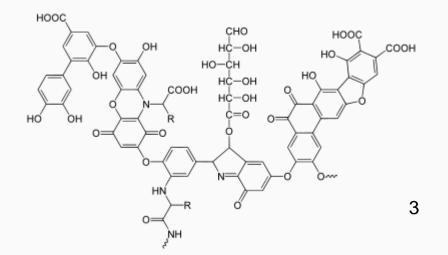
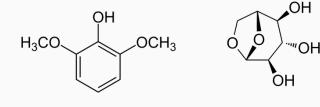
A view at the interface between particle chemistry and toxicology

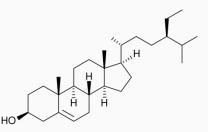
Michael D. Hays, Ian Gilmour, and Yong Ho Kim

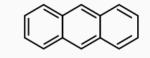

U.S. Environmental Protection Agency

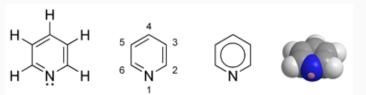
- I. Focus on primary (organic) aerosol particle composition
- II. Provide a description of how bulk chemistry and individual molecules in PM have influenced toxicology
- III. Examine how past and novel developments in analytical chemistry influence toxicology applications
- IV. Possible new directions for health-related research including bioavailibility and thermodynamics based toxicology
- V. Wrap-up

- organic carbon (OC); elemental carbon (EC); black carbon (BC); brown carbon (BrC);
- humic-like substances (HULIS);
- water-soluble organic carbon (WSOC);
- oxygenated organic aerosol (OOA) (Aerosol MS)
- molecular weight and size
- functional group-based chemistry (FT-IR)
- volatility and thermal-chemical fractions
- elemental and ionic (K⁺ with some chloride, nitrate, and sulfate)
- water (hygroscopicity)




- Photochemical transformation of primary pollutants causes greater biological effect
 - Transcriptional changes in the RNA genome were observed *in-vitro* (qRT-PCR)
 - Rager et al. (2011) Environ. Health Perspect. 119 (11), p. 1583
- Volatility fraction of diesel emissions influences redox activity (SVOCs are potent)
 - Atmospheric dilution of emissions potentially governs PM toxicity (DTT assay)
 - Biswas et al. (2009) *ES&T* 43, p. 3905
- Both water-soluble and insoluble fractions of PM likely contribute to ROS toxicity
 - Wang et al. (2013) Atmos. Environ. 77, p. 301
- OC and EC (WSOC) levels influence biological effects (including cardiovascular)
 - Gilmour et al. (2015) Anal. Bioanal. Chem. DOI 10.1007/s00216-015-8797-9

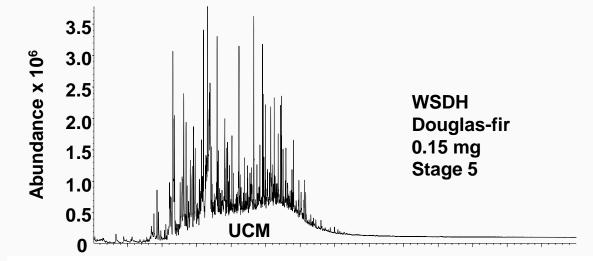

Examples of major organic compound classes

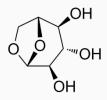


- carbohydrates and derivatives (anhydro-sugars)
- lignin derivatives (methoxyphenols)
- diterpenoids and triterpenoids
- phytosterols
- carboxylic acids
- alkanols, alkanals, and alkanoates
- alkanes and alkenes
- polycyclic aromatic hydrocarbons (PAH)
- dioxins and furans
- organic nitrogen compounds (indoles, nitriles)
- heterocyclics (thiophenes, organometallics)

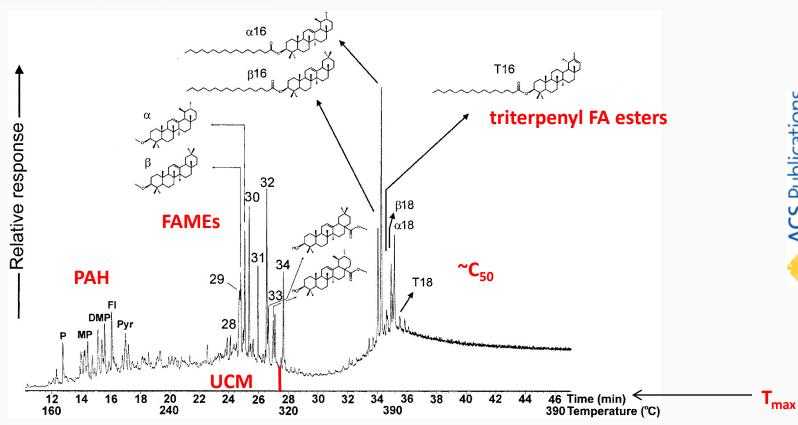
- o GC-MS identified compounds
- Relative proportions and class change with atmospheric conditions and combustion source
 Medeiros and Simoneit E

5


Medeiros and Simoneit, ES&T, **2008** (*42*) p. 8310


- 1-NP and B[a]P mutagens detected in human lung tissue specimens
 - Proposed as tumor induction agents in female non-smokers inhaling coal burning emissions
 - Tokiwa et al. (1993) Carcinogenesis, Vol.14 p. 1933
- Statistical analysis (PCA-PLS) show lung toxicity of motor vehicle emissions is closely associated with lubricating oil compounds
 - McDonald et al. (2004) EHP, 112, p. 1527
- Marker-based source apportionment shows urban sites impacted by vehicles and industry are most toxic.
 - Also done in combination with PCA-PLS (links chemicals, sources and health endpoints)
 - Acute cytotoxicity and inflammation
 - Seagrave et al. (2006) EHP,114, p. 1387

GC-MS (biomass burning example)



- SVOC chemistry grounded in GC-MS
- GC-MS limited by:
- temperature /volatility (300 °C)
 - thermal degradation
- polarity
 - derivatization
- resolution (column space) -2-D GC methods

Resolution and temp. limits of GC-MS

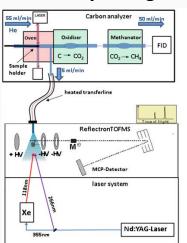
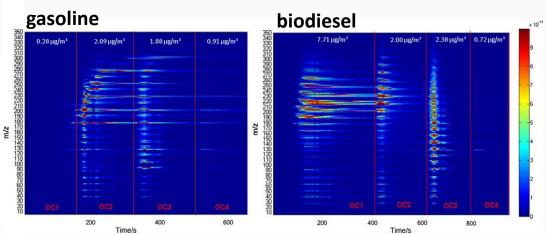


Figure 5. Representative total ion current trace (HTGC–MS) of the ester fraction from the smoke extract from burning of Castanha-do-Pará. Numbers refer to the carbon chain length of free fatty acids (analyzed as the methyl esters): P = phenanthrene; MP = methylphenanthrenes; DMP = dimethylphenanthrenes; FI = fluoranthene, and Pyr = pyrene. α , β , and T are the esterified triterpenols α -amyrin, β -amyrin, and taraxasterol, respectively.

ACS Publications

Carbon analyzer and PI-MS analysis

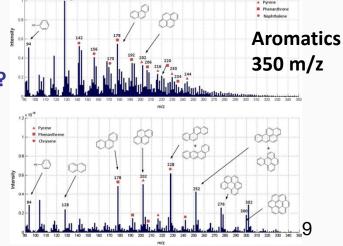

Chemistry changes with volatility:

 Pure Helium
 Helium / 2 % O2

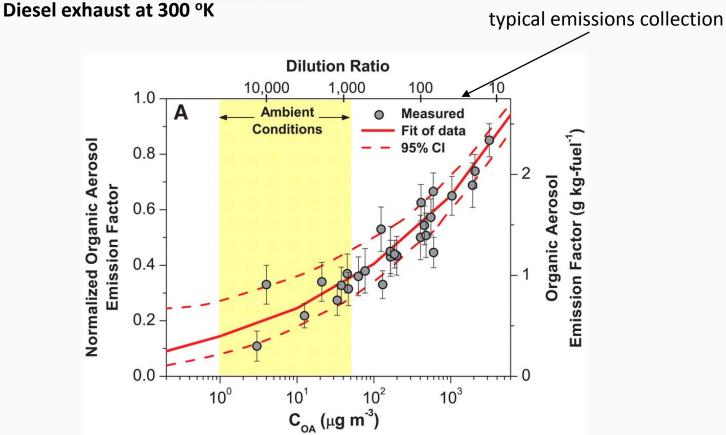
 001
 120°C
 EC1
 550°C

 002
 250°C
 EC2
 700°C

 003
 450°C
 EC3
 800°C



. CC


How do we further develop a volatility-based toxicology model?

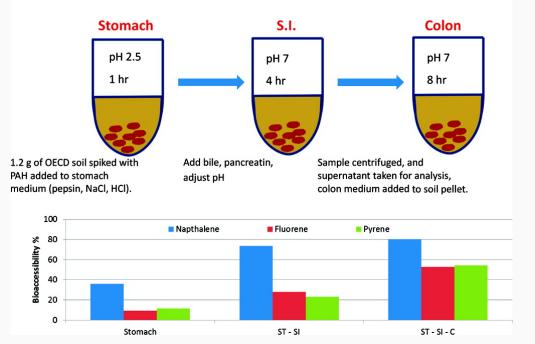
Higher temperature fractions contain PAH

Grabowsky et al., (2011), Anal. Bioanal. Chem., 401, pp. 3153-3164

- produce more realistic primary SVOC chemical exposure scenarios
 - considering phase
- there is more anthropogenic SOA than primary OA
 - reactive byproducts will be important

Robinson et al., Science, **315** (5816): 1259-1262

- goal is to extract as much and as many organic compounds as possible
- determine a maximum possible exposure
- there can be organic solvent bias (dosimetry)


What about bioavailability?

According to WEB OF SCIENCE[™].

- since 1985, 518 papers have focused on "particulate matter" AND "bioavailability"
- more than half of those focused on "metals"
- minimal focus on organic compounds
- dissolution testing standards are generally ignored (Wiseman [2015] Anal. Chim Acta, 877 p. 9)
- cell response/expression was covered (e.g.; ascorbate oxidation, glutathione depletion)

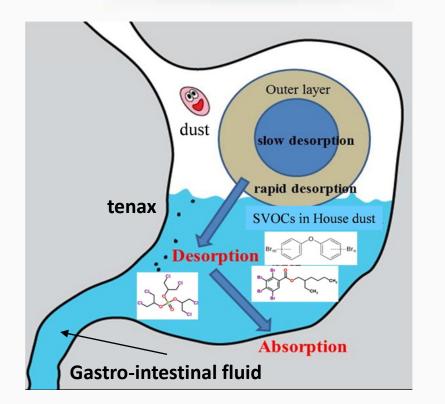
Physiological-based fluid extractions

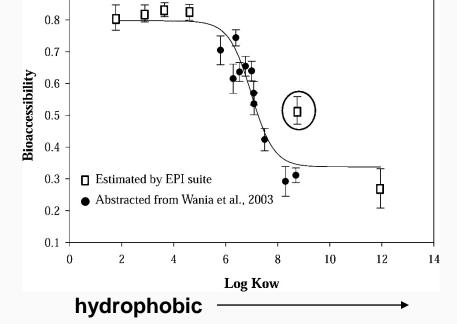
• Experiments

- PAH in soil in the gastro-intestinal system
- sequentially or in batch, time
- differences in PAH bioaccessibility observed
- GC-MS

Results

- PBET underestimates [PAH] in soil
- desorption of PAH is controlled by many factors
- biological environment, K_{ow}
- colon media aggressively desorbed PAH.


Precedent for particle extractions with lung fluid



Physiological-based fluid extractions

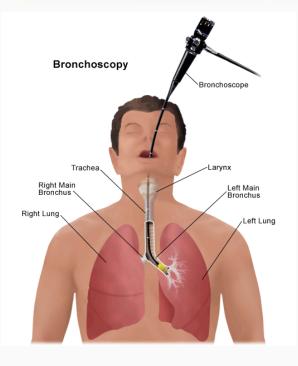
0.9

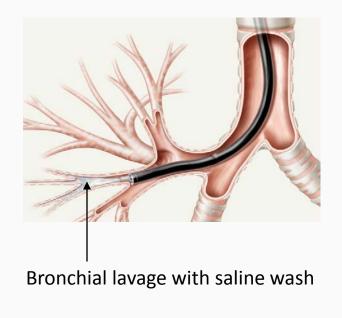
Flame retardants-PBDE and organophosphates

Published in: Mingliang Fang; Heather M. Stapleton; *Environ. Sci. Technol.* **2014,** 48, 13323-13330. DOI: 10.1021/es503918m Copyright © 2014 American Chemical Society

Simulated lung fluids

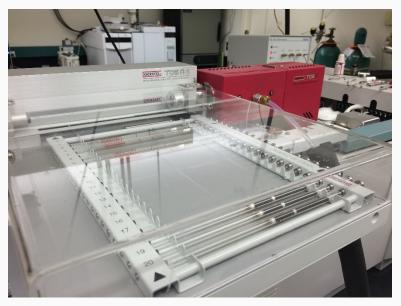
Table 11. Simulated Lung Fluid (SLF)						
		SLF1	SLF2	SLF3	SLF4	SLF5
	ALF (g/L)	Gamble's Solution (g/L)	(mg/L)	(g/L)	(g/L)	mMol/l
nagnesium chloride	0.050	0.095		0.2033 (hexahydrate)	MgCl, hexahydrate 0.2033	
odium chloride	3.21	6.019	6800	6.0193	6.0193	116
otassium chloride		0.298		0.2982	0.2982	
isodium hydrogen phos- hate (Na,HPO,)	0.071	0.126	1700 (monohydrate)			
odium sulfate	0.039	0.063	-	0.0710 (anhydrous)	0.0710 (anhydrous)	-
alcium chloride dihydrate	0.128	0.368	290	0.3676	0.3676	0.2
odium acetate		0.574	580	0.9526 (trihydrate)	0.9526 (trihydrate)	
odium hydrogen carbonate NaHCO_)	-	2.604	2300	2.6043	2.6043	27
odium citrate dihydrate	0.077	0.097	-	0.0970	0.0970	0.2
adium hydroxide	6.00	-	-	-		-
ric acid	20.8	-	420 (monohydrate)	-	-	-
lycine	0.059	-	450	-	-	5
dium tartrate dihydrate	0.090	-	-			
dium lactate	0.085	-	-		-	-
odium pyruvate	0.086	-	-	-	-	-
mmonium chloride		-	5300		-	10
hosphoric Acid	-	-	1200		-	-
odium carbonate	-	-	630		-	-
otassium acid phthalate	-	-	200	-	-	-
ulfuric acid		-	510			0.5
odium citrate dihydrate	-	-	590	•	-	
dium phosphate monobasic onohydrate				0.1420	0.1420	1.2
-cystine hydrochloride		-				1.0
PPC*	-	-	-	-	0.02% (w/v)	-
TPA®						0.2
BDCB ⁴	-		-	-	-	50
roperties						


Gamble's solution - deep lung
 ALF – following macrophage phagocytosis


SLF2 – extracellular fluid interaction

- Respiratory mucous contains
 - Glycoproteins, proteins, and lipids.
 - Varies with disease states
- Lung is generally difficult to simulate
 - Due to surfactant and aqueous fluid
- Salts can precipitate
- Stability of organic compounds in fluids is unknown
- work-up is required to perform a chemical analysis

- Source exposed and unexposed patients and mice
- Lavage allows the collection of lung fluid, cells, and other materials inside the air sacs
- This fluid will be collected and used to perform PM extractions, assess bioavailability
- Potential to reduce animal use and save time compared with tissue measurements


Courtesy of Dr. Andy Ghio of the U.S. EPA

PDMS stir bar extraction

TD-GC-MS

- Combustion and ambient aerosol is chemically complex,
 - requires multiple analytical approaches
- Different chemical entities are commonly associated (OC, HULIS, WSOC, etc.)
- links between POA and SOA need to be explored further using thermodynamics
 - generational chemistry
- thermodynamics-based toxicology will emerge and is important for source-to-effect research
- It is time for physiological-based extractions of PM using lung fluids
 - This will improve our understanding of bioavailability of specific PM components