Evaluation of Green Infrastructure Designs Using the Automated Geospatial Watershed Assessment Tool

D. Phillip Guertin¹, Yoganand Korgaonkar¹, I. Shea Burns¹, Jane Barlow¹, Carl Unkrich², David C. Goodrich², and William Kepner³

¹University of Arizona ²Agricultural Research Service ³U.S. EPA

Outline

- Integrated | YK1 | Jatershed Management in Arid Built Environments
- Urban Toolkit in the Automated Geospatial Watershed Assessment Tool
- Case Study in Sierra Vista, AZ
- Conclusions and Future Directions

YK1 Fixed spelling of integrated on Slide "Outline"

Integrated Watershed Management

Integrated Watershed Management (IWM) is a comprehensive multi-resource management process, involving all stakeholders within the watershed, who together as a group, cooperatively work toward identifying the watershed's resource issues and concerns.

IWM addresses the interrelationships between:

Water Supply – The Primary Driver in Built Arid Environments

Flood Control

Water Quality

Biological Resources (Natural and Landscaping)
Sustainable Communities (Greenness)
Social/Economic Issues

Changed formatting Yoga Korgaonkar, 7/28/2015 YK2

'Harvestable' Water (Rainwater/Stormwater) - Potential to Augment Water Supply (From: Dr. Evan Canfield – Pima County Flood Control)

Low Impact Development (LID) Practices

- The effectiveness of a practice depends on your objective.
- If your objective is to capture stormwater to mitigate flood and water quality
 - Pervious Surfaces driveways, roads, parking lots are very effective
- But if your primary goal is to augment water supplies then
 - Water Harvesting
 - Rain Gardens
 - Bio-retention Cells with vegetation, are more effective
- Need tools that can assess the effects of different combinations of LID practices and evaluate between different development designs.

YK3

Automated Geospatial Watershed Assessment Tool AGWA

- Endpoints: volume & peak runoff, sediment, plus N and P
- Simple, direct method for model parameterization
- Provide repeatable results for relative change assessments
- Five hydrologic models to address multiple scales
 - SWAT (2000, 2005) for large basins, daily time steps
 - KINEROS2 and KINEROS-OPUS for small basins, sub-hour time steps
 - Hillslope Runoff and Erosion Models (RHEM)
- Basic GIS functionality
 - watershed delineation
 - watershed discretization
 - model parameterization
 - execute the models
 - visualize results spatially and difference results across multiple simulations

YK3 KINEROS2

Urban Toolkit

- Within the KINEROS2 Model
- Flow Route Delineation routing water down streets or swales
- Lot Representation potential to uniquely represent each lot
 - Impervious Area
 - Contributing Area
 - Flow Off → Flow On Processes
 - LIDs on Lots
 - Basins
 - Water Harvesting
 - Pervious Surfaces
 - Gray Infrastructure
 - Detention/Retention Ponds
 - Visualization of Results

Formatting and slide layout Yoga Korgaonkar, 7/28/2015 YK4

Lot Representation

- Each Home or Commercial Lot can have its own design.
- Based on the Lot Characteristics (setback, etc.) and LID practices, a lot is broken up into planes with difference input parameters.
- Flow Off → Flow On processes can be modeled.
- Water can be captured and non-contributing areas can be identified.

YK5

fixed typos Yoga Korgaonkar, 7/28/2015

Case Study

- La Terraza Subdivision in Sierra Vista, AZ (13 ha)
- Two Events (SCS Type II Design Storm)
 - 10 year Return Period (34.29 mm; 1 hour)
 - 100 year Return Period (51.82 mm; 1 hour)
- Three LID Practices Lot Only
 - Small Retention Basin (1.7 m³; Ks = 201 mm/hr)
 - Pervious Driveway (Ks = 210 mm/hr)
 - Water Harvesting (1.9 m³; Empty)
- Ten Scenarios
 - No LID Practices
 - Single LID Practice
 - Two LID Practices
 - All Three LID Practices

YK6 formatting

Results

• Post-Development Validation (Kennedy et al. 2013)

Results

10 Year Return Period

Scenario	Peak Runoff (m3/s)		% Change in Peak Runoff wrt Post- Development
Pre-development	1.49	NA	NA
Post-development without LID	2.28	53.37	NA
Retention Basin	2.24	50.26	-2.03
Permeable Pavements	2.25	51.21	-1.41
Rainwater Harvesting	2.12	42.29	-7.22
Retention Basin + Permeable Pavements	2.20	48.03	-3.48
Retention Basin + Rainwater Harvesting	2.07	38.88	-9.45
Permeable Pavements + Rainwater Harvesting	2.08	40.09	-8.66
All LID practices	2.03	36.66	-10.90

YK9 Layout

Results

100 Year Return Period

Scenario	Peak Runoff (m3/s)	% Change in Peak Runoff wrt Pre- development	% Change in Peak Runoff wrt Post- Development
Pre-development	2.92	NA	NA
Post-development without LID	3.85	31.75	NA
Retention Basin	3.80	30.08	-1.27
Permeable Pavements	3.80	30.05	-1.29
Rainwater Harvesting	3.77	29.03	-2.06
Retention Basin + Permeable Pavements	3.75	28.37	-2.56
Retention Basin + Rainwater Harvesting	3.72	27.29	-3.38
Permeable Pavements + Rainwater Harvesting	3.72	27.33	-3.35
All LID practices	3.67	25.59	-4.67

YK8 Layout

Results

Lot and Street Visualization

YK7 Layout

Conclusions

- Modeling framework works well on developed watersheds
- Supports the evaluation of different designs.
- Supports the assessment of the accumulative impacts of LID practices.
- Supports detailed representation and modeling of lot and drainage features on a small catchment.
- Future research includes:
 - Adding more LID practices and gray infrastructure practices.
 - Improve the hydrological representation of LID practices.
 - Improve the parameterization for LID practices.
 - Validation of LID Simulation. Data Sets?
 - Provide linkages to other software (e.g. SWMM).
 - Add water quality (N & P) modeling capability.

Acknowledgements

- Special thanks are accorded to Dr. David Woolhiser and Dr. Roger Smith for their many contributions to the K2 model.
- A host of graduate students, too numerous to list here, are commended for their contributions to and testing of K2 and AGWA.
- The U.S. Environmental Protection Agency provided support for this research.