

Mobile Monitoring Data Processing and Analysis Strategies Halley Brantley, Gayle Hagler, Eben Thoma

Office of Research and Development Full Name of Lab, Center, Office, Division or Staff goes here.

Mobile Monitoring

3

 CH_4

wind direction

driving path

Spike in CH₄ indicates emission

Fine spatial scale – stretching measurement and modeling limits

Moving from regional-scale (10s of km) to local-scale (10s of meters) assessment

What do we mean by "near-source" air pollution?

Over 45 million people in the United States live within 100 meters of a major transportation system.

Zhu et al (2002)

Traffic-related air pollution and health effects

Sufficient evidence

Exacerbation of childhood asthma

Suggestive, but more evidence needed Onset of childhood asthma All-cause and cardiovascular mortality from long-term exposure Cardiovascular morbidity Impaired lung function Nonasthma respiratory symptoms

Fine spatial scale – measurements

Assessing near-source areas – what you'd love to have:

Measurements in many locations in near-source areas

Robust, long-term measurements

Key species indicating local emissions impact

Real-time data (minutes)

Ability to handle multi-site real-time data and quickly identify important features

Fine spatial scale – measurements

Moving towards these goals on several fronts....

 \rightarrow Developing mobile monitoring approaches: map air quality with one set of advanced air pollution instruments

Electric platform:

Measurements:

- Zero-emissions
- 100 mile range
- Customized for onboard sampling
- Particulate matter (ultrafine to coarse)
- Carbon monoxide
- Black carbon
- Nitrogen dioxide
- 1 Hz sampling \rightarrow ~10-15 m spatial resolution

Framework for mobile monitoring studies

*Dashed lines represent optional alternative paths

Definitions

- Local exhaust plumes tail pipe exhaust near sampling inlet.
- Local air pollution well-mixed air affected by one or more known local sources and modulated by local wind.
- 3. Background representative ambient air quality conditions without detectable impact of a nearby source.

Description of Data used to compare analysis strategies

- Field study conducted in the summer of 2012 in Raleigh, Durham and Chapel Hill.
- Goal: characterize spatial variation in traffic related air pollution.
- 40 hours of data collected during weekday mornings on 24 days spanning 12 routes.

Example mobile monitoring data

(C)

Removing influence of local exhaust plumes when analyzing near-source pollution gradients

Effect of spatial and temporal smoothing when analyzing near-source pollution gradients

12 11/3/2015

Different Methods of Estimating Background Concentrations

¹³ 11/3/2015

Estimating Background Concentrations: Comparing a location based method with a time-series based method

Effect of background standardization on general air quality surveys

Framework for mobile monitoring studies

*Dashed lines represent optional alternative paths

Acknowledgements

EPA

ORD: Sue Kimbrough, Ron Williams, Lucas Neas, Shaibal Mukerjee, Richard Shores, Bob Wright

Arcadis

Parikshit Deshmukh

References

Brantley, H. L., Hagler, G. S. W., Kimbrough, S., Williams, R. W., Mukerjee, S., & Neas, L. M. (2013). Mobile air monitoring data processing strategies and effects on spatial air pollution trends. *Atmospheric Measurement Techniques Discussions*, *6*(6).

Health Effects Institute. Panel on the Health Effects of Traffic-Related Air Pollution. (2010). *Traffic-related air pollution: a critical review of the literature on emissions, exposure, and health effects* (No. 17). Health Effects Institute.

Zhu, Y., Hinds, W. C., Kim, S., & Sioutas, C. (2002). Concentration and size distribution of ultrafine particles near a major highway. *Journal of the air & waste management association*, *52*(9), 1032-1042.