

Experimental Procedures to Measure SVOC Sorption Parameters

Dr. Xiaoyu Liu

U.S. EPA Office of Research and Development

National Risk Management Research Laboratory

Indoor Air 2014, SVOC Workshop, Hong Kong

July 11, 2014

Introduction

- SVOCs are released from a vast number of building materials and consumer products
- SVOCs can affect indoor environmental quality and human health
- It is important to develop reliable, accurate and efficient test methods to quantify SVOC emissions and transport in the indoor environment
- There are substantial difficulties associated with experimental measurements involving SVOCs

Experimental Challenges

- > SVOCs vapor pressure between $10^{-4} 10^{-14}$ atm
 - Slow emissions but long-term effects
 - Formation of concentration gradients inside the sources and sinks
- Low concentration in the air
 - Long sampling times (at least several hours)
 - Large sampling volume
- Very small mass gain in the sink material
 - Difficult to measure the mass change
- Strong sorption by the wall and sampling lines

Experimental Challenges

Existing chamber methods for measuring D_s & K_{ma}

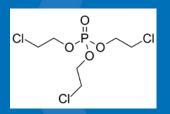
- Conventional chamber
- Microbalance chamber (Little)
- Dual diffusion chamber (Corsi, Zhang)
- Specially-designed SVOC emission chamber (Little & Xu)
- Field and laboratory emission cell (FLEC, Clausen)
- Cup method (ASHRAE)
- Others

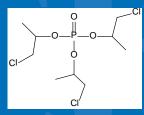
> Multiple mass transfer mechanisms in indoor environment

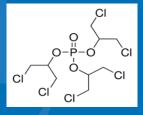
- Material ⇔ Air
- Material Material
- Dust ⇔ Air vs. Dust ⇔ Material

Critical parameters for fate and transport study

- Material/air partition coefficients (K_{ma})
- Solid-phase diffusion coefficients (D_s)
- Sorption rate constants (e.g. k_a, k_d)




SVOC: OP-FRs


Flame retardants (FRs) are used to meet flammability standards (hard plastics, spray foam application, polyurethane foam, electronic, mattress, textile, carpet)

Organophosphate FRs (OP-FRs)

Synonyms	Synonyms	Synonyms
115-96-8	Ethanol, 2-chloro-, phosphate	TCEP
13674-84-5	2-Propanol, 1-chloro-, 2,2',2"-phosphate	ТСРР
13674-87-8	2-Propanol, 1,3-dichloro-, phosphate	TDCPP

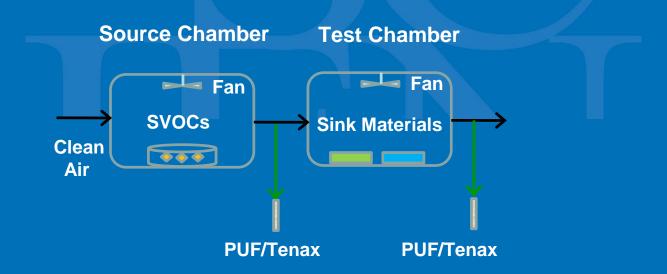
Small chamber design

- Two chambers connected in series source and sink chambers
- Source chamber generated constant emissions of target SVOCs
- Test materials as small "buttons" in the sink chamber, removed at different adsorption time
- The rail, hold up to 15 material buttons (1.4 cm I. D.), utilized as the runner for the removable test material rack
- Air concentrations monitored at the inlet and outlet of the sink chamber
- Concentrations in the materials measured by extraction

Pictures of the source chamber and test chamber

Office of Research and Development National Risk Management Research Laboratory

July 8, 2014


Pictures of test materials

Office of Research and Development National Risk Management Research Laboratory

July 8, 2014

Schematic of the air flow between two chambers

Office of Research and Development National Risk Management Research Laboratory

July 8, 2014

➤Test conditions

- Source chamber
 - TDCPP in an insulated heated aluminium block wrapped in aluminum foil at 67 ° C controlled by a thermocouple
 - ✓ Flushed with dry clean air

Table 2. OP-FR source settings in the SVOC source chamber

FRs	Cup Materials	Cup Size (ID, cm x Depth, cm)		Emission Rate ± %RSD, mg/h
TCEP	Teflon	5.08 x 0.83	24.6	$1.05 \text{ x} 10^{-4} \pm 4.68$
ТСРР	Teflon	5.07 x 0.81	24.6	$5.74 \times 10^{-4} \pm 5.42$
TDCPP	Aluminum	5.07 x 0.79	67.0	$5.00 \times 10^{-5} \pm 6.14$

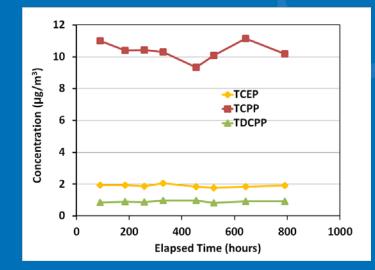
➤Test conditions

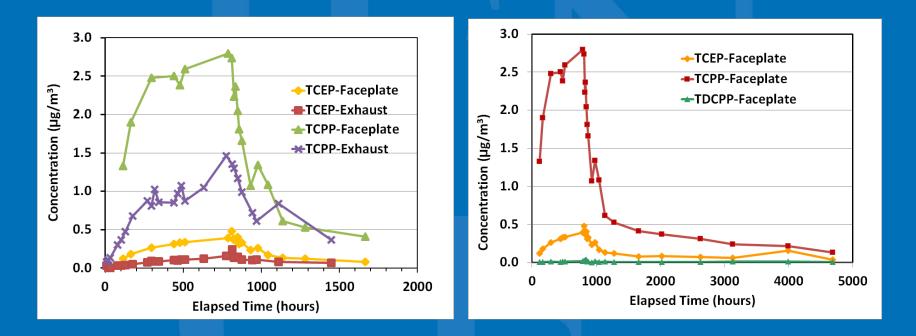
- Test chamber
 - ✓ 1ACH, 50% RH, 24.5±0.5 ° C
 - ✓ OP-FR sources dosed into the empty chamber
 - ✓ FR sources replaced by clean air at 810 hours
 - ✓ PUF sampling (600 mL/min) at volume of 70 650 liters
 - Exhaust sampling line consisted of 27 cm Teflon tubing (0.95 cm I.D.) with an 18-cm glass manifold (1.6 cm I.D.)
 - "Pre-Coated" the chamber with OP-FR before placing the test materials

➤Test conditions

- Analytical
 - PUFs extracted with 1:1 methylene chloride/ethyl acetate by Lab Rotator
 - ✓ Materials were extracted by sonication
 - ✓ Analyzed on GC/MS
 - ✓ GC Internal standard (d₂₇-tributyl phosphate), extraction recovery check standard (d₁₅-triphenyl phosphate)
 - ✓ Quality assurance and control

➢Constant OP-FR sources




Table 3. Measured concentration of OP-FRs from source chamber (October 2013 to May 2014, N=33)

FRs	Avg (µg/m³)	STD	%RSD
TCEP	2.1	0.4	19
TCPP	10	1.2	12
TDCPP	0.8	0.2	23

Results

Chamber air concentrations measured in the empty chamber sink test

Collected data for estimating parameters (D_s & K_{ma})
Experimental data of sorption concentrations
Use Degree of Sorption Saturation(DSS) model (Deng et al. 2010) to estimate D_s & K_{ma} (Liu et al. 2014)

$$DSS = \frac{M(t)}{M_{max}} = \frac{M(t)}{C_a K_{ma} A \delta} = f(N_l, \Theta, Fo_m)$$

 Develop correlation equations to predict model parameters based on compound properties

- Improved small chamber testing method for
 - characterizing the sink effect of SVOCs on materials
 - The design of the lid uses minimal entry points and rods to remove the exposed materials.
 - Multiple sink materials can be tested at the same time
 - SVOC concentrations in the materials determined individually.
 - The new method can detect the SVOCs in the sink materials in the microgram range

Acknowledgement

- Zhishi Guo, U. S. EPA (retired)
- > Nancy Roache, ARCADIS U. S. Inc.
- Matt A. Allen, ARCADIS U. S. Inc.
- Edgar Folk IV, ARCADIS U. S. Inc.
- Bobby Sharp, ARCADIS U. S. Inc.
- Joel D. Tenny, ICL Industrial Products Inc.
- Michael J. Nagridge, ICL Industrial Products Inc.