton and 
macro-algal growth (using salinity as a proxy for total N), and longer term impacts related 
to the accumulation of organic matter in the sediments.  The latter was reflected in a 
significant interaction between the light compensation point (maximum depth) for 
seagrass and sediment percent organic carbon.  

Application of our model in predictive mode suggests that different shorelines in 
Narragansett Bay may have very different recovery potentials, and that interventions to 
reduce tidal energy and/or sediment resuspension may be needed as part of restoration 
activities.  Longer-term recovery potential, related to recovery of sediment organic carbon 
to levels characteristic of reference condition in New England estuaries, is greater than 
predicted short-term recovery potential related to reductions in total nitrogen 
concentrations in the water column and increased transparency related to reductions in 
phytoplankton biomass. 

Many of the georeferenced data layers required to parameterized species distribution 
models of this type are publically available online through EPA’s Estuary Data Mapper 
application (Detenbeck et al. 2009; www.epa.gov/edm), although spatial resolution of 
some remotely sensed indicators of water quality for estuaries are limited.  In our 
application, we made substitutions in some cases, based on spatially intensive monitoring 
that had been carried out in Narragansett Bay.  Publically available monitoring data for 
nutrients are limited to several stations, which tend to be located along the main axis of the 
bay, are extremely limited in the Sakonnet River arm of the system, and are nonexistent for 
shallow waters of the bay.  Tidal current measurement data are limited for most estuaries 
and predicted values have only been made publically available online in beta form by NOAA 
very recently.  Finer-scale predictions yielded by future publically available models may be 
critical in identifying the best protected locations for eelgrass restoration.  Our model could 
be improved by better characterization of optical parameters, particularly in the near-
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benthic environment and in the shallow waters in which seagrass is typically found.  Long-
term records of Secchi depth do not capture trends in the resuspension of fine sediments in 
the bottom waters which may be limiting seagrass recolonization. 

In spite of the methodological challenges and data limitations faced in developing a 
predictive statistical model for seagrass distribution, our model performed well and was 
particularly robust for predictions of shoreline occurrence.  Our models were also 
successful in elucidating the effect of multiple interacting stressors in determining the 
distribution of seagrass patches in Narragansett Bay, as well as factors which might limit 
recovery.  Finally, we were able to demonstrate multiple pathways for nutrient effects on 
seagrass growth and survival in the bay, including long-term effects of eutrophication on 
sediment organic carbon which could persist for decades and slow final recovery.
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Appendix A.  National and Regional Data 
Sources for Seagrass Habitat Model 
Development 

A - 1 



A - 2 

Table A-1.  National and regional data sources for seagrass habitat model development 

Parameter Data Source Original Source 
Source  
Date Description 

Link 

Current 
Seagrass 

Estuary Data Mapper Rhode Island Geographic 
Information System (RIGIS) / 
Bradley, M., K. Raposa, and S. 
Tuxbury. 2007. Report on the 
Analysis of True Color Aerial 
Photography to Map and 
Inventory Zostera marina L. in 
Narragansett Bay and 
Block Island, Rhode Island. 
Page 1-16 and 9 Mapsheets. 
Rhode Island Natural History 
Survey, Kingston, RI. 

2006 Data layer of Submerged Aquatic Vegetation (SAV) in Rhode 
Island Coastal Waters, 2006 from Rhode Island Geographic 
Information System (RIGIS).  SAV presence / absence coded 
as:  Present (1), Absent (0).  Grid cell size 10m. 

http://www.edc.uri.edu/rigis/data/ 

Sediments RI DEM Narragansett 
Bay Estuary Program 

McMaster (1960) 1960 Between 1988 and 1992 the Narragansett Bay Project 
developed an extensive listing of GIS data layers for 
applications involving Narragansett Bay. All data were 
compiled at the University of Rhode Island's Environmental 
Data Center in 1993 Prior to documenting, all data were 
reviewed for spatial and topological correctness. 

http://www.narrbay.org/biological_data.htm 

Temperature Estuary Data Mapper MUR SST - Multi scale Ultra 
high Resolution Sea Surface 
Temperature (NASA - Jet 
Propulsion Laboratory - 
California Institute of 
Technology) 

varies Used Estuary Data Mapper (EDM) to download daily sea 
surface temperature (SST) from ftp://podaac-
ftp.jpl.nasa.gov/allData/ghrsst/data/L4/GLOB/JPL/MUR/, 
and developed weekly mean SST data for the years 2003 to 
2012. In areas of the estuaries which were not covered by 
the SST data, a Euclidean distance method was used to fill in 
areas without data.  

http://mur.jpl.nasa.gov/index.php 

Salinity Estuary Data Mapper R.I. Department of 
Environmental Management.  
Bay Assessment Response 
Team.    

varies Downloaded State of Rhode Island Department of 
Environmental Management Bay Assessment & Response 
Team (BART) daily salinity data and developed weekly mean 
salinity data for stations in Narragansett Bay for the years 
2003 to 2012. Thiessen polygons were created from the 
point data to fill in all areas of Narragansett Bay.  

http://www.narrbay.org/d_projects/  

buoy/buoydata.htm 

Bathymetry  Estuary Data Mapper NOAA Coastal Data Model  Only one source of merged topographic and bathymetric 
data is currently available in EDM, NOAA’s Coastal Data 
Model (Topography/Bathymetry (NOAA) 

www.epa.gov/edm 

http://www.narrbay.org/biological_data.htm
http://www.narrbay.org/d_projects/%20buoy/buoydata.htm
http://www.narrbay.org/d_projects/%20buoy/buoydata.htm


A - 3 

Parameter 
SourceData 

Source
Original Source 

Date
Description Link 

Wave Exposure WeMO (Wave 
Exposure Model)  

The wave exposure model is a 
free software modeling tool 
developed by NOAA to forecast 
wave energy/exposure along 
coastal areas.  It provides 
important habitat and 
erosional information for 
habitats.  This software 
application was developed by 
NOAA but is no longer 
supported. 

2003-2006 
meteorologic
al data. 

Data input for WeMO requires the following: a local 
meteorological file (containing wind speed and direction), 
bathymetry covering the area of interest and a shoreline file 
which covers the boundary of the area of interest.  A point 
file (shape file format) must also be provided to allow the 
model to perform calculations at specific points of interest.    
Instructions on processing these data can be found in the 
WeMO 4.0 manual available at the link provided.  WeMo 
model runs for this project were performed for each estuary 
using default model values with a modified interrogation 
distance of (5000 m). 

http://www.csc.noaa.gov/  

digitalcoast/ tools/wemo 

Transparency Narragansett Bay 
Commission;  US 
EPA’s National 
Coastal Assessment 
program;  MODIS 
satellite imagery 

Narragansett Bay Commission;  
US EPA’s National Coastal 
Assessment program;  MODIS 
satellite imagery 

Transparency across the bay was described using three data 
sources.  Secchi depths measured by the Narragansett Bay 
Commission between 2008 and 2012 
(http://snapshot.narrabay.com/app/MonitoringInitiatives/W
aterClarity) and by the US EPA’s National Coastal Assessment 
program between 2000 and 2006 
(http://oaspub.epa.gov/coastal/coast.search) were combined 
and averaged by Water Body ID (WBID) estuarine segments 
used for assessment and listing by the Rhode Island DEM.  
Secchi depths greater than the maximum depth at the site of 
measurement were removed from the records before 
averaging.  Gaps in transparency data along the southern 
shore of Conamicutt Island (Sakonnett and Newport Bays) 
were filled in using Kd estimates from offshore MODIS 
satellite imagery.  The latter were downloaded using the EDM 
tool, averaged over the growing season (May – October) for 
nonmissing cells for the years 2008-2012.  Average grid cell 
values were extracted for cells greater than 30 meters in 
depth, and averaged over a swath of offshore cells parallel to 
the south shore of Conamicutt Island.  

http://snapshot.narrabay.com/app/  

MonitoringInitiatives/WaterClarity;  
http://oaspub.epa.gov/coastal/coast.search;  EDM 
(MODIS) 

Organic Carbon USEPA National 
Coastal Assessment  

USEPA National Coastal 
Assessment  

varies Total organic carbon was estimated across the Bay based on 
surficial sediment grabs collected by the US EPA National 
Coastal Assessment (downloaded from 
http://oaspub.epa.gov/coastal/coast.search under Sediment 
Grain Composition Data category).  Values were interpolated 
to create a complete grid within the shallow-water zone using 
inverse distance weighting in ArcMap 10.1. 

http://oaspub.epa.gov/coastal/coast.search 

http://www.csc.noaa.gov/%20digitalcoast/%20tools/wemo
http://www.csc.noaa.gov/%20digitalcoast/%20tools/wemo
http://snapshot.narrabay.com/app/
http://oaspub.epa.gov/coastal/coast.search
http://oaspub.epa.gov/coastal/coast.search
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Parameter 
SourceData 

Source
Original Source 

Date
Description Link 

Secchi Secchi (3) data 
sources for 
Narragansett Bay; 
Narragansett Bay 
fixed monitoring 
network (RIDEM); 
Narragansett Bay 
Commission and 
MODIS data Kd 
downloaded from 
EDM 

Secchi (3) data sources for 
Narragansett Bay; Narragansett 
Bay fixed monitoring network 
(RIDEM); Narragansett Bay 
Commission and MODIS data 
Kd downloaded from EDM 

varies Secchi depth was estimated from Kd values using an empirical 
relationship developed by Batiuk et al. (2000). 

http://www.dem.ri.gov/bart/netdata.htm ;  
http://snapshot.narrabay.com/app/  

MonitoringInitiatives/WaterClarity;  EDM 

http://snapshot.narrabay.com/app/


Appendix B.  Tutorial on Finding and 
Downloading Data for Seagrass Habitat 
Prediction Models Using EPA’s Estuary 
Data Mapper 

B.1. Overview of Estuary Data Mapper 
The objective of EPA’s Estuary Data Mapper (EDM) project is to produce an easily accessible, standalone 
software product to automate the retrieval and pre-processing of GIS coverages (including remote 
sensing data) and associated environmental data (e.g., tidal, hydrologic, and weather time series; water 
quality and sediment quality data) to populate 1) a GIS data model for estuaries and their watersheds, 
and 2) tools and models to assess, visualize, diagnose, predict, prioritize, and manage condition of 
estuaries and coastal watersheds (Detenbeck et al. 2009).  The EDM has been designed as a stand-alone 
application requiring no other specialized software for implementation.  EDM is written in C++, OpenGL, 
and FLTK for extremely fast graphical visualization, user interaction and minimal memory consumption.  
The interface has been designed with three tabs, the first enabling selection of an area of interest, with 
background layers such as political boundaries, watersheds, estuaries, and hydrography provided for 
reference and drop-down boxes to zoom in on states then estuary or watershed.  The second tab allows 
selection of geospatial layers and environmental data time series of interest to be selected for 
download.  This page also allows the user to visualize time series or other data before download.  The 
third tab allows the user to choose among a series of download formats (comma-delimited time series, 
ASCII grid, shapefile, kmz for Google maps, png or mpg for visualization of images or time series) as well 
as a location to save the files.  Outputs also include a text file (edm_output.txt) containing all WCS calls 
to rsigserver.  This file demonstrates by example how to obtain data from the web service rather than 
using the EDM GUI - so scripts and other applications can leverage it. 
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B.2. Installation of Estuary Data Mapper Tool 
The latest version of EDM can be downloaded from www.epa.gov/edm.  Right-click on the appropriate 
line in the menu on the right-hand portion of the screen to download the zip file for the version of EDM 
associated with your operating system and follow the instructions on this page to save as EDM.zip and 
extract to a folder.  Once EDM is unzipped, you can click on the EDM.bat file to start an interactive EDM 
session. 
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Figure B-1.  Estuary Data Mapper home page. 

http://www.epa.gov/edm


B.3. Zooming to Area of Interest 
The first time you start the EDM application, you will view the first tab and a default display extent: 
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Figure B-2. First tab of Estuary Data Mapper with default display extent. 

Although the default display extent consists of the Atlantic seaboard, EMD provides access to estuaries 
and coastal watersheds across the entire conterminous United States.  To facilitate finding an area of 
interest, make sure the State, Watersheds (e-Estuary), and Estuaries (NCA) boundaries are turned on, 
e.g., click the box next to States until it turns white.  When selections are toggled “on”, the color of the 
boxes next to the selections turns from black (not selected) to the color of the boundary line of interest.  
To narrow down your search area, click on the Zoom to State button and select a state of interest.  
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Figure B-3. Selection for zooming in to a state on first tab of Estuary Data Mapper. 

 Once zoomed into a state, when you click on Zoom to Estuary, you will be provided with a list of only 
those estuarine boundaries appropriate for the selected state: 
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Figure B-4. Process of zooming into an individual estuary in Estuary Data Mapper. 

Figure B-5.  Estuary Data Mapper zoomed in to Narragansett Bay. 



The display extent will shift to the boundaries of the selected estuary.  The view can be reshaped using 
your mouse following the instructions on the left-hand panel. 

Alternatively, if you wish to identify and download data associated with the full watershed for an 
estuary, you would click on Zoom to Watersheds (e-Estuary) to zoom to the associated watershed 
boundary.  
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Figure B-6. Zooming in to an estuarine watershed in Estuary Data Mapper. 



Figure B-7.Get Data tab of Estuary Data Mapper. 

Now you will see the full extent of the watershed of interest.  To begin exploring data of interest, you 
now click on the 2 Get Data tab on the top of the control panel. 

B.4. Identifying Data Sources 

B.4.1. System Boundaries 
System boundaries that are checked on Tab1 are automatically downloaded when you save other data 
from that system.  However, normally a smoothed version of the watershed boundaries is saved to 
speed up the process of saving data.  If the original higher-resolution watershed boundary is desired, 
click on the Save Map Polygons/DBF box in Tab 3 Save Data before selecting Save Data (Shapefile) and 
type in an appropriate directory location to save the shapefiles to (Choose Directory Folder for Saved 
Files): 

B - 7 



B - 8 

Figure B-8. Save Data tab on Estuary Data Mapper. 



B.4.2. Seagrass 
Click on the second tab to start the data discovery process.  There is currently only one option for 
retrieving seagrass coverages, which returns a composite coverage with data combined across multiple 
sources representing the most up-to-date sources publically available as of 2013.  Coding of seagrass 
abundance categories was standardized as explained in the metadata and original sources are also 
described in the metadata.  Click on the Seagrass (State/NOAA) button and then on the Retrieve and 
Show Selected Data button.  In the text box at the base of the menu panel you will messages indicating 
which data are being retrieved, when the data retrieval has finished, and how many records were 
returned.  In this case, because there is only one composite coverage, any dates you enter will be 
ignored.  In this example, we have manually zoomed into an area in the southern portion of 
Narragansett Bay in order to see the seagrass pixels.  (If you do this, you will need to remember to zoom 
back out to the full extent before saving or you will only retrieve this subset.) 
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Figure B-9. Retrieving seagrass data in Estuary Data Mapper. 



B.4.3. Depth 
Only one source of merged topographic and bathymetric data is currently available in EDM, NOAA’s 
Coastal Data Model (Topography/Bathymetry (NOAA)).  Select this button and hit Retrieve and Show 
Selected Data again.  Note that if you hover your mouse over the item in the menu, you will see a popup 
screen displaying the url for information on the original data source.  Sources for data are also available 
on the EPA EDM web page at http://ofmpub.epa.gov/rsig/rsigserver?edm/data_inventory.html. 
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Figure B-10.  Retrieving topobathymetry data in Estuary Data Mapper. 

Users requiring finer resolution bathymetry data may wish to check local sources or the NOAA Tsunami 
Inundation Digital Elevation Models (DEMs; http://www.ngdc.noaa.gov/mgg/inundation/tsunami/), 
available for select regions only.  

http://ofmpub.epa.gov/rsig/rsigserver?edm/data_inventory.html
http://www.ngdc.noaa.gov/mgg/inundation/tsunami/


B.4.4. Transparency 
Multiple data sources are available to describe transparency, including light attenuation coefficients, 
Secchi depth, turbidity, chlorophyll, and total suspended solids.  Data associated with grab samples or 
instantaneous sensor readings for water quality parameters can be retrieved through web services 
provided by the National Estuarine Research Reserve System (NERRS) program or by the joint USGS/EPA 
(STORET button) web services.  Click on the STORET button next to Water Quality to see the drop down 
list which allows you to select between the NERRS and STORET web services.  Clicking on the button to 
the right of STORET activates the dropdown list to allow the user to choose a water quality parameter.  
At this time, only one parameter can be selected at a time, but users can choose to download results 
then select another parameter.  Retrieval of water quality values requires that the user select a starting 
date and number of days of record (up to 365) for retrieval.  Depending on the time of day, available 
bandwidth, demand for web services, and amount of data retrieved, these requests can take up to a few 
minutes.  The user may need to increase the timeout parameter to the right of the Retrieve & Show 
Selected Data button to up to 900 seconds to prevent the tool from timing out and returning a message 
indicating no data points are available. 
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Figure B-11.  Selecting STORET variables for data retrieval in Estuary Data Mapper. 

Queries through STORET web services often fail to locate data collected through EPA’s National Coastal 
Assessment surveys (e.g., Secchi depth, light attenuation coefficients, TSS, chlorophyll) so users may 
wish to retrieve data directly from the EPA’s Environmental Monitoring and Assessment web site 
(http://oaspub.epa.gov/coastal/coast.search ) for data up to 2006 or the National Coastal Assessment 
site (http://water.epa.gov/type/oceb/assessmonitor/ncca.cfm ) for data from 2008 or later (due to be 

http://oaspub.epa.gov/coastal/coast.search
http://water.epa.gov/type/oceb/assessmonitor/ncca.cfm


added by the end of 2014).  Selected parameters from EPA’s NCA surveys will be added to EDM in the 
near future to fill the gap in WQ web services. 

Remotely sensed light attenuation coefficients based on the MODIS satellite are also available through 
NASA web services.  Caution should be exercised in using these data for shallow systems (< 30m depth) 
as algorithms were developed for the open ocean and do not include corrections for bottom reflectance.  
Therefore, data should be checked against in situ measurements to determine if a relationship exists.  
Algorithms for ocean color parameters are currently under development and are being tested for 
shallow and more turbid coastal systems (Keith et al. 2014) but these data are not yet readily available 
through web services. 
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Figure B-12.  Retrieving remotely sensed light attentuation data for Chesapeake Bay in Estuary Data Mapper. 



B.4.5. Energy Environment 

B.4.5.1. Wave Energy Model Inputs 
There are a few options available for the user to calculate Relative Wave Energy.  Previously, users could 
use the NOAA Wave Energy Model (WEMO; http://products.coastalscience.noaa.gov/wemo/) to 
calculate fetch and relative wave energy based on input data including system boundaries, merged 
topo-bathymetry, and wind data.  Unfortunately WEMO is no longer being supported and is not 
compatible with ArcMap versions later than 9.3.  Recently, the USGS WAVE extension for ArcMap was 
upgraded for use with ArcMap 10 and could be used in a similar fashion.  See Sections B.4.1 and B.4.3 
for information on downloading data on system boundaries and merged topo-bathymetry.  Wind data 
can be downloaded from the NERRS web service (wind speed and direction or from various NOAA web 
services for buoy data (Buoys button, using IOOS, NDBC or NERACOOS dropdown options). 

B.4.5.2. Relative Exposure 
USGS has recently calculated a Coastal Vulnerability Index, including a component related to wave 
energy (http://woodshole.er.usgs.gov/project-pages/cvi/).  Unfortunately values have been collapsed 
onto an ordinal scale (1-5), leading to a loss of information.  For some systems such as the Narragansett 
Bay (below), the range of values may be restricted, making this index less useful as a predictive tool.  
However, for other systems with a wider range of energy environments, the Wave Rank score might 
prove useful. 
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Figure B-13.  Retrieving Coastal Vulnerability Index data in Estuary Data Mapper. 



B.4.5.3 Current velocity 
Current velocity data are available at some Buoy locations; however, these stations tend to be sparse.  
For a limited number of systems, a more complete coverage of the current velocity environment can be 
obtained from model output.  Hydrometeorological model outputs for NOAA’s Operational Forecast 
Systems are available for seven systems.  Choose system using dropdown menu by HDM button for the 
layer of interest.   
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Figure B-14.  Retrieving current velocity data in Estuary Data Mapper. 

B.4.6. Sediment Characteristics 
Sediment characteristics are available both for grab samples from US EPA National Coastal Assessments 
(URL) or the USGS Seabed database (URL) and as continuous grids developed using kriging methods for 
the North Atlantic coast 
(https://www.conservationgateway.org/ConservationByGeography/NorthAmerica/UnitedStates/edc/re 
portsdata/marine/namera/Pages/default.aspx) or Gulf coast 
(http://instaar.colorado.edu/~jenkinsc/dbseabed/resources/gsmseabed/).  You can choose between 
these options on the Sediment selection (a), which leads you to the drop down menu for sediment 
characteristics for the NCA (b), or USGS Seabed datasets (c), or for the krigged datasets (d) and e): 
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a)  b)  c) 

 d) e) 

Figure B-15.  Drop-down selections for selection of sediment parameters from EPA National Coastal Assessment dataset. 
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B.4.7. Water Quality 

B.4.7.1. Temperature 
EDM provides access to instantaneous temperature readings through the EPA/USGS web services 
(Section 4.4) time series at fixed stations through the NERRS or various buoy web services (Section 
4.5.1), and remotely sensed time series with continuous gridded coverages.  Although several sources 
are available in the Satellite drop-down menu, the MUR option provides grids with the finest resolution 
and best coverage for many estuarine systems.  Note that the color scale has been optimized to 
represent the range in temperature over time, so will not do a good job of illustrating gradients in 
temperature for a particular day within EDM.  Users investigating the effects of temperature for 
systems in which seagrasses are exposed to the air can also access local air temperatures through the 
web services for NERRS or NOAA’s buoy systems. 

Figure B-16.  Retrieval of remotely sensed temperature data with Estuary Data Mapper. 

B.4.7.2. Salinity 
EDM provides access to instantaneous salinity readings through the EPA/USGS web services (Section 
4.4), time series at fixed stations through the NERRS, or various buoy web services (Section 4.4.1), and 
remotely sensed time series with continuous gridded coverages.   The latter are available through NASA 
web services with data aggregated from daily to annual time steps.  Different satellite coverages can be 
selected from the dropdown box selection under Satellites (see below). 
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Figure B-17.  Selection of remotely sensed salinity data for download in Estuary Data Mapper. 

B.4.8. Nitrogen Concentration and Loading 

B.4.8.1. Nutrient Concentrations 
Nutrient concentrations for estuaries and their tributaries can be retrieved via the EPA/USGS and NERRS 
web services (see Section B.4.4).  As mentioned previously, neither the EPA/USGS web service nor the 
online STORET database query interface reliably allow the retrieval of data collected during NCA surveys.  
See Section B.4.3 for directions on current web access to NCA data sets. 

B.4.8.2. Atmospheric Loads 
Data regarding nitrogen sources or loads to estuaries and their watersheds are available through the 
Nitrogen menu in EDM.  Atmospheric loading data for nitrogen and phosphorus can be retrieved 
through EDM based on either 1) interpolation of monitoring data collected by the National Atmospheric 
Deposition Network (NADP; http://nadp.sws.uiuc.edu/) or 2) modeled deposition based on results of 
modeling runs of EPA’s Community Multiscale Air Quality model 
(http://www.epa.gov/AMD/Data/wdtData.html; http://www.epa.gov/heasd/research/cdc.html).  CMAQ 
deposition data are available to estimate both deposition over the estuarine watershed as well as 
directly to the estuary surface area for hourly, monthly or annual time steps.  NADP grids only cover 
watershed deposition for an annual time step.  Summaries of loading by estuary are covered below in 
Section B.4.8.3. 

http://www.epa.gov/AMD/Data/wdtData.html
http://www.epa.gov/heasd/research/cdc.html
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Figure B-18.  Selection of nitrogen loading data sets in Estuary Data Mapper. 
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Figure B-19.  Retrieval of CMAQ monthly nitrogen deposition data with Estuary Data Mapper. 

Figure B-20.  Retrieval of NADP nitrogen deposition data with Estuary Data Mapper. 



B.4.8.3. Watershed Sources 
Nitrogen source and loading data are available through EDM in gridded form for estuarine watersheds.  
In addition, summaries of annual watershed-based loads and sources and direct atmospheric loading to 
estuaries by estuary are provided in dbf files associated with estuary and watershed shapefiles.  
Atmospheric deposition data can be accessed from the Nitrogen menu (a), which gives access to both 
gridded data at hourly (CMAQ), monthly (CMAQ), or annual time steps (CMAQ, NADP).  In addition, 
summaries of annual CMAQ or NADP atmospheric N deposition and monthly CMAQ atmospheric N 
deposition are available for estuarine watersheds and estuaries/subestuaries (CMAQ only).  NADP 
deposition grids have been interpolated for terrestrial areas only.   

Selection of the CMAQ grid menu (b) provides access to a wide array of time steps and nitrogen forms. 
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a) 

b) 
c) 

d) 

e) 

Figure B-21.  Nitrogen submenus for CMAQ and NADP nitrogen deposition. 



Selection of NADP grid sources in the main menu then provides access to a submenu (c) allowing access 
to different N fractions: total ammonia, nitrate and total N. Selection of CMAQ summaries at the estuary 
(d) or watershed (e) scales provides access to choices between wet, dry or total N fractions aggregated 
at monthly or annual time steps. 

Additional land-based nitrogen sources (a) can be assessed with b) gridded maps or c) at the estuarine 
watershed scale. 
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a) 
b) 

c) 

d) 

Figure B-22.  Submenus for nitrogen source data at gridded or estuarine scales. 



Finally, estuarine watershed loads and yields of nitrogen can be explored based on the output of 1992 
National and 2002 regional SPARROW models (http://water.usgs.gov/nawqa/sparrow/mrb/) that have 
been aggregated to the estuarine watershed scale. 
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a) 

b) 

Figure B-23. Selection of N loading data from SPARROW models. 



B.5. Downloading Data 

The data displayed in the view window as the result of reference boundary layers selected under Tab 1. 
Zoom Maps, data selected under Tab 2 (Get Data) can be downloaded to the directory of the user’s 
choice in Tab 3. Save Data.  Data can be downloaded in a variety of formats for later viewing (.png, .mpg, 
.kml) or import into decision support modeling applications (shapefile, ASCII grid).  Metadata are 
automatically provided in associated .txt or .xml files.  See the message box at the bottom for an 
indication of when data downloads have been completed and Files Listing box for a list of files that have 
been downloaded.  Time series of remote sensing data can be saved either as a series of ASCII grids, one 
for each date, or as a single shapefile.  The latter output provides a more compact format for 
downloading and subsequent data calculations; each date of data of the time series is provided in a 
separate column of the associated dbf file.  Users will need to pay attention to missing value indicators 
(e.g., -9999) in using these data for later calculations. 
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Figure B-24. Save Data tab in Estuary Data Mapper, illustrating saving shapefiles. 



B.6. Terminating an EDM Session and EDM Updates 
Users should end an EDM session using Tab 4. Done.  Exiting in this manner will save user settings so 
that the next time EDM is started the user will automatically be zoomed in to the area of interest 
selected in the last session run.  The user can also set preferences for updating EDM versions on this tab 
by selecting among the options given: 
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Figure B-25. Final tab in Estuary Data Mapper to close out program and check for updates. 

Users are encouraged to use the contact email (edm@epa.gov) to provide feedback, to report bugs in 
the system, or to be added to one of two mailing lists: 

• EDM-Announcements. Receive periodic announcements of software updates and new data
added to EDM. Send an email to edm@epa.gov with "EDM Announcements" in the subject 
line.  

• EDM-Discussion. Join other EDM users in an email discussion group. Send an email to
edm@epa.gov with "EDM Discussion" in the subject line and give us permission to share your 
email address with other EDM users.

mailto:edm@epa.gov
mailto:edm@epa.gov
mailto:edm@epa.gov
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Appendix C.  R Packages and Commands 
Used in Development of Predictive 
Seagrass Habitat Models 
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Figure C- 1  General sequence of GIS and R analyses to create generalized linear mixed models to predict seagrass 
presence/absence.



In the following examples, R command lines are preceded by a “>” and are typed in 
boldface.  Responses from the console are shown in regular typeface. 

C.1. Exploratory analysis (graphics package) 
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Spine plots  

> # Explore linearity of binary responses 

> spineplot(fsavcode~cSAL, data=nb9cc) 

… 

> spineplot(fsavcode~cUSRMARIkm2, data=nb9cc) 

C.2. General linear mixed models with diagnostics plots (MASS, rms 
packages) 
> library (MASS) 

># Define formula 

> fo.glmm15 <- formula(fsavcode ~ cSAL + cSAL2 + cSDavgrtrZ + cSDavgrt_1 + cSDavgrt_2 + cptTOC + 
cptTOC2 + cptTOC3 + fZgtMXZavT + cCG046avkm + cDstoMarin + fISOLATED + fSED4 + PResid14fa) 

> # Run generalized linear mixed model 

> GLMM15w.nb9cc <- glmmPQL(fo.glmm15, data = nb9cc14fa1300x200, weights = weight, random 
=~1|fSHORLIN, family = "binomial") 

iteration 1 

iteration 2 

iteration 3 

iteration 4 

iteration 5 

iteration 6 

iteration 7 

iteration 8 

> # summarize results 
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> summary(GLMM15w.nb9cc) 

Linear mixed-effects model fit by maximum likelihood 

 Data: nb9cc14fa1300x200 

  AIC BIC logLik 

   NA  NA     NA 

Random effects: 

 Formula: ~1 | fSHORLIN 

        (Intercept)  Residual 

StdDev:    6.373279 0.9092619 

Variance function: 

 Structure: fixed weights 

 Formula: ~invwt  

Fixed effects: fsavcode ~ cSAL + cSAL2 + cSDavgrtrZ + cSDavgrt_1 + cSDavgrt_2 +      cptTOC + cptTOC2 + 
cptTOC3 + fZgtMXZavT + cCG046avkm + cDstoMarin +      fISOLATED + fSED4 + PResid14fa  

        Value Std.Error     DF   t-value p-value 

(Intercept)   0.420257 1.6594588 518856   0.25325  0.8001 

cSAL          1.434985 0.1887963 518856   7.60071  0.0000 

cSAL2        -0.567210 0.1552607 518856  -3.65327  0.0003 

cSDavgrtrZ    2.612055 0.0536428 518856  48.69350  0.0000 

cSDavgrt_1   -0.233461 0.0328527 518856  -7.10632  0.0000 

cSDavgrt_2   -0.056192 0.0095881 518856  -5.86057  0.0000 

cptTOC       -2.443826 0.0858941 518856 -28.45162  0.0000 

cptTOC2       1.315678 0.0707202 518856  18.60401  0.0000 

cptTOC3      -0.316580 0.0547752 518856  -5.77962  0.0000 
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fZgtMXZavT1   0.533763 0.1427521 518856   3.73909  0.0002 

cCG046avkm    0.011350 0.0038698 518856   2.93287  0.0034 

cDstoMarin   -0.001454 0.0000522 518856 -27.86994  0.0000 

fISOLATED1  -10.666443 1.0603103 518856 -10.05974  0.0000 

fSED46       -1.119823 0.2133335 518856  -5.24917  0.0000 

fSED47        0.632220 0.0722058 518856   8.75582  0.0000 

fSED412      -0.833132 0.1516006 518856  -5.49558  0.0000 

fSED4124      3.657733 0.3345729 518856  10.93254  0.0000 

fSED4810     -0.377593 0.1502137 518856  -2.51370  0.0119 

PResid14fa    3.172977 0.0560561 518856  56.60364  0.0000 

 Correlation: 

       (Intr) cSAL   cSAL2  cSDvgZ cSDv_1 cSDv_2 cptTOC cpTOC2 cpTOC3 

cSAL        -0.063          

cSAL2       -0.069  0.931        

cSDavgrtrZ  -0.007  0.093  0.048       

cSDavgrt_1  -0.036  0.043  0.038 -0.324        

cSDavgrt_2   0.032 -0.080 -0.065 -0.129 -0.844       

cptTOC      -0.007  0.170  0.141 -0.268  0.049  0.024      

cptTOC2     -0.030  0.084  0.022  0.104  0.043 -0.074  0.069          

cptTOC3      0.003 -0.024  0.022  0.010 -0.048  0.045 -0.636 -0.427        

fZgtMXZavT1 -0.091  0.052  0.054  0.020  0.066  0.003 -0.008  0.013 -0.007 

cCG046avkm  -0.051  0.558  0.578  0.034  0.084 -0.071  0.056  0.091  0.016 

cDstoMarin  -0.016  0.318  0.331 -0.095 -0.078  0.089  0.261 -0.060  0.000 

fISOLATED1  -0.194  0.040  0.048 -0.092  0.063 -0.037  0.064 -0.034  0.006 

fSED46      -0.005 -0.011  0.025  0.000 -0.088  0.106 -0.049  0.066 -0.003 
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fSED47      -0.002 -0.239 -0.171  0.149 -0.030 -0.009 -0.097  0.103 -0.126 

fSED412     -0.013 -0.062 -0.023 -0.039  0.024 -0.011 -0.109 -0.020 -0.074 

fSED4124     0.003 -0.095 -0.085  0.063 -0.017  0.005 -0.097  0.031 -0.022 

fSED4810     0.006 -0.029 -0.011  0.136 -0.175  0.114  0.149 -0.012 -0.128 

PResid14fa   0.020  0.051 -0.031  0.485 -0.109 -0.013 -0.372  0.242 -0.060 

   fZMXZT cCG046 cDstMr fISOLA fSED46 fSED47 fSED412 fSED4124 fSED48 

cSAL       

cSAL2        

cSDavgrtrZ          

cSDavgrt_1       

cSDavgrt_2       

cptTOC        

cptTOC2          

cptTOC3          

fZgtMXZavT1         

cCG046avkm   0.114          

cDstoMarin  -0.006  0.296       

fISOLATED1  -0.001  0.016  0.047         

fSED46      -0.002  0.104  0.241 -0.026         

fSED47      -0.022 -0.005 -0.089 -0.079  0.284       

fSED412     -0.022 -0.012 -0.095  0.020  0.069  0.239          

fSED4124     0.033 -0.050 -0.136 -0.093  0.094  0.201  0.104       

fSED4810    -0.031  0.004  0.245 -0.048  0.277  0.370  0.038   0.110        

PResid14fa   0.033  0.037 -0.243 -0.145  0.019  0.152 -0.063   0.107    0.118 
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Standardized Within-Group Residuals: 

          Min            Q1           Med            Q3           Max  

-82.898446484  -0.049605288  -0.007560305  -0.001533338 361.324250323 

Number of Observations: 518890 

Number of Groups: 16 

> fixed.effects(GLMM15w.nb9cc, family = binomial) 

  (Intercept)   cSAL     cSAL2    cSDavgrtrZ    cSDavgrt_1    cSDavgrt_2        cptTOC       cptTOC2    
cptTOC3 

  0.420257164   1.434985095  -0.567209800   2.612055480  -0.233461322  -0.056191589  -2.443825859 
1.315678476  -0.316580172  

  fZgtMXZavT1    cCG046avkm    cDstoMarin    fISOLATED1        fSED46        fSED47       fSED412    
fSED4124      fSED4810  

  0.533762818   0.011349608  -0.001454164 -10.666443279  -1.119823166   0.632220198  -0.833132486   
3.657733496  -0.377592950  

   PResid14fa 

  3.172976995  

> # Output random effects 

> random.effects(GLMM15w.nb9cc, family = binomial) 

    (Intercept) 

-99   2.7822797 

2    -9.7044680 

3    -5.6673015 

6    -9.6165676 

7    -6.2225803 

8    -4.1356439 

9     0.4226314 
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10   3.0034085 

11   -2.6426397 

12   1.4561820 

13   -4.3301970 

14   0.2790325 

15   6.6477236 

16   9.7049135 

17   11.4413276 

18   6.5818993 

Diagnostics examples 

> # Check assumption of collinearity using variance inflation factor 

> library(rms) 

> vif(GLMM15w.nb9cc) 

> # Check for heterogeneity of variance and patterns in residuals 

> nb9cc7fa1300x200$PResid14wfa <- residuals(GLMM14w.nb9cc, type = "pearson") 

> nb9cc7fa1300x200$Predict14wfa <- predict(GLMM14w.nb9cc, data = nb9ccfa, type = "response") 

> plot(x = nb9cc7fa1300x200$Predict14wfa, y = nb9cc7fa1300x200$PResid14wfa, main = "Pearson 
Residuals vs Predicted") 

> plot(x = nb9cc7fa1300x200$cSDavgrtrZ, y = nb9cc7fa1300x200$PResid14wfa) 

> plot(x = nb9cc7fa1300x200$cSAL, y = nb9cc7fa1300x200$PResid14wfa) 

> plot(x = nb9cc7fa1300x200$cptTOC, y = nb9cc7fa1300x200$PResid14wfa) 

> plot(x = nb9cc7fa1300x200$cSAL, y = nb9cc7fa1300x200$PResid14wfa) 

> plot(x = nb9cc7fa1300x200$cSDavgrtrZ, y = nb9cc7fa1300x200$PResid14wfa) 

> spineplot(fsavcode~Predict14wfa, data=nb9cc7fa1300x200) 

> # Export for calculating smoothed residual 
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> # Fit spline correlogram 

> # Create separate dataset for each shoreline to plot spline correlograms 

> nb9cc7fa1300x200.PResid14w <-data.frame(nb9cc7fa1300x200[,c(7,15,16,106)]) 

> str(nb9cc7fa1300x200.PResid14w) 

'data.frame':   518890 obs. of  4 variables: 

 $ fSHORLIN   : int  11 11 11 11 11 11 11 11 11 11 ... 

 $ ShLnDist   : int  2815150 2815150 2815150 2815150 2815150 2815150 2815150 2815150 2815150 
2815150 ... 

 $ Distance   : int  0 0 0 0 0 0 0 0 0 0 ... 

 $ PResid14wfa: atomic  -0.0186 -0.0117 -0.0114 -0.0114 -0.0114 ... 

  ..- attr(*, "label")= chr "Standardized residuals" 

C.3. General linear mixed model with interaction plots (effects package) 

> fo.glm3y <- formula(savcodeAv ~ csalAv + csalAv2 + csecchiminAv + csecchiminAv2 + cpttocAv + 
cpttocAv2   + cZgtMXZavAv + cZgtMXZavAv2 + cDistToHdShAv + cDstoMarinaAv + cUSRMARIkm2Av + 
fISOLATED + cwindAv * fSED5 + PR3xFA460) 

> GLM3y.avgPAbyShLnDist <- glm(fo.glm3y, data = avgPAbyShLnDistwPResid3xFA460, family = 
"binomial", weights = Nweight) 

> # effects interaction plots for fSED5 * cwindAv 

> library(effects) 

> plot(effect("cwindAv:fSED5",GLM3y.avgPAbyShLnDist) ) 

C.4. Generalized additive mixed models (mcgv package) 
> fo.gamm4w4w <- formula(fsavcodeMa ~ s(csalAv) + s(csecchimin) + s(cpttocMin) + 
csecchimin:cpttocMin + fZgtMXZavM + cCG046avkm + cDistToHdS + cDstoMarin + cwindMin * fSED4 + 
PR4wFA1370) 

> GAMM4wfa4w.maxPAbyShLnDist <- gamm(fo.gamm4w4w, data = maxPAbyShLnDistwPR4wFA1370m, 
random=list(fSHORLIN=~1),weights = weight, family = "binomial") 



C - 10 

C.5. Spline correlogram evaluations (ncf package) 
> # Spline correlogram 

> load("D:\\savhabitat\\workingmodels\\NB9\\nb9cc14fa1300x200_ShLn14.rda") 

> library(ncf) 

> # Randomly select 9000 to evaluate SA at coarser scales 

> nb9cc14fa1300x200.PResid15w.ShLn14.sub9000 <- 
nb9cc14fa1300x200.PResid15w.ShLn14.subset[sample(1:nrow(nb9cc14fa1300x200.PResid15w.ShLn14
.subset),9000),] 

># Generate spline correlogram using shoreline distance as x coordinate and setting y (Distance) to 0 

> fit15wShLn14 <- spline.correlog(nb9cc14fa1300x200.PResid15w.ShLn14.sub9000$ShLnDist, 
nb9cc14fa1300x200.PResid15w.ShLn14.sub9000$Distance,  

+ nb9cc14fa1300x200.PResid15w.ShLn14.sub9000$PResid15wfa, 

+ w = NULL, df = NULL, type = "boot",resamp = 100, npoints = 300, save = FALSE, filter = FALSE, fw = 0, 
max.it = 25, xmax = 15000, latlon = FALSE, na.rm = FALSE, 

+ quiet = FALSE) 

1  of  100 

2  of  100 

… 

99  of  100 

100  of  100 

> plot.spline.correlog(fit15wShLn14) 

> # export elements of spline correlogram fit for plotting because ncf doesn't allow adjustment of y-
axis 

> fit15wShLn14.predictedy <- fit15wShLn14$real$predicted$y 

> write.csv(fit15wShLn14.predictedy, file = 
"D:\\savhabitat\\workingmodels\\NB9\\fit15wShLn14predictedy.csv") 

> fit15wShLn14.predictedx <- fit15wShLn14$real$predicted$x 
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> write.csv(fit15wShLn14.predictedx, file = 
"D:\\savhabitat\\workingmodels\\NB9\\fit15wShLn14predictedx.csv") 

> fit15wShLn14.xint <- fit15wShLn14$real$x.intercept 

> write.csv(fit15wShLn14.xint, file = "D:\\savhabitat\\workingmodels\\NB9\\fit15wShLn14xint.csv") 

> fit15wShLn14.bootxint <- fit15wShLn14$boot$boot.summary$x.intercept 

> write.csv(fit15wShLn14.bootxint, file = 
"D:\\savhabitat\\workingmodels\\NB9\\fit15wShLn14bootxint.csv") 

> # bootstrap summaries - plot rows 3, 6, and 9 for 5%ile, median and 95%ile 

> fit15wShLn14.bootpredy <- fit15wShLn14$boot$boot.summary$predicted$y 

> write.csv(fit15wShLn14.bootpredy, file = 
"D:\\savhabitat\\workingmodels\\NB9\\fit15wShLn14bootpredy.csv") 

> plot(fit15wShLn14.predictedx,fit15wShLn14.predictedy, type = "l", main = "Spline Correlogram", sub 
= "Model GLM15w shoreline 14 random subset of 9000", xlab = "Distance (m)", 

+ ylab = "Correlation") 

> lines(fit15wShLn14.predictedx,fit15wShLn14.bootpredy[3,],col="blue") 

> lines(fit15wShLn14.predictedx,fit15wShLn14.bootpredy[9,],col="red") 

> abline(h = 0) 

> plot(fit15wShLn14.predictedx,fit15wShLn14.predictedy, type = "l", main = "Spline Correlogram", sub 
= "Model GLM15.nb9cc Shoreline 14 random subset of 9000", xlab = "Distance (m)", 

+ ylab = "Correlation") 

> lines(fit15wShLn14.predictedx,fit15wShLn14.bootpredy[3,],col="blue") 

> lines(fit15wShLn14.predictedx,fit15wShLn14.bootpredy[9,],col="red") 

> abline(h = 0) 

C.6. Community correlograms with anisotropy (CommunityCorrelogram 
package) 
# Extract dataframe with x-y coordinates; 

PResid4w.xy <- nb9cc.PResid4w.ShLn14.sub1200[,c(2,4)] 



head(PResid4w.xy) 

# Find maximum range of distances; 

max(PResid4w.xy$DistToShor) 

# Figure out optimum lag size and number; 

# lagmin should be greater than smallest distance (10m) 

# lagmax should be less than 2/3 maximum interpoint distance 

lagSelect(sampleData=PResid4w,sampleLocation=cbind(PResid4w.xy,z=0),sampleTime=NULL,Location
Names=NULL,lagmin=11,lagmax=250,by=30,option=1,plot=T,anisotropic=T,azimuth=90,azimuthTol=0,
bandwidth=0,dipAngle=0,dipTol=0,dipBandwidth=0,distmeth='euclidean') 

commcorrelogram(sampleData=PResid4w,sampleTime=NULL,sampleLocation=cbind(PResid4w.xy,z=0)
,LocationNames=NULL,option=1,metric='mantel',lagNumber=25,lagSize=11,lagTol = 
5.5,numTests=99,anisotropic=TRUE,azimuth=90,azimuthTol=0,bandwidth=0,dipAngle=0,dipTol=0,dipB
andwidth=0,distmeth='euclidean',mantmeth='spearman',adj='holm',prog=TRUE,alternative='one.side
d') 
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C.7. Cross-validation and ROC construction (pROC package) 
Subsetting data and generating training and test data sets 

> library(MASS) 

> # XVAL_100514.R Cross-validation for final models 

> load(file = "D:\\savhabitat\\workingmodels\\NB9\\nb9cc14fa1300x200.RDA") 

> load(file = "D:\\savhabitat\\workingmodels\\NB9\\GLMM15w_nb9cc.RDA") 

> # First sample each random effects group (SHORLIN) separately and combine rows, then repeat 10 
times 

> df.0 <- nb9cc14fa1300x200 # original data frame 

> df.2 <- df.0[df.0$fSHORLIN == 2,] 

> df.7 <- df.0[df.0$fSHORLIN == 7,] 

> df.6 <- df.0[df.0$fSHORLIN == 6,] 

> df.9 <- df.0[df.0$fSHORLIN == 9,] 

> df.14 <- df.0[df.0$fSHORLIN == 14,] 
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> df.8 <- df.0[df.0$fSHORLIN == 8,] 

> df.10 <- df.0[df.0$fSHORLIN == 10,] 

> df.12 <- df.0[df.0$fSHORLIN == 12,] 

> df.13 <- df.0[df.0$fSHORLIN == 13,] 

> df.3 <- df.0[df.0$fSHORLIN == 3,] 

> df.17 <- df.0[df.0$fSHORLIN == 17,] 

> df.11 <- df.0[df.0$fSHORLIN == 11,] 

> df.15 <- df.0[df.0$fSHORLIN == 15,] 

> df.18 <- df.0[df.0$fSHORLIN == 18,] 

> df.16 <- df.0[df.0$fSHORLIN == 16,] 

> df.99 <- df.0[df.0$fSHORLIN == -99,] 

>  

> # create subsample 1 of 1/10 each SHORLIN n set with replacement 

> df.2.1 <- df.2[sample(1:163486,size = 16347, replace = TRUE),]  

> df.7.1 <- df.7[sample(1:84233,size = 8423, replace = TRUE),] 

> df.6.1 <- df.6[sample(1:63230,size = 6323, replace = TRUE),] 

> df.9.1 <- df.9[sample(1:58307,size = 5831, replace = TRUE),] 

> df.14.1 <- df.14[sample(1:48586,size = 4859, replace = TRUE),] 

> df.8.1 <- df.8[sample(1:44745,size = 4475, replace = TRUE),] 

> df.10.1 <- df.10[sample(1:22029,size = 2203, replace = TRUE),] 

> df.12.1 <- df.12[sample(1:11176,size = 1118, replace = TRUE),] 

> df.13.1 <- df.13[sample(1:5389,size = 539, replace = TRUE),] 

> df.3.1 <- df.3[sample(1:4768,size = 477, replace = TRUE),] 

> df.17.1 <- df.17[sample(1:3189,size = 319, replace = TRUE),] 

> df.11.1 <- df.11[sample(1:3025,size = 303, replace = TRUE),] 



> df.15.1 <- df.15[sample(1:2354,size = 235, replace = TRUE),] 

> df.18.1 <- df.18[sample(1:2135,size = 214, replace = TRUE),] 

> df.16.1 <- df.16[sample(1:1172,size = 117, replace = TRUE),] 

> df.99.1 <- df.99[sample(1:1084,size = 108, replace = TRUE),] 

> dftest.1 <- 
rbind(df.2.1,df.7.1,df.6.1,df.9.1,df.14.1,df.8.1,df.10.1,df.12.1,df.13.1,df.3.1,df.17.1,df.11.1,df.15.1,df.1
8.1,df.16.1,df.99.1) 

> dftest.1$TEST1 <- 1 

> TEST1.JOINID <- dftest.1[,c("JOINID","TEST1")] 

> dfall.1 <- merge(df.0,TEST1.JOINID,all.x = TRUE) 

> dftrain.1 <- dfall.1[-which(dfall.1$TEST1 == 1),] 

… 

> # subsample 10 

> df.2.10 <- df.2[sample(1:163486,size = 16347, replace = TRUE),] # create subsample 1 of 1/10 
SHORLIN 2 set with replacement 

> df.7.10 <- df.7[sample(1:84233,size = 8423, replace = TRUE),] 

> df.6.10 <- df.6[sample(1:63230,size = 6323, replace = TRUE),] 

> df.9.10 <- df.9[sample(1:58307,size = 5831, replace = TRUE),] 

> df.14.10 <- df.14[sample(1:48586,size = 4859, replace = TRUE),] 

> df.8.10 <- df.8[sample(1:44745,size = 4475, replace = TRUE),] 

> df.10.10 <- df.10[sample(1:22029,size = 2203, replace = TRUE),] 

> df.12.10 <- df.12[sample(1:11176,size = 1118, replace = TRUE),] 

> df.13.10 <- df.13[sample(1:5389,size = 539, replace = TRUE),] 

> df.3.10 <- df.3[sample(1:4768,size = 477, replace = TRUE),] 

> df.17.10 <- df.17[sample(1:3189,size = 319, replace = TRUE),] 

> df.11.10 <- df.11[sample(1:3025,size = 303, replace = TRUE),] 

> df.15.10 <- df.15[sample(1:2354,size = 235, replace = TRUE),] 
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> df.18.10 <- df.18[sample(1:2135,size = 214, replace = TRUE),] 

> df.16.10 <- df.16[sample(1:1172,size = 117, replace = TRUE),] 

> df.99.10 <- df.99[sample(1:1084,size = 108, replace = TRUE),] 

> dftest.10 <- 
rbind(df.2.10,df.7.10,df.6.10,df.9.10,df.14.10,df.8.10,df.10.10,df.12.10,df.13.10,df.3.10,df.17.10,df.11.
10,df.15.10,df.18.10,df.16.10,df.99.10) 

> dftest.10$TEST10 <- 1 

> TEST10.JOINID <- dftest.10[,c("JOINID","TEST10")] 

> dfall.10 <- merge(df.0,TEST10.JOINID,all.x = TRUE) 

> dftrain.10 <- dfall.10[-which(dfall.10$TEST10 == 1),] 

> # Save training and test data sets so that they can be selectively reloaded to conserve memory for 
model runs 

> save(dftrain.1,file = "D:\\savhabitat\\workingmodels\\NB9\\dftrain1.rda") 

> save(dftest.1,file = "D:\\savhabitat\\workingmodels\\NB9\\dftest1.rda") 

> save(dftrain.2,file = "D:\\savhabitat\\workingmodels\\NB9\\dftrain2.rda") 

> save(dftest.2,file = "D:\\savhabitat\\workingmodels\\NB9\\dftest2.rda") 

> save(dftrain.3,file = "D:\\savhabitat\\workingmodels\\NB9\\dftrain3.rda") 

> save(dftest.3,file = "D:\\savhabitat\\workingmodels\\NB9\\dftest3.rda") 

> save(dftrain.4,file = "D:\\savhabitat\\workingmodels\\NB9\\dftrain4.rda") 

> save(dftest.4,file = "D:\\savhabitat\\workingmodels\\NB9\\dftest4.rda") 

> save(dftrain.5,file = "D:\\savhabitat\\workingmodels\\NB9\\dftrain5.rda") 

> save(dftest.5,file = "D:\\savhabitat\\workingmodels\\NB9\\dftest5.rda") 

> save(dftrain.6,file = "D:\\savhabitat\\workingmodels\\NB9\\dftrain6.rda") 

> save(dftest.6,file = "D:\\savhabitat\\workingmodels\\NB9\\dftest6.rda") 

> save(dftrain.7,file = "D:\\savhabitat\\workingmodels\\NB9\\dftrain7.rda") 

> save(dftest.7,file = "D:\\savhabitat\\workingmodels\\NB9\\dftest7.rda") 

> save(dftrain.8,file = "D:\\savhabitat\\workingmodels\\NB9\\dftrain8.rda") 
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> save(dftest.8,file = "D:\\savhabitat\\workingmodels\\NB9\\dftest8.rda") 

> save(dftrain.9,file = "D:\\savhabitat\\workingmodels\\NB9\\dftrain9.rda") 

> save(dftest.9,file = "D:\\savhabitat\\workingmodels\\NB9\\dftest9.rda") 

> save(dftrain.10,file = "D:\\savhabitat\\workingmodels\\NB9\\dftrain10.rda") 

> save(dftest.10,file = "D:\\savhabitat\\workingmodels\\NB9\\dftest10.rda") 

> save.image("D:\\savhabitat\\workingmodels\\NB9\\101214a_xval.RData") 

> # For each set run model with training set and predict results for test set 

… 

> # Repeat for sample 10; 

> load("D:\\savhabitat\\workingmodels\\NB9\\dftrain10.rda") 

> load("D:\\savhabitat\\workingmodels\\NB9\\dftest10.rda") 

> # Run models first using original PResid zonal averages; 

> # Run model foglmm15 with training sample 10 dftrain.10 

> GLMM15w.dftrain.10 <- glmmPQL(fo.glmm15, data = dftrain.10, weights = weight, random 
=~1|fSHORLIN, family = "binomial") 

iteration 1 

iteration 2 

iteration 3 

iteration 4 

iteration 5 

iteration 6 

iteration 7 

iteration 8 

> # Generate predictions with test sample 10, type = response  dftest.10 

> dftest.10$Predict15 <- predict(GLMM15w.dftrain.10, newdata = dftest.10, type = "response") 

> # Generate raw residuals with test sample 10 after converting factor back to original numeric value 
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> dftest.10$Resid15 <- as.numeric(levels(dftest.10$fsavcode))[dftest.10$fsavcode] - 
dftest.10$Predict15 

> save(dftest.10,file = "D:\\savhabitat\\workingmodels\\NB9\\dftest10xval.rda") 

> # Combine predicted values, residuals and calculate mean residual, MSE sum 

> load("D:\\savhabitat\\workingmodels\\NB9\\dftest1xval.rda") 

> load("D:\\savhabitat\\workingmodels\\NB9\\dftest2xval.rda") 

> load("D:\\savhabitat\\workingmodels\\NB9\\dftest3xval.rda") 

> load("D:\\savhabitat\\workingmodels\\NB9\\dftest4xval.rda") 

> load("D:\\savhabitat\\workingmodels\\NB9\\dftest5xval.rda") 

> load("D:\\savhabitat\\workingmodels\\NB9\\dftest6xval.rda") 

> load("D:\\savhabitat\\workingmodels\\NB9\\dftest7xval.rda") 

> load("D:\\savhabitat\\workingmodels\\NB9\\dftest8xval.rda") 

> load("D:\\savhabitat\\workingmodels\\NB9\\dftest9xval.rda") 

> load("D:\\savhabitat\\workingmodels\\NB9\\dftest10xval.rda") 

> #Append test files 

> dftest.1to10 <- rbind(dftest.1[,-113],dftest.2[,-113],dftest.3[,-113],dftest.4[,-113],dftest.5[,-
113],dftest.6[,-113],dftest.7[,-113],dftest.8[,-113],dftest.9[,-113], 

+ dftest.10[,-113]) 

>#Calculate summary statistics for residuals and squared residuals 

> dftest.1to10$Resid15_2 <- dftest.1to10$Resid15 * dftest.1to10$Resid15 

> summary(dftest.1to10$Resid15) 

     Min.   1st Qu.    Median      Mean   3rd Qu.      Max.      NA's  

-1.000000 -0.073900 -0.001545 -0.128500 -0.000043  1.000000        18 

> summary(dftest.1to10$Resid15_2) 

    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.     NA's  

0.000000 0.000000 0.000004 0.117600 0.009783 1.000000       18 
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ROC statistics 

> library(pROC) 

Type 'citation("pROC")' for a citation. 

Attaching package: ‘pROC’ 

The following objects are masked from ‘package:stats’: 

    cov, smooth, var 

> roc(dftest.1to10$fsavcode,dftest.1to10$Predict15, plot = TRUE) 

Call: 

roc.default(response = dftest.1to10$fsavcode, predictor = dftest.1to10$Predict15,     plot = TRUE) 

Data: dftest.1to10$Predict15 in 506133 controls (dftest.1to10$fsavcode 0) < 12759 cases 
(dftest.1to10$fsavcode 1). 

Area under the curve: 0.7144
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Appendix D.  Exploratory Analyses and 
Diagnostic Tests 
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D.1. Models for Seagrass Grid Cell Presence/Absence 

D.1.1. Exploratory Analyses 

Exploratory analyses were conducted to evaluate the distribution of predictor variables, 
e.g., to determine if there are potential problems with outliers.  Figures D1a-r illustrate the
distribution of continuous variables used in model development.  With the exception of 
wave energy, variables exhibit few influential outliers.  If necessary, a square root 
transformation could be applied to the wave energy variable to even out the distribution; 
however that would change the form of the response to wave energy.   

Conditional plots for the binary response variable as a function of predictors (spine plots) 
provide information on potential nonlinearities in response (before the effect of other 
variables are factored out).  Spine plots show conditional probabilities of seagrass presence 
as a function of predictor variables, segmented into groups (Figures D2a-l).  The width of 
each band is inversely proportional to the number of observations in that band.  The 
inverted light color bands at the top of plots represent the relative frequency of occurrence 
of current (2006) eelgrass and the darker gray band segments at the bottom represent the 
relative frequency of current eelgrass absence1.  Most of the continuous potential 
predictors appear to be related linearly to the relative frequency of seagrass occurrence, 
with two exceptions.  The response to wind-generated wave mixing depth appears to be 
unimodal, with maximum response at intermediate values.  The effect of distance from 
historic seagrass patch edge appears to drop off exponentially rather than linearly.  
Seagrass probability of occurrence appears to vary among shoreline segments.  Counter to 
our initial hypothesis, probability of seagrass appears to be greater along isolated shoreline 
segments.   Seagrass shows evidence of persistence, with greater probability of occurrence 
in areas of historic occurrence, and lessening likelihood of occurrence as distance from 
historic patch edges increases. 

1 R also includes the cdplot function which will produce a smoothed version of conditional 
probability plots, but these are less useful because they can include artifacts where there is 
sparse representation of points along a gradient.   
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Figure D-1.  Distribution of independent continuous variables entered into general linear models and general additive 
models: a) sediment percent total organic carbon; b) salinity (PSU); c) temperature (deg C); d) Depth minus max wave mixing 
depth (m); e) representative wave energy (joules/m); f) square root wind wave energy (Joules/m); g) Avg Secchi depth minus 
water depth; h) Minimum Secchi depth minus water depth; i) Canada goose (numbers/km2); j) log10 (Canada goose 
density/km2 + 1); k) distance to hardened shoreline (m); l) √distance to hardened shoreline (m); m) density of unsewered 
residences on high infiltration soils (no/km2); n) distance to nearest marina (m); o) √distance to nearest marina; p) area of 
1999 seagrass patch (m2); q) distance to edge of nearest 1999 seagrass patch (m); r) log10(max wave mixing depth/water 
depth).  
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Figure D-1 (cont'd) 
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Figure D-1 (cont'd) 
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Figure D-2. Spine plots showing conditional probabilities of seagrass presence as a function of potential independent 
predictor variables. Width of band is inversely proportional to number of observations in band.  Inverted light color bands at 
top of plots represent relative frequency of occurrence of current (2006) eelgrass and darker gray band segments at bottom 
represent relative frequency of current eelgrass absence : a) Sediment particle-size class (5 = sand, 6 = gravelly-sand, 7= silty-
sand, 11 = clay-silt, 12 = sand-silt-clay, 13 = gravel-silt-clay, 1+2+4 = gravel + sandy gravel + gravel-sand-silt, 8+10= 
silty+sandy-silt); b) Sediment percent total carbon; c) centered salinity (PSU); d) centered average Secchi depth – water 
depth (m); e) centered wave energy(kJoules/m); f) dummy variable indicating water depth in excess of wave mixing depth; g) 
dummy variable indicating isolated shoreline segment in middle of channel; h) shoreline segment in Narragansett Bay (see 
Figure 3); i) dummy variable indicating historic (1996-97) eelgrass presence/absence; j) centered distance to historic (1996-97) 
eelgrass edge; k) distance to hardened shoreline (km); l) area of 1999 seagrass patch. 
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Figure D-2. (Cont'd)



D.1.2. Evaluation of Model Assumptions in Preliminary Seagrass Grid P/A Models 
We performed diagnostic tests to check on validity of model assumptions for the 
preliminary seagrass grid presence/absence models, e.g., multicollinearity, heterogeneity 
of variance, random distribution of model residuals, and spatial independence of model 
residuals.  We evaluated an initial generalized linear mixed model (GLMM) (Table 3) to 
predict seagrass presence at the scale of 10-meter grid cells, with shoreline included as a 
random effect and all potential predictors (Table D-1) and interaction terms included.  To 
avoid problems with multi-collinearity of independent variables we modified the initial 
model to remove all interaction terms except for Wave Energy x Sediment Type.  A review 
of the working model residuals showed multiple problems with heterogeneity of variance 
and potential nonlinearities (Figure D-3a-c).  In general, values of predictor variables 
associated with high probability of seagrass occurrence also showed a greater range of 
Pearson residuals.  (Pearson residuals are adjusted to account for higher expected variance 
with the mean, so should show no pattern when graphed against predicted values or 
against each predictor.)   

Diagnostic tests showed evidence of spatial autocorrelation for working model residuals.  A 
run of the model using the quasibinomial family in place of the binomial family 
demonstrated that errors were underdispersed, with a dispersion factor of 0.71.  Normally 
a binomial model is assumed to have a dispersion value of one because, by definition, the 
variance is equal to the mean.  The spline correlogram constructed based on Pearson 
residuals for a random subset of 9000 observations from the working model showed 
evidence of spatial autocorrelation at fine scales, with only small levels of autocorrelation 
at coarser scales (Figure D-4a).  We first used horizontal swaths of 9000 points from each 
of the main branches of Narragansett Bay to fine-tune the estimate of the range of spatial 
autocorrelation at short spatial scales.  The lower limit of the 95% confidence intervals of 
the first x-intercept from bootstrapping spline fits ranged from 345 to 3428 meters (Figure 
D-4b).  Note that reconstruction of spline correlograms from horizontal swaths suggested 
that spatial autocorrelation occurred not only at fine scales but also at intermediate and 
extreme distance ranges.  Because these did not appear in the correlogram constructed 
from points sampled from the entire range, we assumed that these zones of apparent 
spatial autocorrelation were an artifact of subsampling.   

As explained earlier, we used spline correlograms based on shoreline distance to evaluate 
the range of spatial autocorrelation parallel to shorelines, but used Mantel correlograms 
(using the R commcorrelogram package) to evaluate the range of autocorrelation along 
depth gradients perpendicular to the shoreline.  Due to memory constraints, we ran the 
communitycorrelogram function for a random subset of points for one shoreline at a time.  
Figure D-5 shows the Mantel correlogram for Shoreline 14.  Spatial autocorrelation was not 
significant at distances greater than 200 meters in the offshore direction.
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Table D-1.  Potential independent variables included in models predicting seagrass presence. 

Variable Definition Units 
fSHORLIN Shoreline code -99, 1-19 
cSAL Centered growing season salinity PSU 
cTEMPER Centered growing season average water Deg C 

temperature 
fSEDn Sediment type (n represents level of 1-13 

lumping) 
cWIND Wind wave energy Joules/m 
cPTTOC Centered sediment percent total organic % 

carbon 
cSDavggtrZ Centered growing season average Secchi Meters 

depth – water depth 
cSDmngtrZ Centered growing season minimum Secchi Meters 

depth – water depth 
fZgtrMXZ Depth greater than wave mixing depth (0 = 

FALSE, 1 = TRUE) 
cZgtrMXZ Centered water depth greater than wave Meters 

mixing depth 
fISOLATED Isolated shoreline (0 = FALSE, 1=TRUE) 
cDistHdShor Centered distance to hardened shoreline Meters 
cDistMarina Centered distance to nearest marina Meters 
cUSRMARIkm2 Centered unsewered residences on high #/km2 

infiltration soils/catchment area 
cCG046avkm2 Centered winter 2004-2006 Canada goose #/km2 

density 
fEGPA99 Historic (1999) eelgrass presence (0 = 

FALSE, 1 = TRUE) 
cAREA Centered area of 1999 eelgrass patch Meters2 
cDistEG99 Centered distance to edge of nearest 1999 Meters 

eelgrass patch 

D - 9 



D - 10 

Figure D-3.  Heterogeneity of variance for residuals of initial GLMM model to predict seagrass presence at the scale of 10 
meter grid cells.  Residuals show evidence of heterogeneity of variance. 
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Figure D-4. Spline correlogram with 95% confidence intervals from bootstrapping based on Pearson residuals from working 
version of general linear mixed model.  a) Random subset of 9000 points from all shorelines. b) Random subset of 9000 
points from shoreline 14.  
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Figure D-5. Correlogram showing spatial autocorrelation for offshore distance based on residuals from model predicting 
seagrass presence/absence for Shoreline 14.  Spatial autocorrelation is not significant at distances greater than 200 meters. 



D.2. Models for Shoreline Segment Presence/Absence 

D.2.1. Exploratory Analyses of Shoreline P/A Relationships 
Figures D-6a-p display exploratory spine plots showing general relationships between 
single predictors and seagrass presence/absence by shoreline distance.  Percent shoreline 
occupied by seagrass ranges from less than 1 percent (shoreline 3) to almost 60% 
(shoreline 17), with occupancy rates almost twice as high for isolated as compared to main 
shorelines (Figures D-6a, b).  Shoreline occupancy ranges from almost 60 to over 80 
percent for zones near larger 1999 eelgrass patches, and falls off exponentially with 
distance to nearest 1999 eelgrass patch (Figures D-6d).  As a single predictor Secchi depth 
performs poorly along the entire gradient, although occupancy rates are greater than 60% 
for the highest decile of minimum transparency values (Figures D-6e, f).  Shoreline 
occupancy shows an apparent unimodal response to salinity and percent sediment total 
organic carbon, but does not appear to vary with average temperature (Figures D-6g, h, i).  
Occupancy increases steadily as the proportion of depths greater than average wave mixing 
depths increases.  Shoreline occupancy is low for gravel- dominated sediment classes (1-2-
4 and 6) (Figure D-6l).  Occupancy is highest for the top four deciles of distance to 
hardened shoreline (Figure D-6o). 
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Figure D-6. Spine plots showing conditional probabilities of seagrass shoreline presence (1) versus absence (0) as a function 
of potential independent predictor variables: a) Shoreline (see Figure 3); b) shoreline isolation; c) centered maximum 1999 
eelgrass patch size (m2); d) centered min distance to 1999 eelgrass patch (km); e) maximum centered time-averaged Secchi 
depth at i (m); f) maximum centered seasonal-minimum Secchi depth (m); g) centered average salinity (PSU); h) minimum 
centered average temperature (deg C); i) minimum centered sediment percent total organic carbon;  j) minimum centered 
unsewered residences on high infiltration soils/km2 watershed area; k) minimum centered wind energy (kJoules/m); l) 
maximum centered depth - average wave mixing depth; m) dominant sediment particle-size class; n) minimum centered 
average Canada goose density (geese/km2); o) maximum centered distance to hardened shoreline; and p) maximum 
centered distance to marina (km).  Width of band is proportional to number of observations in band.  Inverted light color 
bands at top of plots represent relative frequency of occurrence of current (2006) eelgrass and darker gray band segments at 
bottom represent relative frequency of current eelgrass absence at shoreline unit i.  For continuous variables, values are 
grouped into subsets by decile to facilitate viewing patterns. 
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Figure D-6 (Cont’d). 
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Figure D-6 (Cont’d) 

D.2.2. Test of Model Assumptions During Initial Model Development for Shoreline P/A 
Prior to fitting a model for shoreline occupancy, we screened predictors for potential cross-
correlations.  Minimum shoreline average temperature was correlated with maximum 
shoreline average Secchi depth and shoreline average salinity (r > 0.70).  Shoreline average 
salinity was correlated with maximum shoreline average Secchi but not with maximum 
shoreline Secchi depth minima.  Thus we dropped temperature and maximum shoreline 
average Secchi depth, but retained maximum shoreline Secchi depth minimum as 
predictors.  



The original model fit after dropping insignificant terms and prior to accounting for spatial 
autocorrelation included the following main effects: salinity, availability of depths greater 
than average mixing depth, shoreline isolation, distance to hardened shorelines, distance to 
nearest marina, density of Canada geese, and two interaction terms:  wind-generated wave 
energy x sediment particle- size class and Secchi depth x sediment percent total organic 
carbon.   The density of unsewered residences on high infiltration soils was not a 
significant predictor.  Model diagnostic tests showed evidence of heterogeneity of variance, 
and spline correlograms with 95% confidence interval by shoreline showed evidence of 
strong spatial autocorrelation (Figures D-7a, b).  The minimum x-intercept, corresponding 
to the minimum range at which spatial autocorrelation of residuals was undetectable, was 
1365 meters.  Subsequent peaks in the correlogram have similar breadth, and probably 
represent autocorrelation between different seagrass patches, as compared to correlation 
within a given patch.  In many cases, residuals appeared to be greater for classes or ranges 
associated with shoreline occupancy (Figures D-7c, d). 

D.2.3. Test of Model Assumptions During Initial Model Development for Shoreline Relative 
Abundance 
The final model fit to predict average shoreline occupancy was more complex, 
incorporating both higher-order terms to account for nonlinear responses and two- and 
three-way interaction terms: 

savcodeAv = csalAv + csalAv2 + csalAv3 + csecchiminAv + csecchiminAv3 + 
cpttocAv2 + cpttocAv3 + cZgtMXZavAv + cZgtMXZavAv2 + cDistToHdShAv + (D1) 
cDstoMarinaAv + cUSRMARIkm2Av + fISOLATED + csalAv x cpttocAv + 
csecchiminAv x cpttocAv + csalAv x csecchiminAv x cZgtMXZavAv + cwindAv x 
fSED5) 

with terms defined as above (Table D2) and added variables defined as: 

fSED5 = sediment classes 

SED5_124561213 = Gravel, Sandy gravel, Gravel-sand-silt, Sand, Gravelly 
sand, Sand-silt-clay, Gravel-silt-clay 

SED5_7 = Silty sand 

SED5_81011 = Silty, Sandy Silt, and Clay-Silt 
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Based on diagnostic plots of Pearson residuals versus individual predictor variables, 
nonlinearities appear to have been accounted for in the final model.  However, the model 
still demonstrated heterogeneity of variance and spatial autocorrelation of residuals 
(Figure D-7a-d).  
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Figure D-7.  Diagnostic plots for initial model 3 predicting shoreline seagrass presence/absence. a) Pearson residuals versus 
predicted presence/absence, b) Spline correlogram of Pearson residuals for model 3, Shoreline 14.  The minimum x-intercept 
is 1365 meters. Pearson residuals for initial model 3 versus c) mixing depth indicator and d) sediment class. Sediment class 5 
= sand, 6 = gravelly-sand, 7 = silty-sand, 11 = clay-silt, 12 = sand-silt-clay, 13 = gravel-silt-clay, 1/2/4 = gravel + sandy gravel + 
gravel-sand-silt, 8/10 = silty + sandy silt. 
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Figure D-8.  Diagnostics for model 3j. a) Pearson residuals versus predicted value, b) spline correlogram of Pearson residuals 
for Shoreline 14.  The minimum x-intercept (within 95% confidence interval) was 420 meters.  Higher order terms appear to 
have accounted for most of the nonlinearities in relationships, as illustrated by plots of Pearson residuals versus c) centered 
average Secchi depth minimum (m) and d) centered shoreline average percent sediment total organic carbon. 
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D.2.4. Test of Model Assumptions During Initial Model Development for Maximum Seagrass 
Depth 
Models predicting minimum and maximum depth of occurrence by shoreline index were 
developed for the subset of records corresponding to shoreline occupancy.  Models 
predicting minimum depth of occurrence were created with a subset of data after excluding 
records with average or maximum mixing depths of zero.  The restriction of model 
predictions to shoreline occurrence transects allowed us to drop the random shoreline 
effect from models and compare the fit of general linear models with general additive 
models because fitting GAMs is much less memory intensive than fitting GAMMs. 

The initial GLM model evaluated to predict maximum depth of seagrass occurrence 
included main effects and both two- and three-way interaction terms for shoreline 
maximum Secchi depth average, shoreline maximum percent sediment total organic 
carbon, and density of unsewered residences on high infiltration soils: 

bathymmax = csecchiavMax + cpttocMax + cUSRMARIkm2Max + csecchiavMax x 
cpttocMax + csecchiavMax x cUSRMARIkm2Max + cpttocMax x 
cUSRMARIkm2Max + csecchiavMax x cpttocMax x cUSRMARIkm2Max 

(D2) 

After we dropped insignificant interaction terms, the resultant model was 

bathymmax = csecchiavMax + cpttocMax + cUSRMARIkm2Max + csecchiavMax x 
cpttocMax + csecchiavMax x cUSRMARIkm2Max  

(D3) 

Residual plots showed an increasing variance with the mean, possibly peaking at 
intermediate values, so we fit a generalized additive models and general linear models with 
second- and third-order terms to try to capture nonlinearities in response.  The best GLM 
model with higher order terms and interactions was: 

bathymmax = csecchiavMax2 + csecchiavMax3 + cpttocMax + cpttocMax2 + 
cUSRMARIkm2Max + cUSRMARIkm2Max2 + cUSRMARIkm2Max3 + 
csecchiavMax x cpttocMax  

(D4) 

However, this model still showed evidence of heterogeneity of variance, so we refit GLM 
models after log10-transformation of predictors.  No terms were dropped from the log-
transformed model with 3-way interactions and VIF terms were less than 10: 
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(D5) bathymmax = cL10secchiavMax*cL10pttocMax*cL10USRMARIkm2Max) 

However, based on comparison of AIC values, a GAM model provided a superior fit 
compared to the GLM model with log-transformed predictors: 

bathymmax = s(cL10secchiavMax) + s(cL10pttocMax) + s(cL10USRMARIkm2Max)) 

where s = smoothing function 

(D6) 



Appendix E.  Quality of the Data and 
Limitations on Use of the Data 
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We used our Narragansett Bay pilot application of the statistical modelling approach 
to illustrate how a predictive model could be developed to assess factors affecting 
seagrass growth. Our goal was to distinguish between nutrient and nonnutrient 
factors affecting seagrass growth and survival and to elucidate different 
mechanisms of action for effects of nutrients on seagrass.  We used the best 
publically available data sets to describe environmental variables that affect 
seagrass growth and survival in Narragansett Bay to support our predictive 
statistical model based on: temporal matches to 2006 seagrass maps, spatial extent, 
completeness, and spatial resolution.  We filled in gaps in Secchi depth at the 
southern end of the western arm of Narragansett Bay using offshore remotely 
sensed estimates of light attenuation coefficients (from > 30 meters depth), 
assuming these were similar to nearshore values.  When only point data were 
available, e.g., for salinity, Secchi depth, and wave energy, we created a continuous 
grid by interpolation through use of Theissen polygons, the Euclidean function in 
ArcMap (filling in gaps along shoreline), or inverse distance weighting.  Some 
variables were not available so we substituted indicators.  This included use of 
density of coastal residences on high infiltration soils as an indicator of potential 
groundwater N inputs, use of distance to nearest marina as an indicator of potential 
physical disturbance from mooring beds, and use of salinity gradients as an 
indicator of total N gradients in final scenarios.  Data on some variables potentially 
affecting seagrass distribution were simply not available, e.g., sulfide concentrations 
in sediment porewater, actual measurements of tidal current velocity as compared 
to estimated values, and measurements of turbidity or light attenuation near the 
sediment interface (as opposed to upper water column).  Any of the limitations to 
data availability or completeness of model inputs could have influenced the 
accuracy of our model predictions, but are unlikely to have produced biased model 
results.  We based model projections of future condition following nutrient load 
reductions on the assumption that nutrient concentrations will decline in 
proportion to load reductions and that space-for-time substitutions are appropriate 
for model development. The model can be improved in the future as more complete 
data or modelled estimates become available, e.g., for tidal currents and for 
dissolved inorganic N and total N concentrations across the bay. 
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