Wheat and barley exposure to nanoceria: Implications for agricultural productivity

Cyren M. Rico,^{1,2,4} Ana C. Barrios,² Wenjuan Tan,² Jose R. Peralta-Videa,^{2,3,4} Jorge L. Gardea-Torresdey^{2,3,4}

¹National Research Council, Research Associateship Program, US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th St., Corvallis, OR 97333, USA

²Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso Texas 79968, United States

³Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 W. University Avenue, El Paso Texas 79968, United States

⁴University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso

Abstract

The impacts of man-made nanomaterials on agricultural productivity are not yet well understood. A soil microcosm study was performed to assess the physiological, phenological, and yield responses of wheat (*Triticum aestivum*) and barley (*Hordeum vulgare* L.) exposed to nanoceria ($nCeO_2$). The plants were cultivated in soil amended with $nCeO_2$ at 0, 125, 250, and 500 mg kg⁻¹ (control, $nCeO_2$ -L, $nCeO_2$ -M, and $nCeO_2$ -H, respectively). The accumulation of Ce in leaves/grains and the effects on plant growth and productivity were recorded. Results revealed that Ce did not move to aerial tissues in wheat, but accumulated significantly in barley grains (294% increase in $nCeO_2$ -M compared to control). Relative to the control, $nCeO_2$ -H increased shoot biomass by 37% and 331% in wheat and barley, respectively. In the case of productivity, $nCeO_2$ -H improved yield in wheat by 13%, compared to control, but completely halted grain formation in barley. Additionally, $nCeO_2$ -M enhanced the concentration of the majority of the nutrient elements (K, P, Ca, Mg, S, Fe, Mn, Zn, and Cu) in barley grains, but only affected the concentration of S and Mn in wheat grains. These findings illustrate that nanoceria can induce either beneficial or harmful effects in wheat and barley, and this result has implications for agricultural production.